可变配气技术发动机解析

可变配气技术发动机解析
可变配气技术发动机解析

可变配气技术发动机解析

在目前市售的主流家用车当中,发动机气门正时技术已经日渐普及,包括一些采用自主技术的厂家。追溯起来,最早在气门正时上做文章的汽车厂家是意大利的阿尔法罗密欧,他们率先采用了两根凸轮轴来分别控制进气和排气的气门,也就是我们今天说的DOHC双顶置轮轴。近四十年的发展历程中,可变配气技术已经不再是什么难题,各大厂商也都在这一技术领域取得了自己的成绩。下面我们就来列数一下目前市面上比较主流的使用了几种可变配气技术的发动机。

如果简单的归类,目前的发动机配气技术主要分为几种,一种是可变气门正时,即对进气或排气的正时可以根据发动机转速、进气压力和车速等参数调节,是通过改变凸轮轴旋转的角度来实现的。可变气门正时可以进一步分为连续可变和分段可变。连续可变是指气门叠加角可以在一定范围内进行连续的变化,分段可变则是只能在两到三个角度之间切换,而目前的技术基本上都可以实现连续可变了。另一种为可变气门升程,即可通过技术手段改变气门打开的升程,改变进气量,从而增加气缸内的压力并使燃烧效率得到改善,提高动力输出。除了这两种主流的技术以外,还有一些其他配气技术,如可变进气歧管、可变涡流控制等。

● 思域 i-VTEC可变气门正时和升程

其他车型:飞度、锋范、雅阁、奥德赛

说到本田的i-VTEC,很多人都知道。应该说,本田是第一个研发出可变气门升程技术的汽车厂商,过去的VTEC技术前面加了一个i,就表示在可变气门升程的基础上增加了可变气

门正时技术。而应该赞扬的是本田对旗下车型一视同仁的态度,所有车型的发动机均采用了这套系统,不分是小型还是中型。不过,作为率先在80年代即研发出双凸轮轴的汽车厂家,目前依然在众多车型上使用SOHC单顶置凸轮轴的发动机(如飞度、锋范、思域乃至雅阁2.0),也挺令人费解。

思域1.8升发动机使用SOHC单顶置凸轮轴,也就是由同一根凸轮轴来控制进气门与排气门的打开与关闭动作。从结构上看,同一根凸轮轴无法实现对进排气的分别控制,所以对于正时相位重叠角的调节就无法做到连续调节。不过,虽然不如双凸轮轴的发动机更理想,但基本能够达到这套系统的要求。

首先,气门升程的调节是靠增加了一组较高的中间凸轮和摇臂来实现的,三根摇臂内部装有由液压控制移动的小活塞。发动机低速时,小活塞不动,三根摇臂分离,正常进排气,进气量较少。当发动机转速升高达到某个设定值时,ECU会指令电磁阀启动液压系统,推动摇臂内的小活塞,使三根摇臂锁成一体,一起由中间凸轮驱动,由于中间凸轮更高,升程自然就增大了。

这套系统由发动机电子控制单元(ECU)控制,通过接收各传感器(包括转速、进气压力、车速、水温等)的参数并进行处理,输出相应的控制信号,然后利用电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速工况下由不同的凸轮控制,影响进气门的开度和时间。

此外,在发动机低负荷时,进气门不像其他车型常规的半闭合状态,而是全部打开。此时进气顺畅,并减少了进气时的能量损失,而当活塞运行到下止点的时候,进气门并不关闭,而是在活塞上行一段距离之后再关闭,此时有一部分新鲜的空气被回推到进气道,进气门关闭,这部分空气则可以留作下次进气门打开时再使用,既节省了油耗,又减少了排放。而在发动机高负载时,则按照正常的方式进行凸轮驱动,可以保证大功率输出。

跟大多数只能改进气门正时的配气技术相比,本田显然要更胜一筹。因为,可变正时只能改变气门打开的时机,却并不能改变进气量,因此对于动力方面的提升作用并不显著。而可变气门升程则因为可以通过控制气门打开的升程而改变进气量,从而使燃烧更充分且效率更高。不过,本田i-VTEC系统对气门正时的调节仅限于进气门,而且也不是连续可调的,如果未来要将这套系统扩展到既可以分段调节气门升程,又能同时调节进排气正时的话,单顶置凸轮轴的发动机显然就不适用了。

● 戈蓝三菱MIVEC可变气门正时与升程

三菱4G1系列的发动机在国内的普及程度非常高,但是并没有使用MIVEC可变正时与可变升程技术。而新近推出的4A91系列1.5升发动机,已经使用了MIVEC的新型号,在一些小排量发动机上正在逐渐推广使用,比如骏捷FSV。不过,在这些小排量发动机上使用的MIVEC 系统只有可变气门正时一项技术。

而在进口版的Lancer EX的两款4B11(2.0L)和4B12(2.4L)发动机上面,都使用了DOHC双顶置凸轮轴结构,MIVEC应该也不是完整版本,借用三菱汽车官网的话是“采用独有的MIVEC(三菱创新式气门正时电子控制系统)技术,可在任何转速范围,调节气门正时达到最佳表现”。不过,在我们就这个问题咨询三菱厂方相关人员时,得到的答复是Lancer EX

的两款发动机上都有MIVEC可变气门与升程技术。另外,国产戈蓝上使用的2.4升发动机上也是可以同时调节气门正时和升程的的MIVEC系统。

三菱传统的MIVEC可气配气系统包括了气门正时与升程,而升程可变跟本田的VTEC原理是一样的,通过气门摇臂分两段变化,更偏重高转速的动力输出。在传统的SOHC单顶置凸轮轴上,四气门发动机的两个进气门上,MIVEC有一个辅助开关系统,分为低速和高速两种模式的凸轮,用于调节气门升程。在低转速状态下,进入气门的空气量由于气门升程差而增大,同时设计成偏向于较低的燃油经济性、低排放和高扭矩。转速拉高后,由于进气门开启时间改变和升程增加,使得进气量明显增大,从而使输出功率随之提升。

