工程测量上的投影改化

工程测量上的投影改化
工程测量上的投影改化

工程测量上的投影改化

摘要:高斯投影是正形投影,保证了投影的角度的不变性、图形的相似性以及在某点各方向上的长度比的同一性。在高斯投影中,相对于中央子午线越远的控制点,其测距边的投影改化越大;经验告诉我们,当测距边两端点的横坐标平均值达到±45km时,边长的投影改化的相对值已超出《工程测量规范》的要求,必须对测距边作高斯投影改化。为避免对测距边作高斯投影改化,工程测量上,使用在小范围内建立施工独立坐标系的办法,可以给施工测量带来便利。

关键词:高斯投影参考椭球面投影改化

中图分类号:[p258]文献标识码:a文章编号:

引言

地球的形状与大小,即大地水准面的形状与大小,十分接近一个两极稍扁的旋转椭球体。我们平常所用的地形图一般采用高斯投影,即横轴椭圆柱正形投影。如图1所示,椭球与椭圆柱面相切的子午线称为中央子午线或轴子午线,中央子午线与赤道的投影都是直线,以中央子午线与赤道的交点作为坐标原点,以中央子午线的投影为纵坐标轴,以赤道的投影为横坐标轴,就建立了高斯平面直角坐标系。

图1

高斯投影由于是正形投影,保证了投影的角度的不变性、图形

初中数学九年级《投影》公开课教学设计

29.1投影(1) 一、教学目标: 1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念; 2、了角平行投影和中心投影的区别。 3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 二、教学重、难点 教学重点:理解平行投影和中心投影的特征; 教学难点:在投影面上画出平面图形的平行投影或中心投影。 三、教学过程: (一)创设情境 (导入图片)问:这是什么? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,你们看过吗?下面我们一起来欣赏一段我国的国粹---西游记片段(二)你知道吗 1、看完皮影戏,我们再来看看北京故宫,你认识吗?你知道他是怎样工作的吗?(出示投影) 北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针影子的长度发生变化,影子在晷面上慢慢移动,聪明

的古人以此来显示时刻. 2、其实投影现象在我们生活中多处可见 出示投影让学生感受在日常生活中的一些投影现象。 ①地面上窗户的影子,雪地里树的倒影,墙壁上投射出的舞蹈演员美妙的舞姿 问题:那什么是投影呢? (三)新授: 1、投影定义:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面. 2、分类: ①平行投影:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).,由平行光线形成的投影是平行投影.(.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.) ②中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.

arcgis坐标转换

在ArcGIS中的西安80坐标系转北京54坐标系收藏 一、数据说明 本次投影变换坐标的源数据采用的是采用1980西安的地理坐标系统,1985国家高程基准的1:50000的DLG数据。 二、投影变换基础知识准备 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换。 在ArcGIS中定义了两套坐标系:地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。 1、地理坐标系,是以经纬度为地图的存储单位的,是球面坐标系统。地球是一个不规则的椭球,为了将数据信息以科学的方法放到椭球上,这就需要有一个可以量化计算的椭球体。具有长半轴,短半轴,偏心率。一下几行是GCS_Xian_1980椭球及其相应的参数。 Geographic Coordinate System: GCS_Xian_1980 Datum: D_Xian_1980 Prime Meridian: Greenwich Angular Unit: Degree 每个椭球体都需要一个大地基准面将这个椭球定位,因此可以看到在坐标系统中有Datum: D_Xian_1980的描述,表示,大地基准面是D_Xian_1980。 2、有了椭球体和基准面这两个基本条件,地理坐标系便可以定义投影坐标系统了。以下是已定义Beijing_1954坐标的投影坐标系统的参数: Projected Coordinate System: Beijing_1954_GK_Zone_19 Projection: Gauss_Kruger False_Easting: 19500000.00000000 False_Northing: 0.00000000 Central_Meridian: 111.00000000 Scale_Factor: 1.00000000