气门正时与其他可变气门正时技术原理相同,都是由专门的油压控制阀来做核心控制,ECU接收的各传感器信号来进行判断,通过机油的压力使活塞做横向移动,带动链轮相对阀壳体转动,使凸轮转角发生改变。

● 英菲尼迪G37 VVEL可变气门正程+C-VTC可变气门正时

VQ37发动机上,首次装备了VVEL可变气门升程,配合C-VTC可变气门正时,虽然在年代上不如本田早,但日产也终于可以扬眉吐气了。唯一让人感到遗憾的是,这套系统还没有普及到日产品牌下面的普通家用车型上。VQ37是日产VVEL技术的首次应用,这台3.7升发动机,最大马力是330bhp,升功率达到了89.2bhp。

那么日产的VVEL是如何实现这一功能的?普通发动机的气门驱动组,由气门、凸轮轴、凸轮、摇臂等组成。而日产的VVEL系统将凸轮轴上的凸轮全都改为偏心轮设计,摇臂也是套在偏心轮上,并额外增加了摇臂控制机构。

日产的VVEL

摇臂通过偏心轮套在控制轴上,可以在直流马达带动下可以旋转一定角度。当发动机在高转速或者大负荷时,直流马达带动螺杆转动,套在螺杆上的螺套向马达横向移动,与螺套联动的机构使得控制轴逆时针旋转一定角度。由于摇臂套在控制轴的偏心轮上,因此摇臂的旋转中心下移,也就相当于摇臂位置距离气门更近,所以,凸轮轴旋转时气门的开启角度也就更大。

当发动机中、低转速或者低负荷时,ECU会下达命令,令马达驱使螺套做远离的横向移动,联动机构使控制轴顺时针方向旋转,偏心轮圆心上移,摇臂旋转中心跟着上移,于是摇臂距离气门的距离变远,凸轮轴旋转时气门的开启角度也就随之变小。

由于马达的转动是线性的,它可以控制气门在最大升程和最小升程之间连续变化,因此,这种设计可以让发动机动力输出平滑,不会有突兀感。再配合C-VTC可变气门正时,发动机在保证线性输出的基础上,可以令低转更平顺,高转则能达到更大的功率输出。

● 睿翼 VIS惯性可变进气系统+S-VT可变气门正时

马自达的技术是采用VIS惯性可变进气,即通过改变进气歧管的形状和长度,低转速用长进气管,保证空气密度,维持低转的动力输出效率;高转用短进气歧管,加速空气进入气缸的速度,增强进气气流的流动惯性,保证高转速下的进气量,以此来兼顾各段转速发动机的表现。

简单地说,发动机气门在关闭时气体会因为惯性而保持对气门的撞击,然后形成反弹,如此反复,在节气门和气门之间形成振荡,如果下一次气门打开时,振荡刚好冲到气门就会使这一次的进气出现一个微小的增压效应,使得进气效率变得更强。

而马自达6的树脂进气歧管设有一个可以改变进气管通路容积的气门,该气门可以改变惯性进气的共振频率,在转速4500rpm时会发生不连续的转换。每一种状态都被调谐为将一股压力在不同的转速下回送到进气门。两条进气通路在特定转速下进行转换,从而在进气口产生类似增压器的效果,获得更宽的扭矩范围。

目前,在福特和马自达的车型上多数都在使用VIS惯性可变进气系统,例如福克斯、马自达3、马自达6等等。同时,与VIS相配合的是S-VT可变气门正时系统,S-VT跟其他的VVT之类的原理都是一样的,将静态凸轮轴安装在一个齿轮嵌齿上,可以改变凸轮轴的转动速度,由此提早或延迟打开气门从而改变进气正时。

● 卡罗拉双VVT-i 进排气均连续可变

丰田的双VVT-i技术一向很不低调,在卡罗拉的车尾就明晃晃地贴着DVVT-i的标识。这个词组表示的是它拥有进排气连续可变技术,也就是说可以根据发动机转速的不同,使进气门与排气门重叠角可以实现连续可变。

由于与不同转速下的发动机匹配得更加平顺,动力输出方面也会更加线性,同时排放和燃油经济性也能够得到相应的改善。卡罗拉1.6升双VVT-i发动机在参数上显得很突出,最大功率可以达到90KW,在同排量的自然吸气发动机中几乎难觅对手。

这套系统能够控制进气门凸轮轴在50°范围内调整凸轮转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。VVT-i系统主要是由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。

● 悦动 CVVT 连续可变气门正时

实际上,可变气门正时技术的应用,在各家厂商当中的叫法五花八门,比如现代汽车的CVVT就很容易被人误看成CCTV。悦动搭载的α-1.6L发动机,使用了CVVT连续可变气门正时技术,最大功率为112马力/6000rpm,最大扭矩145N·m/4500rpm。

CVVT的原理跟丰田的VVT-i其实是一样的,进气凸轮轴驱动齿轮内装有小涡轮,可以相对齿轮壳做相对旋转,当发动机由低速向高速转换,ECU通过液压阀将机油压向小涡轮,使其相对于齿轮壳旋转一定角度,凸轮轴在60度的范围内向前或向后旋转,进气门开启的时刻随之改变。保证了发动机按照不同的工况改变气门开启、关闭时间,既保证动力输出又可提高燃油经济性。

这套系统的核心是油压控制阀,而电脑(ECU)会根据输入信号(发动机转速、进气量、节气门位置、发动机温度等)来决定油压控制阀的操作,并利用凸轮位置感应器及曲轴位置感应器,来决定实际的进气凸轮的气门正时。

当发动机启动或关闭时,油压控制阀位置受到改变,而使得进气凸轮正时处于延后状态。怠速或低速负荷时,正时处于延后的位置,以改善平顺性。当中低速高负荷时则处于提前角位置增加扭矩输出。而在高速负荷时则处于延迟位置以利于高转速操作。当发动机温度较低时凸轮位置则处于延迟位置,稳定怠速降低油耗。