(建筑工程管理)工程测量投影面与投影带选择

(建筑工程管理)工程测量投影面与投影带选择

§7.5工程测量投影面和投影带选择 7.5.1概述 对于工程测量,其中包括城市测量,既有测绘大比例尺图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。如何根据这些目的和要求合适地选择投影面和投影带,经济合理地确立工程平面控制网的坐标系,在工程测量是壹个重要的课题。 7.5.2工程测量中选择投影面和投影带的原因 (1)有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要是由于以下俩种因素引起的: ①实测边长归算到参考椭球面上的变形影响,其值为: 式中:为归算边高出参考椭球面的平均高程,为归算边的长度,为归算边方向参考椭球法截弧的曲率半径。归算边长的相对变形: 值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;值和,成正比,随增大而增大。 ②将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为: 式中:,即为投影归算边长,为归算边俩端点横坐标平均值,为参考椭球面平均曲率半径。投影边长的相对投影变形为 值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;值随着平方成正比而增大,离中央子午线愈远,其变形愈大。 (2)工程测量平面控制网的精度要求 工程测量控制网不但应作为测绘大比例尺图的控制基础,仍应作为城市建设和各种工程建设施工放样测设数据的依据。为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长和实地量得的边长,在长度上应该相等,这就是说由上述俩项归算投影改正而带

来的长度变形或者改正数,不得大于施工放样的精度要求。壹般来说,施工放样的方格网和建筑轴线的测量精度为1/5000~1/20000。因此,由投影归算引起的控制网长度变形应小于施工放样允许误差的1/2,即相对误差为1/10000~1/40000,也就是说,每公里的长度改正数不应该大于10~2.5cm。 7.5.3投影变形的处理方法 (1)通过改变从而选择合适的高程参考面,将抵偿分带投影变形,这种方法通常称为抵偿投影面的高斯正形投影; (2)通过改变,从而对中央子午线作适当移动,来抵偿由高程面的边长归算到参考椭球面上的投影变形,这就是通常所说的任意带高斯正形投影; (3)通过既改变(选择高程参考面),又改变(移动中央子午线),来共同抵偿俩项归算改正变形,这就是所谓的具有高程抵偿面的任意带高斯正形投影。 7.5.4工程测量中几种可能采用的直角坐标系 (1)国家带高斯正形投影平面直角坐标系 当测区平均高程在l00m以下,且值不大于40km时,其投影变形值及均小于2.5cm,能够满足大比例尺测图和工程放样的精度要求。,在偏离中央子午线不远和地面平均高程不大的地区,不需考虑投影变形问题,直接采用国家统壹的带高斯正形投影平面直角坐标系作为工程测量的坐标系。 (2)抵偿投影面的带高斯正形投影平面直角坐标系 在这种坐标系中,依然采用国家带高斯投影,但投影的高程面不是参考椭球面而是依据补偿高斯投影长度变形而选择的高程参考面。在这个高程参考面上,长度变形为零。于是,当壹定时,可求得: 则投影面高为:

点的三面投影及其投影特性-教学设计

课题1:点的三面投影及其投影特性 教学设计方案 一、教学思想 根据目前教育“以就业为指导、以能力为本位、以技能为核心”的教学原则,将培养学生关键能力(即自我或个人能力、社会能力、方法能力以及专业能力)作为重点的指导思想,结合学生认知事物的规律,将教学目标确定如下: 二、教学目标与要求 1、知识与能力 知识目标:通过学习,理解三视图的形成过程,熟练掌握点的投影规律。 能力目标: 1、培养学生理论结合实际的学习方法,初步建立平面图形和空间立体图形的转换关系。 2、引导学生培养做事要从基础开始的踏踏实实的良好习惯。 2、过程与方法 使学生理解点的投影规律,理解点的坐标与三投影面的关系,能熟练运用“三等关系”绘制点的三面投影。 3、情感与态度 让学生通过亲自动手作图,体验成功,在不断尝试中激发求知欲,在不断摸索中陶冶情操。 三、教学重、难点 1、教学重点 正投影法中点的投影规律 处理措施:系统串讲知识点,使学生建立易于理解、便于记忆的知识框架,从生活中接触到的影子为切入点,引入本章该节内容。 2、教学难点 根据点的投影规律画点的三面投影 处理措施:根据本节课的特点和学生的认知水平,我主要采用讲授法来使学生获取新知识并且在课堂上让学生通过练习来深化对知识的理解。在总结的时候尝试让学生先讨论再请学生代表进行总结,更好地提高课堂效率。 四、教学策略、教学方法与手段 创设任务情境─引导自主探究─进行归纳总结 采用任务驱动法,精讲多练,充分将课堂交给学生,以完成一个具体的任务为线索,把教学内容有机贯穿在任务之中,让学生在任务的引领下,经过思考和教师的点拨,积极主动地参与学习,达成教学目标。