● 迈腾可变气门相位

迈腾的发动机,不管是1.8TSI还是2.0TSI,都属于比较新的EA888系列。而相对于老款奥迪A4上使用的EA827系列发动机,EA888有几点改进之处,除了之前在另一篇文章中讲到的增加了几个喷油嘴之外,还有一项就是增加了可变进气相位的技术。

不同于老的EA113系列依靠两个凸轮轴间的传动链张紧器实现进气正时可变,EA888在进气凸轮轴的驱动齿轮端加装vane-type凸轮轴相位调整装置,跟前面讲过的结构基本一样,也是由机油压力控制的,从而可以保证进气门的正时可以连续调整。

相比日系厂商,大众在发动机可变相位方面似乎一直比较低调,既不太着重宣传,也没有特别新鲜的技术亮点。单从发动机技术上看,这种可变相位的实现是最简单的一种,相当于丰田的VVT-i,只是没有在排气端安装同样的控制系统。

结语:应该说,汽车技术仅仅先进还是远远不够的,能够普及到大众层次消费的产品上才具有实际的意义。从这个角度来看,本田和三菱的综合表现是比较好的,首先在可变气门正时与升程的控制上先一步拥有了自己的技术,并且能够针对大多数产品进行普及。而且,市面上对本田和三菱的发动机在燃油经济性方面表现的评价也是不错的。

除了本文提到的一些可变气门正时和升程技术以外,还有很多其他大品牌厂商也有类似的或更高级的技术,例如宝马的VANOS、奥迪的AVS、保时捷的Variocam Plus等等。同时,国内各自主品牌也已经在使用一些气门正时技术,例如长城的VVT、吉利的CVVT等,均是基于相同的原理而研发的,以后我们会针对这些发动机配气技术做陆续的解析。

可变配气相位

VVTI-概况 VVTI VVT-i是Variable Valve Timing-intelligent的缩写,它代表的含义就是智能正时可变气门控制系统。这一装置提高了进气效率,实现了低、中转速范围内扭矩的充分输出,保证了各个工况下都能得到足够的动力表现。另一个先进之处在于全铝合金缸体带来的轻量化,不仅减小了质量,也降低了发动机的噪声。可变配气正时可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。(1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。1)结构VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。2)工作原理根据发动机ECU的指令,当凸轮轴正时控制阀位于图(a)所示时,机油压力施加在活塞的左侧,使得活塞向右移动。由于活塞上的旋转花键的作用,进气凸轮轴相对于凸轮轴正时带轮提前某一角度。当凸轮轴正时控制阀位于图(b)位置时,活塞向左移动,并向延迟的方向旋转。进而,凸轮轴正时控制阀关闭油道,保持活塞两侧的压力平衡,从而保持配气相位,由此得到理想的配气正时。提高充气效率是提高发动机动力性能的重要措施。除了增压以外,合理选择配气相位且能随发动机转速不同而变化,以及利用进气的惯性及谐振效应是提高充气效率的重要途径。进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,方能获得良好的进气惯性效应。并且,只有采用可变配气相位,可变进气系统才能适应不同发动机转速下的要求,才能较全面地提高发动机性能。可变进气系及配气相位改善发动机的性能,主要体现在以下几方面:①能兼顾高速及低速不同工况,提高发动机的

发动机可变配气机构的研究进展

发动机可变配气机构的研究进展 0 引言 由于环境保护和人类可持续发展的要求,低能耗和低污染已成为汽车发动机的发展目标。要求发动机既要保证良好的动力性又要降低油耗满足排放法规的规定。在各种现代技术手段中,可变配气技术已成为新技术发展方向之-[1]。这一技术能通过改变发动机的供气来达到降低油耗和满足排放要 求。 1 可变配气机构的分类 1.1 按控制参数的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT)和可变气门升程(VVL)两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(vP)和可变气门相位与持续期(VET)两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT)和气门升程单独可变两类f2】。 1-2 按可变配气实现途径的分类 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配气机构两类。基于凸轮轴的可变配气机构主要可分为可变凸轮型线、可变凸轮轴相位角、可变凸轮从动件三类;无凸轮轴的可变配气机构根据气门驱动形式主要可分为电磁驱动气门、电液驱动气门、电气驱动气门、电机驱动气门以及其他气门驱动形式几大类圆。 2 发动机可变配气机构的国内外研究与发展现状 2.1 发动机可变配气机构在国外的研究与发展现状 配气控制技术早期的研究进展比较缓慢,主要成果是在1985年以后取得的,其发展先后顺序大致如下:优化凸轮型线一可变凸轮相位一可变凸轮型线一机械式全可变气门机构一无凸轮轴电磁(电 液、电气及其他)驱动配齐机构一无凸轮轴全可变配气机构。迄今为止,具有代表性的可变配气机构主要有Toyota公司的VVT—i、BMW 公司的Vanos、Honda公司的VTEC、Mitsubishi公司的MIVEC、Porsche 公司的Vario—Cam、BMW 的Valvotronics等。 下面将分类介绍国外可变配气机构的研究及发展现状。 2.1.1基于凸轮轴的可变配气机构 1)可变凸轮型线的可变配气机构 此类可变配气机构能同时改变气门正时、持续期及升程.改变方式目前主要有阶段式与连续式两种。 a)阶段式改变凸轮型线的可变配气机构 Honda公司的V rEC、Mitsubishi公司的MIVEC以及Porsche公司的Vario—Cam等均属于阶段式改变凸轮型线的可变配气机构。下面以Honda公司的VTEC为例,介绍阶段式改变凸轮型线的可变配气机构。VTEC在2个进气门上采用了3个凸轮及3个摇臂,如图1所示,其中3个摇臂可独立运动也可连成一体运动。转速较低时,通过液压机构使主、次摇臂分别由主凸轮和次凸轮驱动,中间摇臂随中间凸轮运动。但是对气门不起作用,这样主、次进气门的升程曲线不同,可以形成涡流。转速较高时,通过液压机构使3个摇臂连成一体,并受中间凸轮驱动.以满足发动机高速的要求。这类机构优点是可以提供两种以上凸轮型线,在不同转速和负荷下,采用不同的凸轮型线驱动气门『11;缺点是只能优化某些工况,不能实现全工况性能的优化[21。 b)连续式改变凸轮型线的可变配气机构 Fiat公司早期开发了凸轮型线在轴向可连续变化的3D凸轮机构。如图2所示,一个带有锥度外廓的凸轮和装有可倾斜式垫块的挺柱相接触,凸轮轴的轴向移动使得凸轮的不同部分和挺柱相接触,导致气门升程和配气相位发生变化。基圆半径沿凸轮轴的轴向是不变的,但凸轮升程沿轴向改变,故垫块必须随凸轮轴旋转变化它的倾斜角。凸轮轴端部安装一机械式调速器,当凸轮轴转速发生变化时,调速器拖动凸轮轴产生轴向移动,使得气门升程和配气相位同时发生改变。该机构优点是可以