ArcGIS中坐标系统详解

ArcGIS的地理坐标系与大地坐标系 一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。近日,在网上看到一篇文章介绍它们,非常喜欢。所以在此转发一下,希望能够对制图的朋友们有所帮助。 地理坐标:为球面坐标。参考平面地是椭球面,坐标单位:经纬度 大地坐标:为平面坐标。参考平面地是水平面,坐标单位:米、千米等 地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation:

控制测量复习题与问题详解

控制测量复习题 一、名词解释: 1、子午圈 2、卯酉圈 3、椭圆偏心率 4、大地坐标系 5、空间坐标系 6、法截线 7、相对法截线 8、大地线 9、垂线偏差改正 10、标高差改正 11、截面差改正 12、起始方位角的归算 13、勒让德尔定理 14、大地元素 15、地图投影 16、高斯投影 17、平面子午线收敛角 18、方向改化 19、长度比 20、参心坐标系 21、地心坐标系 二、填空题: 1、旋转椭球的形状和大小是由子午椭圆的个基本几何参数来决定的,它们分别是。 2、决定旋转椭球的形状和大小,只需知道个参数中的个参数就够了,但其中至少有一个。 3、传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954年北京坐标系应用是椭球,1980年国家大地坐标系应用的是椭球,而全球定位系统(GPS)应用的是椭球。

4、两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指和。 5、椭球面上任意一点的平均曲率半径R等于该点和 的几何平均值。 6、克莱洛定理(克莱洛方程)表达式为。 7、拉普拉斯方程的表达式为。 8、若球面三角形的各角减去,即可得到一个对应边相等的平面三角形。 9、投影变形一般分为、和变形。 10、地图投影中有、和投影等。 11、高斯投影是投影,保证了投影的的不变性,图形的 性,以及在某点各方向上的的同一性。 12、采用分带投影,既限制了,又保证了在不同投影带中采用相同的简便公式进行由于引起的各项改正数的计算。 13、长度比只与点的有关,而与点的无关。 14、高斯—克吕格投影类中,当m0=1时,称为,当m0=0.9996时,称为。 15、写出工程测量中几种可能采用的直角坐标系名称(写出其中三种): 、、。 16、所谓建立大地坐标系,就是指确定椭球的,以及。 17、参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

坐标系转换与高斯投影

坐标系转换与高斯投影(1) 坐标转化并不是一个新的课题,随着测绘事业的发展,全球一体化的形成,越来越要求全球测绘资料的统一。由于地球曲率客观存在,传统测绘作业通视受到很大限制,测绘资料的统一存在巨大的约束。另外由于每一个国家的大地坐标系的建立和发展具有一定的历史特性,仅常用的大地坐标系就有150余个。在同一个国家,在不同的历史时期由于习惯的改变或经济的发展变化也会采用不同的坐标系统。例如:在我国建国之后,为了尽快搞好基础建设,我国采用了克氏椭球与我国实际相结合的北京54坐标系;随着经济的发展北京54坐标系的缺陷也随之被表露的越来越明显,特别是对我国经济较发达的东南沿海地区的影响表现得更为明显,进而我国开始研究并使用国家80坐标系。 GPS卫星导航系统满足了全球范围、全天候、连续实时以及三维导航和定位的要求。正是由于GPS卫星的这些特性,这种技术就很快被广大测绘工作者接受,但是由于坐标系统的不同,对GPS技术的推广使用造成了一定的障碍。 为了描述卫星运动,处理观测数据和表示测站位置,需要建立与之相应的坐标系统。在GPS 测量中,通常采用两种坐标系统,即协议天球坐标系和协议地球坐标系。 其中协议地球坐标系采用的是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)。WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP 赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 而我国采用的坐标系并不是WGS-84坐标系而是BJ-54坐标系,这个坐标系与前苏联的1942年普耳科沃坐标系有关, 属于参心大地坐标系(大地原点、高程基准和高程异常见后文),参考椭球为克拉索夫斯基椭球,其主要参数为: 长半轴 a=6378245,扁率 f=1/298.3。 这就使得同一点在不同的坐标系下有不同的坐标值,使测绘资料的应用受到很大的限制,并且对GPS系统的广泛使用造成了一定的约束性,对我们国家测绘事业的发展不利。