常见可变配气系统.

常见可变配气系统介绍 董昊轩 (潍坊学院车辆工程2班 11011240205)摘要:在发动机中,进气系统对发动机性能影响很大。因此,汽车厂家为了提高在原有基础上大幅度的提升发动机性能,都选择了去修改进气系统,其中可变配气系统技术得到了广泛发展,在实现可变配气系统方面,各大厂家可谓是八仙过海,各显神通。轿车发动机上常见的VTEC、i-VTEC、VVT-i、VVTL-i、VVT、VVL等字母,表示了这些发动机都采用了可变气门正时技术。 关键词:可变配气正时(VVT);本田VTEC系统;丰田VVTL-i系统; 保时捷Variocam系统;宝马可变气门正时Valvetronic系统;大众VVT系统;日产VVEL系统 目前,大多数轿车发动机的配气相位可以随发动机转速、负荷变化而自动调整。常见调整方式主要有进气门升程、进气门相位、进排气门相位调整。进气门升程调整又可分为两级调整和连续调整; 应用于进气门相位调整的装置可分为叶片式、螺旋式和时规链式。配气相位调整装置装在凸轮轴正时齿轮(或正时链轮)与凸轮轴之间,接受发动机计算机的指令,对发动机配气相位进行自动调整。如本田汽车的i-VTEC,丰田汽车的VVT-i等。 1.进气门升程两级调整 (1)本田VTEC系统 VTEC意为可变气门正时和气门升程电子控制系统。采用VTEC技

术的发动机具有4个气门,能够提高进排气截面积。进排气截面积越大,高速气流的流量也就越大,提高了发动机的功率。发动机低转速时,气门升程很小,以减小进气道面积,增大汽缸内真空度和吸力,提高进气流的惯性,以提高进气效率;发动机高转速时,增大 气门升程,增大了进气道截面积,以减小进气阻力,增加进气流量。气门升程可变,保证了发动机在高、低转速时都能获得良好性能。VTEC 有两段或三段调节,当气门从一个升程转换到另一个升程时,由于进气流量突然增大,发动机的输出功率也突然增大,导致发动机在整个转速范围内的输出并不是线性的,也就是说工作不柔和。VTEC发动机在加速时有突如其来的推背感,这在很大程度上提高了驾驶乐趣。但舒适性和发动机运转的平顺性较差。当然,要想做到动力线性的输出,则需要在技术上下更大的功夫,做到气门升程无级调节。VTEC 是利用不同高度的凸轮来改变气门升程,所以低转速凸轮使气门开启升程和时间都短,高速凸轮的形状能让气门开启时间更长,改变了配气相位。可变气门升程的控制原理,如图1所示。PCM根据发动机的负荷、转速、水温和车速等信息,决定何时改变气门升程及正时。改 变气门升程 及正时条件 有:发动机 转速为 2300~3200r /min(依进

可变配气机构及其新技术

图1 发动机速度特性 可变配气机构及其新技术 摘要:本报告先介绍可变配气机构,主要从采用可变配气机构的原因、可变配气机构的分类等方面进行概述。然后就目前比较先进的可变配气正时新技术进行阐述。 关键词:可变配气;VVT ;VANOS 1可变配气机构概述 1.1采用可变配气机构的原因 不同的发动机,由于结构和转速的不同,其配气正时也不相同。即使是同一台发动机,其配气正时也应随转速的变化而变化。这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和 促进排气的效果将会不同。例如,当发动机在低速运转时, 若配气正时保持不变,则部分进气将被活塞推出气缸,使进 气量减少,气缸内残余废气将会增多。当发动机在高速运转 时,气流惯性大,若此时增大进气迟后角和气门重叠角,则 会增加进气量和减少残余废气量,使发动机的换气过程臻于 完善。总之,四冲程发动机的配气正时应该是进气角和气门 重叠角随发动机转速的升高而加大。如果气门升程也能随发 动机转速的升高而加大,则更有利于获得良好的发动机高速性能。采用可变配气正时机构对发动机性能的改善,可由图1一目了然。 此外,能源与环境问题是目前汽车工业所面临的两个重要问题。研发能耗低、污染低的“节能-高效-环保”发动机是目前发动机新技术的发展方向。可变配气相位技术已成为提高发动机动力性和经济性的新技术之一,显著改善了发动机的怠速稳定性和排放特性。 1.2可变配气机构的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT )和可变气门升程(VVL )两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(VP )和可变气门相位与持续期(VET )两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT )和气门升程单独可变两类。 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配

发动机可变气门生成技术

呼吸有道解析汽车发动机可变气门升程技术 2010-07-23 01:15:36 来源: 网易汽车跟贴 0 条手机看新闻版权声明:本文版权为网易汽车所有,转载请注明出处。 网易汽车7月23日报道在上节技术大讲堂中,我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。

>>技术大讲堂:呼吸有道解析汽车发动机可变气门正式技术<<众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。 而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气

门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,而这样一来单位时间内流出的水量也将增多,发动机可变气门升程技术利用的就是这种原理,用增加单位时间内发动机进气量的方法来提高发动机的动力性能。