《点投影》教案.doc

教案授课班级16 机电 4 授课日期11.27 课题点的投影授课学时 1 课时 授课方法讲授与练习相结合教学手段多媒体( PPT) 教学目标 教学重点与难点 教学设计 说明 教学活动 流程1.通过学习,理解三视图的形成过程,熟练掌握三视图中点的投影规律。 2.明确三视图中不同点的投影关系。 3.引导学生培养做事要从基础开始的踏踏实实的良好习惯。 教学重点:掌握点的投影规律。 教学难点 : 三视图中不同点的投影之间的关系。 关键点 : 理解点是最基本的几何元素。 根据本节课的特点和学生的认知水平,我主要采用讲授法来使学生获取新知识并且在课堂上让学生通过练习来深化对知识的理解。在总结的时候尝试让学生先讨论再请学生代表进行总结,更好地提高课堂效率。 教学组织 教学步骤与内容教学方法达成目标 形式

一、复习回顾: 1. 三视图都形成了哪些面 ? 学生通过讨论、交 主视图、俯视图、左视图 流、总结,对已学 2. 三 视 图 中 有 怎 样 的 投 影 关 理论讲解 系? 班级授课 知识加深理解,进 师生互动 行拓展,引出新知 长对正、高平齐、宽相等 (请 识。 个别同学来解说一下其含义)

二、新知识点的讲解 1、三面投影体系的建立 投影面:正投影面(V)、水平投影面(H)、侧投影面(W)组成。 投影轴: OX轴 V 面与 H 面的交线 OY轴 H 面与 W面的交线 OZ轴 V 面与 W面的交线 2、空间点 A 在三个投影面上的投影 规定把空间点用大写字母A、 B、 C等标记,在H 面上的投影用小写字母表 示如 a、b、c,在 V 面上的用a’、b’、 c’ 表示,在W面上的用: a”、 b”、c” 表示。 空间点a’—点a”—点A 在三面投影上的投影分别为: A 的正面投影 A 的侧面投影 a—点 A 的水平面投影 3、投影面的展开 将 H 面向下旋转90°, W面向右旋 转 90 °与V 面展开成同一个平面。 4、点的投影规律 1、点 A 的 V 面投影和 2、点 A 的 V 面投影和 3、点 A 的 H 面投影到H 面投影的连线垂直于OX轴,即: a a⊥ OX轴。 W面投影的连线垂直于OZ轴,即: a a ⊥ OZ轴。 OX轴的距离等于其W面投影到OZ轴的距离,即:aax=a az 。 例题讲解: 例 1 已知点 A 的两面投影,求点 A 的第三面投影a”。

土木工程测量课后习题问题详解

《土木工程测量》习题答案 一、测量基本知识 [题1-1] 测量学研究的对象和任务是什么? 答:测量学是研究地球的形状与大小,确定地球表面各种物体的形状、大小和空间位置的科学。 测量学的主要任务是测定和测设。 测定——使用测量仪器和工具,通过测量与计算将地物和地貌的位置按一定比例尺、规定的符号缩小绘制成地形图,供科学研究和工程建设规划设计使用。 测设——将在地形图上设计出的建筑物和构筑物的位置在实地标定出来,作为施工的依据。 [题1-2] 熟悉和理解铅垂线、水准面、大地水准面、参考椭球面、法线的概念。 答:铅垂线——地表任意点万有引力与离心力的合力称重力,重力方向为铅垂线方向。 水准面——处处与铅垂线垂直的连续封闭曲面。 大地水准面——通过平均海水面的水准面。 参考椭球面——为了解决投影计算问题,通常选择一个与大地水准面非常接近的、能用数学方程表示的椭球面作为投影的基准面,这个椭球面是由长半轴为a 、短半轴为b 的椭圆NESW 绕其短轴NS 旋转而成的旋转椭球面,旋转椭球又称为参考椭球,其表面称为参考椭球面。 法线——垂直于参考椭球面的直线。 [题1-3] 绝对高程和相对高程的基准面是什么? 答:绝对高程的基准面——大地水准面。 相对高程的基准面——水准面。 [题1-4] “1956 年黄海高程系”使用的平均海水面与“1985 国家高程基准”使用的平均海水面有何关系? 答:在大港一头验潮站,“1985 国家高程基准”使用的平均海水面高出“1956 年黄海高程系”,使用的平均海水面0.029m。 [题1-5] 测量中所使用的高斯平面坐标系与数学上使用的笛卡尔坐标系有何区别? 答:x 与y 轴的位置互换,第Ⅰ象限位置相同,Ⅰ→Ⅱ→Ⅲ→Ⅳ象限顺指针编号,这样可以使在数学上使用的三角函数在高斯平面直角坐标系中照常使用。 [题1-6] 我国领土某点A 的高斯平面坐标为:x A =2497019.17m,Y A =19710154.33m,试说明A 点所处的6°投影带和3°投影带的带号、各自的中央子午线经度。 答:我国领土所处的概略经度围为东经73°27′~东经135°09′,位于统一6°带投影的13~23 号带,位于统一3°带投影的24~45 号带,投影带号不重叠,因此,A 点应位于统一6°带的19 号带。 中央子午线的经度为0 L =6×19-3=111°。 去掉带号与500km 后的A y =210154.33m, A 点位于111°子午线以东约210km。 取地球平均曲率半径R =6371km,则210.154km 对应的经度差约为(180×210.154)÷(6371π)=1.88996°=1°53′,则A 点的概略经度为111°+1.88996°=112.88996°。

《截交线的投影作图》多媒体教学设计范文

《截交线的投影作图》多媒体教学设计 机电组陈章 一、教学构想 1、设计意图 本节是第三章组合体的核心内容之一,“平面立体截切体”是最常见截切体之一,是学生学习截切体画法的起点,是对前面所学正投影法的巩固,既有理论知识学习又有绘图技能的训练,同时为下一节学习圆柱截交线和后续组合体视图的绘制打下基础。因此本课件中要同时兼顾理论知识的传授和绘图技能的训练。 截交线的投影作图这样的理论与绘图都有要求的课,在设计课件时,一方面是要将本节课的理论知识点展示清楚,使学生能理解截交线的概念与特点,同时还要能由此及彼,课件中要能详细演示截交线作图的方法与步骤。 《截交线的投影作图》是机械制图绘图能力的提升,学生刚刚学习过基础的三视图和基本体,而工程中直接应用基本体的很少,大部分的实际情况都是在基本体的基础上进行一点的变形,而切割是最常用的手段之一,截交线的学习将带学生进入一个更丰富多彩的绘图世界,在这里,空间想象能力的培养和绘图能力的提高是重点,同时还要培养学生具有主动探究、团结协作的意识。 这是学生在机械制图学习后第一次接触基本体的变形,截平面和截交线都是新的概念,对于截平面的位置不确定性学生理解起来很难,位置改变,截交线的形状可能跟着改变,特别是多个截平面时候截交线相对复杂,绘图难度加大。截交线上的特殊点容易求,但是截交线的一般点在作图时也相对较难。这些都是本节课的教学难点。 2、确定目标 根据上文的分析和机械制图教学的要求,本课的教学目标确定如下: (1)知识目标 ①理解截交线的概念和基本特性 ②掌握平面切割平面体的截交线的画法。 (2)能力目标 ①培养学生的空间想象和思维能力。 ②初步具备独立思考、独立绘图的能力。 ③具有主动探究、团结协作的意识。 (3)情感目标 ①培养学生细心、耐心的工作作风。 ②培养学生学习机械制图的兴趣。 3、过程安排 教学的具体教学方法拟设计为任务驱动式教学法,具体过程为任务引入—任务分析—任务计划—任务实施—任务展示—任务强化—任务评价—课后作业。 二、课件制作 (一)素材准备 本课件共用了9张图片素材,第1张为车刀图片,第2张为顶尖图片,前2张图片是为任务引入进行准备的生产实际中车工用到的2个实例,便于学生理解和教师导入,来源是课本图片的扫描;第3张图片是三棱锥截切的图片,便于讲解截交线基本概念,来源是AUTOCAD绘图软件绘制;第4、5张图片,是三棱锥截切的过程图片,助于讲解截交线的基本特性,来源是AUTOCAD绘图软件绘制;第6、7张图片是例题作图的图片,助于讲解截交线作图过程,来源是AUTOCAD绘图软件绘制;第8张图片学生绘图的生活照片,让学生感觉小组合作学习的氛围,来源是学生平时