气动技术发展及趋势

一、气动系统的简介 1.气动技术:气动技术是以压缩空气作为介质,以空气压缩机作为动力源,来实现能量传递或信号传递与控制的工程技术,是流体传动与控制的重要重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。 2.气动系统的典型构成:气压发生装置—执行元件—控制元件—辅助元件 3.气动系统的优点:气动技术与传统的液压技术相比,有以下优点:(1)结构简单轻便、方便安装维护;(2)输出速度一般在50~500mm/s,速度快于液压和电气方式;(3)对冲击负载和负载过载的适应能力较强;(4)可靠性高、使用寿命长、安全无污染且成本较低。由于气动技术具有以上的使用优点,气动技术在世界工业企业得到了广泛的应用。一个完善的机电一体化系统包括机械、动力、信息检测传感、执行、控制及信号处理等部分。作为机电一体化系统的执行部分的气动元件及其系统不仅仅具有机械、气动执行机构,同时也集成了信息检测传感等元件,甚至还集成了其他一些微型机电系统。 4.气动系统的缺点:动作稳定性差、输出功率小、噪声大、信号传递较电信号慢 二、气动系统应用概述 气动技术应用面的扩大是气动工业发展的标志。气动元件的应用主要为两个方面:维修和配套。国产气动元件的应用,从价值数千万元的冶金设备到只有几百元的椅子。铁道扳岔、列车的煞车、街道清扫、特种车间内的起吊设备、军事指挥车等都用上了专门开发的国产气动元件。这说明气动技术已渗透到各行各业,并且正在日益扩大。气动技术的应用主要在: (1)汽车、轮船等制造业:包括焊装生产线、夹具、机器人、输送设备、组装线、等方面。 (2)生产自动化:机械加工生产线上零件的加工和组装,如工件的搬运、转位、定位、检测等工序。 (3)某些机械设备:冶金机械、印刷机械、建筑机械、农业机械、制鞋机械、塑料制品生产线、等许多场合 (4)电子半导体、家电制造业:硅片的搬运、元器件的插入与锡焊, 彩电、冰箱的装配生产线等。 (5)包装过程自动化:化肥、粮食、食品、药品等实现粉末、粒状、块状物料的自动计量包装。用于烟草工业的自动化卷烟和自动化包装等许多工气动系统发展及趋势序。用于对粘稠液体(如化妆品、牙膏等)和有毒气体(如煤气等)的自动计量灌装。 三、气动技术的发展及趋势 近年来随着微电子和计算机技术的引入,新材料、新技术、新工艺的开发和应用,气动元器件和气动控制技术迎来了新的发展空间,正向微型化、多功能化、集成化、网络化和智能化的方向发展。从当前市场上的各类气动产品来看,气动元器件的发展主要体现在以下几个方面。 1.向小型化和高性能化发展 经过多年来的努力,内资企业产品水平多数达到上世纪90 年代国外企业产品水平,少数主导产品已达到当代国外企业产品水平。气动元件的性能也在飞速地提高,质量、精度、体积、可靠性等方面均在向用户需求的目标靠拢,主要体现了其小型化、低功耗、高速化、高精度、高输出力、高可靠性和高寿命的发展趋势。 如市场上已经普及的CJ1 型针笔型气缸,其缸径可小至2.5~15 mm,如图1 所示;如SMC公司研 制的三通直动式V100 系列电磁阀(如图2 所示),耗电量仅0.1 W、响应时间低于10 ms,寿命超过1 亿次、抗污能力极强,其全新的设计有划时代的意义[1,2]。

可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析 the camshaft and rocker arms, but unlike ordinary engine is the number and control method of cam and rocker arm. Medium and low speed with a small angle of the cam, two valve timing and lift different at low speed, this time a valve lift is very small, almost do not participate in the intake process, the air intake channel basically the equivalent of two valve engine, but due to the flow direction of an intake air barrier gas cylinder center, so it can produce intake eddy current, strong for low speed, especially in the cold car conditions conducive to improving the mixture uniformity, increases the burning rate and decrease the effect of wall surface chilling effect and clearance, making the combustion more fully, thereby improving the economy, and significantly reduce HC and CO emissions; and at high speeds. Through to VTEC solenoid valve to control the hydraulic oil, so that the two intake rocker arms are connected as a whole and the intake cam from the opening of the longest and largest lift to drive the valve, this time two inlet valve according to the cam profile synchronization. Compared with the low speed operation, greatly increasing the inlet flow area and opening duration, so as to improve the power of the engine at high speed. This two kinds of entirely different performance curve of output, Honda engineers so that they are implemented in the same engine, and vividly described as "the usual soft driving" and "wartime intense driving".

液压式可变配气系统设计

摘要 液压驱动可变配气系统是无凸轮轴可变配气技术的一种。通过对国内外各种电控液压驱动可变配气系统的分析和比较,本文提出了一款电控液压驱动可变配气系统设计方案,通过对该方案的主要结构参数,如柱塞半径、气门弹簧刚度、电磁阀流通面积等参数的研究,得到这种可变配气系统运动特性规律,为系统的开发和研制提供帮助。 本文在设计的基础上,开发出一套可变配气系统,系统主要包括液压系统、执行机构以及控制系统等。将该系统安装在4102BG发动机上,代替原来的配气机构,并对该系统的性能进行了试验研究。试验结果表明:本套结构能够控制气门的气门正时,缓解气门落座冲击。同时研究了运行参数如发动机转速、液压系统的压力和驱动电压对可变配气机构控制特性的影响,这些参数不同程度地影响着可变配气的动态特性。 关键词:可变配气系统;液压系统;无凸轮轴可变配气技术;气门弹簧刚度;气门正时。

ABSTRACT This variable valve timing and lift system powered by electronic hydraulic system is one kind of variable valve timing and lift system without cam.By analyzing and comparing several kinds of domestic and intemational advanced electronically controlled variable valve timing and lift system,a new kind of variable valve timing and lift system is developed in this paper.The system simulation model is established for the variable valve timing and lift system.Then the studies on the main structure parameters of the system,such as piston diameter,spring rigidity of the valve and flow area of electro—magnetic valve,obtained the characteristics of the variable intake valve system,Both the model and this studies speed up the development processes,thus minimizing the number of hardware variations.Based on the design and the simulation,a test is conducted on the cylinder heads of 41 02BG diesel with the variable valve timing and lift system,which can provide experimental documents for validation.Test bench includes the hydraulic driving system、variable valve actuator system,and electronic control units system etc.According to the experiment,the control strategy was amended detailedly.As a result,a fast,precise and steady dynamic result as well as a reliable static state Was achieved. Key word:Variable valve timing and lift system;The hydraulic;Without the camshaft variable valve timing technology;Valve spring stiffness;valve timing.