利用ArcGIS进行地图投影和坐标转换的方法

利用ArcGIS进行地图投影和坐标转换的方法 1、动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示。但此时数据文件所存储的数据并没有改变,只是显示形态上的变化。因此叫动态投影。表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data(当前数据框架的坐标系统)导出数据。 2、坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明。即在数据上鼠标右键→Properties→XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统。但有许多人认为在这里改完了,数据本身就发生改变了。但不是这样的。这里缩写的信息都对应到该数据的.aux文件。如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown。这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身。因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下。 但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的。因此你就无法在做对数据的进一不处理。比如:投影变换操作。因为你不知道要从哪个投影开始变换。 因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识。 3、投影变换(ArcToolBox) 上面说了这么多,要真正的改变数据怎么办,也就是做投影变换。在ArcToolBox->Data Management Tools->Projections and Transformations下做。 在这个工具集下有这么几个工具最常用, 1、Feature→Project 2、Raster→Project Raster 3、Create Custom Geographic Transformation

工程测量投影面与投影带选择

§7.5 工程测量投影面与投影带选择 7.5.1概述 对于工程测量,其中包括城市测量,既有测绘大比例尺图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。如何根据这些目的和要求合适地选择投影面和投影带,经济合理地确立工程平面控制网的坐标系,在工程测量是一个重要的课题。 7.5.2 工程测量中选择投影面和投影带的原因 (1)有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要是由于以下两种因素引起的: ① 实测边长归算到参考椭球面上的变形影响,其值为1s ?: R sH s m - =?1 式中:m H 为归算边高出参考椭球面的平均高程,s 为归算边的长度,R 为归算边方向 参考椭球法截弧的曲率半径。归算边长的相对变形: R H s s m -=?1 1s ?值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;1s ?值与m H , 成正比,随m H 增大而增大。 ② 将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为2s ?: 02 221s R y s m m ??? ? ??=? 式中:10s s s ?+=,即0s 为投影归算边长,m y 为归算边两端点横坐标平均值,m R 为参考椭球面平均曲率半径。投影边长的相对投影变形为 2 0221??? ? ??=?m m R y s s 2s ?值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;2s ?值随着m y 平 方成正比而增大,离中央子午线愈远,其变形愈大。 (2)工程测量平面控制网的精度要求 工程测量控制网不但应作为测绘大比例尺图的控制基础,还应作为城市建设和各种工程建设施工放样测设数据的依据。为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得的边长,在长度上应该相等,这就是说由上述两项归算投影改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。一般来说,施工放样的方格网和建筑轴线的测量精度为1/5 000~1/20 000。因此,由投影归算引起的控制网长度变形应小

(完整word版)高斯投影正反算公式_新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为: 1.WGS84基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴 b=6356752.3142451m; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=6356755.2881575m; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=6356863.018773m; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线