有关汽车发动机可变技术的综述

论文题目:有关汽车发动机可变技术的综述 一、摘要 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发,例如可变气门技术、可变气缸技术、可变进气歧管技术。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 二、关键词:可变气门技术、可变气缸技术、可变进气歧管技术 三、引言 可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作 实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,这种结构比用凸轮、摇臂控制简单。 2.可变进气道系统 可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。 惯性可变进气系统,是通过改变进气歧管的形状的长度,低转速用长进气管,保证空气密度,维持低转的动力输出效率;高转用短进气歧管,加速空气进入汽缸的速度,增强进气气流的流动惯性,保证高转下的进气量,以此来兼顾各段转速发动机的表现。加装VIS后,发动机进气气流的流动惯性和进气效率都有所加强,从而提高了扭矩,并降低了油耗。 四、可变气门技术 可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。提升动力的同时,也降低了油耗水平。 (一)配气相位机构的原理和作用

可变气缸技术简述及发展现状

可变气缸技术简述及发展现状 王佳炜1 (1. 江苏大学汽车与交通工程学院江苏210003) 摘要:在汽车使用越来越普及的今天,可变气缸技术VCM 通过气门与凸轮之间的摇臂进行对气门的控制,让气门停止工作来切断发动机动力输出,使得汽车发动机在日常使用的低负载情况下,控制关闭一部分气缸,以减少燃油消耗,在需要强劲动力的时候又能毫无阻碍的释放,达到动力输出与节能减排的双重标准。这种技术是应时而生的,是未来汽车行业的发展趋势。 关键词:可变气缸技术;发展;动力;节能减排 The sketch and development of Variable Cylinder Management Wang Jiawei1 (1.Collage of Automotive & T raffic Engineering,Jiangsu University, Zhenjiang,Jiangsu 212013,China) Abstract:The variable cylinder management controls the valve through the arm between valve and cam, so that the valve can stop working and cut off the engine power ,to make the car engine close part of the cylinders when at low load conditions . This can reduce fuel consumption. And when the car needs strong power, there is no barrier to get that . Through this way we can both get energy saving and emission reduction. This technique is born at the right time, it is the future development trend of the automotive industry. Key words: VCM; development; engine power; conserve energy 气缸数是衡量汽车发动机排量的重要参考数据,在汽车进行越野、爬坡等需要高动力的时候,多气缸大排量发动机,如V6、V8乃至V12发动机都是汽车制造的优先选择。为了更好的实现不同路况下气缸工作模式切换即动力调整的平稳性,可变气缸技术应运而生。然而,日常行驶中,大多数情况下并不需要大功率的输出,而小排量的车型又无法满足人们对于驾驶乐趣的需求。因此,如今更多的普通车型开始应用可变气缸技术,在日常使用的低负载情况下,控制关闭一部分气缸,以减少燃油消耗,在需要强劲动力的时候又能毫无阻碍的释放。在这种背景下,学习了解发动机可变气缸技术及其发展就显得十分必要了。 文中以简要介绍可变气缸技术为基础,分析近年来该技术应用的发展,最后对可变气缸技术的意义做出简单阐述。 1.可变气缸技术介绍 可变气缸技术VCM,全称为Variable Cylinder Management,是本田公司研发的一种可变汽缸管理技术,它可通过关闭个别气缸的方法,使到3.5L V6引擎可在3、4、6缸之间变化,使得引擎排量也能在1.75-3.5L之间变化,从而大大节省燃油。 车辆起步、加速或爬坡等任何需要大功率输出的情况下,该发动机将会把全部6个气缸投入工作。在中速巡航和低发动机负荷工况下,系统仅将运转一个气缸组,即三个气缸。在中等加速、高

汽车发动机配气机构

汽车发动机配气机构 配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜充量得以及时进入气缸,废气得以及时从气缸排出;在压缩与膨胀行程中,保证燃烧室的密封。新鲜充量对于汽油机而言是汽油和空气的棍合气,对于柴油机而言是纯空气。 功用分组 各式配气机构中,按其功用都可分为气门组和气门传动组两大部分。气门组包括气门及与之相关联的零件,其组成与配气机构的型式基本无关。气门传动组、是从正时齿轮开始至推动气门动作的所有零件,其组成视配气机构的形式而有所不同,它的功用是定时驱动气门使其开闭。 气门顶置式配气机构 进气门和排气门都倒挂在气缸盖上,其组成如图3—1所示。气门组包括气门、气门导管、气门座、弹簧座、气门弹簧、锁片等零件;气门传动组一般由摇臂、摇臂轴、推杆、挺柱、凸轮轴和正时齿轮组成。 气门顶置式配气机构的工作情况是:当气缸的工作循环需要将气门打开进行换气时,由曲轴通过传动机构驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉推动摇臂摆转,摇臂的另一端便向下推开气门,同时使弹簧进一步压缩。当凸轮的凸起部分的顶点转过挺柱以后,便逐渐减小了对挺柱的推力,气门在弹簧张力的作用下开度逐渐减小,直至最后关闭。压缩和做功行程中,气门在弹簧张力的作用下严密关闭。 气门顶置式配气机构根据凸轮轴的位置有以下三种型式: 三种凸轮轴位置型式(1)凸轮轴下置式配气机构;凸轮轴装在曲轴箱内,直接由凸轮轴正时齿轮与曲轴正时齿轮相啮合,由曲轴带动。气门传动组包括上述全部零件,其应用最为广泛。 (2)凸轮轴中置式配气机构:凸轮轴位于气缸体的上部。为了减小气门传动机构的往复运动的质量,对于高转速的发动机,可将凸轮轴的位置移到气缸体的上部,由凸轮轴经过挺柱直接驱动摇臂而省去推杆。该形式的配气机构因曲轴与凸轮轴的中心线距离较远,一般要在中间加入一个中间齿轮(惰轮)。 (3)凸轮轴上置式配气机构:凸轮轴布置在气缸盖上。凸轮轴直接通过摇臂来驱动气门,没有挺柱和推杆,使往复运动的质量大为减小,对凸轮轴和气门弹簧的要求也最低,因此它适用于高速强化发动机。 四行程发动机每完成一个工作循环,曲轴旋转两圈,各缸的进、排气门各开启一次,即凸轮轴只转一圈,所以曲轴与凸轮轴的传动比为2:1。

可变配气正时

哈尔滨应用职业技术学院毕业论文 教务处制

毕业论文项目表

摘要 本文介绍了国内外可变气门技术的发展状况。并根据气门控制参数的变化情况,对可变气门技术进行了详细的分类。结合目前典型的可变气门机构,对实现可变气门技术的途径进行了系统的阐述与评价。通过实例介绍了可变气门技术改善发动机性能及在实现汽油机均质充量压缩着火(HCCI)方面的应用。通过分析指出,叶片式可变凸轮轴相位机构是目前可行性较强的技术途径。 众所周知发动机是靠燃料在汽缸内燃烧做功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧做功能力。因此在目前的技术条件下,涡轮增压器是惟一能使发动机在工作效率不变的情况下增加输出功率的机械装置。 关键词:可变配气正时;涡轮增压;汽油机

Abstract This paper introduces the development of variable valve technologies. Control parameters according to changes in valve, variable valve timing technology for a detailed classification. Combined with the current typical variable valve body, the variable valve technology to achieve a systematic approach described and evaluated. Introduced through examples variable valve technology to improve engine performance and in the realization of gasoline homogeneous charge compression ignition (HCCI) in the application. Through analysis that vane variable camshaft phase is the feasibility of a strong body of technical means. As we all know the engine is fuel combustion in the cylinder by acting to produce power, as the amount of fuel input by the inhalation of limits on the amount of air inside the cylinder, so the power generated by the engine will be limited, if the engine's operating performance has been at its best further increase in output power can only be compressed more air into the cylinders to increase fuel consumption, thereby enhancing the combustion of acting ability. Therefore, the current technical conditions, the turbocharger is the only way the efficiency of the engine without changing the mechanical device to increase power output. Key words: variable valve timing; turbocharged; gasoline

浅谈发动机可变气门正时技术

浅谈发动机可变气门正时技术 [摘要]随着发动机的转速变化,改变气门的开闭时刻提高气门的开闭时间,使进气更顺畅,利用空气流动的惯性根据发动机不同的转速变化改变气门的开闭时间,提高发动机的进气效率,强化其性能。 [关键词]气门;可变配气正时 中图分类号:V564 文献标识码:A 文章编号:1009-914X (2017)11-0023-01 增加气门开闭的时间,让气门开闭的时刻可变便可以提高发动机的进气效能,可以提高发动机的燃烧效能,增加发动机的功率。 今天我想跟大家介绍的一个技术是大家耳熟能详的一 项技术,叫发动机可变配气正时系统,其实在过去很长的汽车发展过程里,大概在过去的六、七年前,这个技术系统都是大家比较陌生,很稀有的一种技术,单单根据技术名字来了解,大部分人都很难理解什么叫可变气门正时,所以足可以看出这项技术的高大上,通常配备了这样技术的发动机,我们通常会认为这是一台非常高端的、先进的发动机。但是随着发动机的日渐革新,不管是日系德系还是哪怕自主品牌基本上已经普及了这个技术。那么可变配气正时系统到底是

个什么技术呢,它能给我们带来什么,使发动机得到哪些性能上、动力上、经济上的提升呢? 所谓可变气门正时,从字面上拆分来理解,就是可以改变气门的开启关闭的时间,那如果气门的开闭时间不可改变会是一个什么样的工作情况呢。我们知道发动机完成一个工作循环它需要经历四个冲程。进气冲程、压缩冲程、做功冲程及排气冲程,这四个行程使发动机完成一次工作循环发出动力带动各机构运转。从进气行程来讲,就如同人的呼吸过程一样,我们很自然的可以理解,当我呼吸开始时我的嘴需要张开给空气一个进去体内的通道,所以当进气开始时,进气门是处于打开的状态,当我进气完成后即将转入下一个行程压缩冲程时,进气门应该是出于关闭状态的,否则当压力高于进气压力时,进入气缸的气体则会从气门压出形成倒流,所以进气门应适时关闭,使气缸形成密封。而事实上由于进气冲程它的空气是有流速的,而空气呢它的进气流动也是有惯性的,所以实际在匹配进气门开闭时间的时候,它并不是准确的按照活塞运行到上止点的时候打开,在下止点的时候准确关闭的。而是它会有一个提前打开和延后关闭的过程,这样增加了气门的开启持续时间,能够让进气更顺畅而且能够让可燃混合气更多的进入到气缸中去,提高发动机的燃烧效率。由于传统的发动机的这个特性,所以它只能按照一个最常用的转速去匹配它的进气门打开和关闭的时间,通常这