经度为均为3度,即:6度带1带位置0-6度,3度带1带位置1.5-4.5 度),即所谓的高斯-克吕格投影。 图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。

arcgis转换坐标

ArcGIS中的投影和坐标转换及编程实现 摘要:一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 ArcGIS中的投影和坐标转换 1 ArcGIS中坐标系统的定义 一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,没有坐标系统的地理数据在生产应用过程中是毫无意义的,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 坐标系统的定义是在不改变当前数据集中特征X Y值的情况下对该数据集指定坐标系统信息。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Define Projection 项打开坐标定义对话框。介下来在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class;在Coordinate System栏中输入或点击旁边的按钮选择需要为上述DataSet或Feature定义的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 112.2 Y 43.3 ,且该shape文件没有带有相应的Prj文件,即没有空间参考信息,也不知道X Y 的单位。通过坐标系统定义的操作定义其为Beijing1954坐标,那么点P的信息是东经112.2度北纬43.3度。 2 ArcGIS中的投影方法 投影的方法可以使带某种坐标信息数据源进行向另一坐标系统做转换,并对源数据中的X 和Y值进行修改。我们生产实践中一个典型的例子是利用该方法修正某些旧地图数据中X,Y 值前加了带数和分带方法的数值。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 40705012 Y 3478021 ,且该shape文件坐标系统为中央为东经120度的高斯克吕格投影,在数据使用过程中为了将点P的值改为真实值X 705012 Y478021,首先将源数据的投影参数中False_Easting和False_Northing值分别加上40000000和3000000作为源坐标系统,修改参数前的坐标系统作为投影操作的目标坐标系统,然后通过投影操作后生成一新的Shape文件,且与源文件中点P对应的点的坐标

工程测量投影带的问题

§8.10工程测量投影面与投影带的选择 我国有关测量规范中明确规定,国家大地测量控制网依高斯投影方法按06带或0 3带进行分带和计算。对于城市测量,既有测制大比例尺地形图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。1999年《城市测量规范》规定: 一个城市只应建立一个与国家坐标系统相联系的、相对独立和统一的城市坐标系统,并经上级行政主管部门审查批准后方可使用。城市平面控制测量坐标系统的选择应以投影长度变形值不大于 2.5cm/km 为原则,并根据城市地理位置和平均高程而定。可按下列次序选择城市平面控制网的坐标系统: 1当长度变形值不大于2.5cm/km 时,应采用高斯正形投影统一03带的平面直角坐标系统。统一03带的主子午线经度由东经075起,每隔03至东经0135。 2当长度变形值大于2.5cm/km 时,可依次采用: 1)投影于抵偿高程面上的高斯正形投影0 3带的平面直角坐标系统; 2)高斯正形投影任意带的平面直角坐标系统,投影面可采用黄海平均海水面或城市平均高程面。 3面积小于25km 2的城镇,可不经投影采用假定平面直角坐标系统在平面上直接进行计算。 8.10.1工程测量中投影面和投影带选择的基本出发点 1. 有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要由以下两方面因素引起: 1).实量边长归算到参考椭球体面上的变形影响,其值依(8-100)式有: R H s s m ?-=?1 (8-176) 式中,m H 为归算边高出参考椭球面的平均高程; s 为归算边的长度 ; R 为归算边方向参考椭球法截弧的曲率半径。 归算边的相对变形为: R H s s m -=?1 (8-177) 由公式可以看出:1s ?的值总为负,即地面实量长度归算至参考椭球体面上,总是缩短的;1s ?值与m H 成正比,随m H 增大而增大。 2).将参考椭球面上边长归算到高斯投影面上的变形影响,其值依(8-138)式有:

坐标投影的ArcGIS操作步骤

- 110 - 说明说明:: 投影投影其实其实其实是是实现实现((B ,L ,H )与(x,y,H )之间之间的的相互相互转换转换转换。。 步骤步骤如下如下如下:: 1.在ArcCatalog 中设置设置坐标坐标坐标参考参考参考((已知已知))。 2.投影投影转换转换 a. 动态动态投影投影投影::在ArcMap 中view 菜单菜单下下实现实现,,不改变 空间空间数据数据数据的的坐标值标值。。 b.持久持久化化投影投影::利用ArcToolBox 实现实现,,改变改变空间 空间空间数数据的坐标值标值。。