可变配气正时控制机构

图为雷诺的可变配气正时控制机构。在凸轮轴与正时齿轮之间有两个液压室。一个为高压油区一个为低压油区。因此,只要调节两个油区之间的压力差,就能改变配气正时角了。而两个油区的油压是通过上图所标示的油压控制阀调节的。油压调节阀实质上就是一个电磁阀,通过电脑传输过来的脉冲电流来控制阀门的通断。当高压油路(图中红色的通道)接通时,整个油室处于加压状态,根据图中红色箭头的方向很容易判断,此时配气正时被推迟,重叠角增大,适用于低转速;当电磁阀控制黄色区域压力高于红色区域压力时,凸轮轴会如图中黄色箭头所示,提前一个角度,这样重叠角减小,适用于高转速。下图能更直观的表现这一工作过程: 注:“图中蓝色部分是凸轮轴末端,白色部分是正时齿轮”。对于可变配气正时控制,虽然各大车厂的名字叫法各不相同,但其功能作用和控制方法多为大同小异,所以了解了这些控制方式和性能特征,对于车型的选择也可以重新定位。我国汽车工业起步较晚,所以技术比较落后。由于这种技术结构复杂,成本相对比传统技术要高一些,所以国内车厂大多没有使用这些技术,他们的配器机构都是传统设计。但也有少数厂家,引进了这些先进的发动机控制技术,比如现在广州本田雅格2.4,新奥德塞2.4,还有东风本田CR-V上使用的I-VTEC 发动机都使用了这些技术。在家用经济型车中,广本飞度的1.5VTEC发动机是唯一使用了可变配气技术的车型。

可变配气技术详解(3) 除了配气会影响发动机吸气效率外,还有一个不容忽视的影响进气的因素就是进气管。不论是纯空气还是空气和汽油的混合物,都可以看成是有一定质量的流体,而流体是在进气管中流过的,根据流体力学和震动学的原理来优化进气管的设计对于提高发动机的吸气效率是非常重要的。具体方法有:把进气歧管内壁加工得非常光滑来减小气阻,也可以设计特殊的进气道形状让流体阻力得到优化,还可以减小空气滤清器的吸气阻力等等。这些都是传统对进气管的优化方法,现在大部分车都是这样做的。这里我们来介绍一种技术含量更高的进气道优化方法——可变进气管长度技术。首先让我门来看看进气歧管的长度对汽车的进气有哪些影响吧。大家都知道,4行程发动机是曲轴每旋转两圈为一个周期,而这个周期的1/4的时间是用来进气的,也就是说在一个周期内1/4的时间进气门打开,剩下的3/4的时间进气门是关闭的。这就造成进气管内的空气存在一定的进气频率。所以我们不妨把它假设成震动来进行分析。根据震动学的原理,当震动物体的震动周期和频率与他的固有周期和固有频率频率相同时,震动能量最大,震动波叠加,这就是人们常说的共振。对于震动的物体而言共振的能量是最大的。那么如果把进气看成是震动,那么当发动机的吸气频率与进气管中空气的固有频率相同时,进气能量最大。但发动机的吸气频率是随发动机转速的变化而变化的。当发动机转速高时,吸气频率也高;当发动机转速降低时,吸气频率就随之降低了。那怎么样才能让进气管内的空气的固有频率能与发动机的吸气频率保持一致呢?最可行的办法就 是改变进气管的长度。当发动机处于低转速时使用长进气管,因为进气管越长,空气在管内的震动频率越低,只要长度与转速相匹配就能得到最大的进气能量;反过来说,当发动机处于高转速时,由于吸气频率高,所以就要换上较短的进气管来提高空气在进气管内的固有频率,得到最大的进气能量。所以就需要设计一套可以让进气管长度变化的系统来达到这一目的,那么可变进气管长度技术就诞生了。如下图就是可变进气管长度的控制机构:

汽车发动机配气机构培训课件

汽车发动机配气机构培训课件 顶置式配气机构气门行程大,结构较复杂,燃烧室紧凑,曲轴与凸轮轴传动比为2:1;侧置式配气机构进排气门都布置在汽缸的一侧,结构简单、零件数目少,气门布置在同一侧导致燃烧室结构不紧凑、热量损失大、进气道曲折、进气阻力大,使发动机性能下降,已趋于淘汰。目前广泛采用的是顶置式配气机构,这里以顶置式配气机构为基础,按凸轮的布置位置介绍几种类型的配气机构。凸轮的轮廓如左图所示,其轮廓线是对称的,同名凸轮的轮廓线相同,异名凸轮的轮廓线是不相同的。使用一段时间后,由于凸轮的磨损,气门开启时间推迟,开启持续角减小,气门的升程有所降低,使发动机的进气量减少。凸轮的轮廓形状是由制造厂根据发动机工作需要设计的。在下置凸轮轴式配气机构和侧置凸轮轴式配气机构中,安装凸轮轴的座孔和压装在座孔内的凸轮轴轴承一般为整体式,为拆装方便,凸轮轴轴颈直径由前至后逐渐减小。在顶置凸轮轴式配气机构中,安装凸轮轴的座孔和凸轮轴轴承一般为剖分式,凸轮轴各轴颈直径相等。有些凸轮轴的轴颈上加工有不同形状的油槽或油孔,这些油槽或油孔用来储存润滑油或作为润滑油通道。为防止凸轮轴发生轴向窜动,凸轮轴都设有轴向定位装置。常见的凸轮轴轴向定位装置如下图所示1-正时齿轮 2-齿轮轮毅 3-齿轮固定螺母 4-止推凸缘 5-凸缘安装螺栓 6-隔圈挺杆的功用一般都是与凸轮轴直接接触,将凸轮的推力传给椎杆或气门,在有些发动机上它只是摇臂的一个支点,也有些发动机上投有挺杆。挺杆可分为普通挺杆和液力挺杆两种形式。挺杆普通挺杆一般应用在下置凸轮轴式配气机构或中置凸轮轴式配气机构中,常见普通挺杆的结构如左图所示。普通挺杆一般为筒式结构,在发动机工作时挺杆底部与凸轮接触,为使挺杆底部磨损均匀,挺杆底部的丁作面制成球面一、普通挺杆挺杆放置在导向孔内,挺杆导

相关文档
最新文档