- 111 -第四章 空间数据的转换与处理 空间数据是GIS 的一个重要组成部分。整个GIS 都是围绕空间数据的采集、加工、存储、分析和表现展开的。原始数据往往由于在数据结构、数据组织、数据表达等方面与用户自己的信息系统不一致而需要对原始数据进行转换与处理,如投影变换,不同数据格式之间的相互转换,以及数据的裁切、拼接等处理。以上所述的各种数据转换与处理均可以利用ArcToolbox 中的工具实现。在ArcGIS9中,ArcToolbox 嵌入到了ArcMap 中。本章就投影变换、数据格式转换、数据裁切与拼接等内容分别介绍。 4.1 投影变换 由于数据源的多样性,当数据与研究、分析问题的空间参考系统(坐标系统、投影方式)不一致时,就需要对数据进行投影变换。同样,在完成本身有投影信息的数据采集时,为了保证数据的完整性和易交换性,要定义数据投影信息。以下就地图投影及投影变换的概念做简单介绍,之后分别讲述在ArcGIS 中如何实现地图投影定义及变换。 空间数据与地球上的某个位置相对应。对空间数据进行定位,必须将其嵌入到空间参照系中。因为GIS 描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为空间数据的参照系统。而地球是一个不规则的球体,为了能够将其表面内 容显示在平面的显示器或纸面上,就必须将球面地理坐标系统变换到平面投影坐标系统(图4.1)。因此,运用地图投影方法,建立地球表面上和平面上点的函数关系,使地球表图4.1椭球体表面投影到平面的微分梯形 Y

点的投影教案

教案设计 课程名字:机械制图 姓名:田泉 学号:132124010045

点的投影 授课教师:田泉学时:1课时 章节名字:1、点的投影及其标记 2、点的三面投影规律 3、点的三面投影与直角坐标 4、特殊位置点的投影 5、两点的相对位置 内容分析:点是构成线面体最基本的几何要素。本节课介绍点的正投影机器投影特性。 教学内容:1、介绍空间点及其投影的标记符号 2、讲解点的三面投影规律 3、讲解特殊位置点的投影 4、讲解两点的相对位置和重影点 学情分析:因为点是线面体的最基本几何要素,所以学生只要掌握了点的投影规律,对后面的直线面的投影便会变得简单容易,所以要仔细、好好讲 授本节课。 教学目标:1、理解并掌握在两面和三面投影图中点的投影规律 2、熟练掌握点的投影与与其直角坐标的关系以及由点的两个投影求 作第三投影的方法 3、掌握由点的轴测图作投影图和由点的投影图作轴测图的方法 4、根据两个点的投影,能够理解并判别该两点在空间的相对位置 5、掌握重影点的概念及其可见性的判别方法 教学重点:1、在两面和三面投影图中点的投影规律 2、重影点的概念和两点的相对位置 教学难点:1、点的三面投影与直角坐标的关系 2、特殊位置点的投影 作业: 教学过程: 一、引入课题

任何物体都是由点、线、面等几何元素构成的,只有学习和掌握了几何元素的投影规律和特征,才能透彻理解机械图样所表示物体的具体结构形状。本次课先来学习点的投影。 二、教学内容 (一)点的投影及其标记 当投影面和投影方向确定时,空间一点只有唯一的一个投影。如图2-11(a)所示,假设空间有一点A,过点A分别向H面、V面和W面作垂线,得到三个垂足a、a′、a″,便是点A在三个投影面上的投影。 规定用大写字母(如A)表示空间点,它的水平投影、正面投影和侧面投影,分别用相应的小写字母(如a、a′和a″)表示。 根据三面投影图的形成规律将其展开,可以得到如图2-11(b)所示的带边框的三面投影图,即得到点A两面投影;省略投影面的边框线,就得到如图2-11(c)所示的A点的三面投影图,(注意:要与平面直角坐标系相区别。) (a)(b) (c)

相关文档
最新文档