一种微型膜分散式萃取器

一种微型膜分散式萃取器
一种微型膜分散式萃取器

几类常用的萃取设备以及应用领域

几类常用的萃取设备以及应用领域 萃取设备 分为萃取机(也称离心萃取机),萃取槽(混合澄清槽),萃取塔。 萃取机 产品介绍:离心萃取机是一种新型、快速、高效的液液萃取设备。它与传统的萃取设备如混合澄清槽、萃取塔等在工作原理上有本质的区别。离心萃取机是利用转鼓高速旋转产生的强大离心力,使密度不同又互不混溶的两种液体迅速混合、迅速分离。 特点概述:离心萃取机具有占地面积小、级效率高、萃取剂用量少、密封性好、自动化程度高的特点,便于实现清洁生产。 应用领域:离心萃取机广泛用于湿法冶金、废水处理、生物、制药、石化、精细化工、原子能等领域。尤其适用于密度相近、在重力场下难以分离的产品,或溶液中溶质含量很低的物质的分离。 萃取槽 产品介绍:萃取槽(又称混合澄清槽)是靠重力实现两相分离的一种逐级接触式萃取设备,就水相和有机相的流向而言,可分逆流式和并流式;就能量输入方式而言,可分为空气脉动搅拌、机械搅拌和超声波搅拌;就箱提结构而言,除简单箱式混合器之外,还有多隔室的、组合式等各种其他混合器。 特点概述:操作简单灵活、放大可靠、适应性强。 应用领域:萃取槽广泛用于湿法冶金、石化、化肥、核工业 复合高效萃取槽 产品介绍:复合高效萃取槽是由普通混合澄清槽演变而来的,这种萃取槽不设混合室,两相的混合靠专用的混合设备实现高效的混合,从而达到传质的目的。其澄清部分和普通的混合澄清槽的澄清室一样,内设轻相堰、重相堰,实现了两相的澄清分离。 特点概述:由于这种萃取槽省去了搅拌混合设备,所以可以大幅度降低萃取槽的功耗,特别对于处理量大的场合,其节能优势会更加突出。另外,这种形式的萃取槽和反萃取槽可以叠加放置,这样就可以节约占地面积。 萃取塔 萃取塔可分为有机械搅拌和无机械搅拌的萃取塔,有机械搅拌的萃取塔又可分为脉冲筛板塔、转盘塔、震动筛板塔。这里主要介绍转盘塔。 产品介绍:转盘萃取塔属于机械搅拌萃取塔,它由带水平静环挡板的垂直的圆筒构成。静环挡板为中心看孔的平板,静环挡板将圆筒分成一系列萃取室,萃取室中心有转盘,一系列转盘平行地安装在转轴上,转盘和静环的上部和下部分别是两个澄清室。和其他萃取塔一样,工作时轻相和重相分别由塔底和塔顶进入转盘,在萃取塔内两相逆流接触,在转盘的作用下,分散相形成小液滴,增加两相间的传质面积。完成萃取过程的轻相和重相再分别由塔顶和塔底流出。 特点概述:塔式萃取设备具有占地面积小、处理能力大、密闭性能好等特点,根据分离要求,处理能力和体系特性的不同可设计成不同的结构。

一种基于分散液液位萃取发展的使用离子液体对水样中多环芳烃进行分析的方法.

一种基于分散液液位萃取发展的使用离子液体对水样中多环芳烃进行分析的方法 马修女佩纳,马卡门卡赛斯,马卡门梅胡托,拉斐尔切拉 分析化学系,营养与食品科学,食品研究和分析,圣地亚哥德孔波, 15782圣地亚哥德孔波斯特拉,西班牙大学。 文章信息: 文章历史: 收稿日期 2009年 4月 15日 修订日期 2009年 7月 9日 接受于 09年 7月 17日 网上提供 XXX 关键词: 多环芳烃、离子液体、分散液液萃取、水质分析、液相色谱 摘要: 一种简单,快速,有效的基于离子液体 -分散液液微萃取(IL-DLLME 技术第一次测定了水样中 18种多环芳烃 (PAHs的含量。离子液体(1-辛基 -3-甲基咪唑六氟磷酸盐与可以从多环芳烃样本基质中提取的分析物之间的化学亲和力使他们能够富集起来。因此,这种技术结合了提取、浓缩分析物为一体,避免了使用有毒的氯化溶剂。影响萃取效率的因素, 比如离子液体的类型和体积, 分散剂的类型和体积,萃取时间,分散步骤,离心时间和离子强度等都得到了优化。萃取物的分析采用高效液相色谱法(HPLC 与荧光检测器(Flu 。该优化方法呈现良好的精确度,只有 1.2%到 5.7%的标准偏差值。对所有这些考虑的化合物, 其检测限(在 0.1 到7 ng L- 1之间

都低于欧盟建议的限制。分散液液微萃取对不同化合物的萃取率介于 90.3%至103.8%之间。此外也实现了较高的富集因子(301-346。该优化方法的萃取率与液液萃取作比较。最后,该方法已成功应用于实际水样的多环芳烃分析 (自来水、瓶装水、喷泉、井水、河水、雨水、废水处理及原废水 2009, Elsevier B.V.版权所有。 1. 导言 有必要在环境管制法例中列出一些多环芳烃的毒性性质 [1,2]。许多环保机构为了保护环境和人类健康,将饮用水和天然水中多环芳烃限制在非常低的水平。 在饮用水方面,美国环境保护署(EPA 和世界卫生组织(WHO 建议例行监测苯并[a]芘(B[a]P . 美国环保局规定,其最高浓度不得超过200 ng L- 1 [3], 而世界卫生组织规定的苯并 [a]芘的最高容许浓度为700 ng L - 1[4]。除了到 B [a]芘,欧盟的指令 98/83/EC [5]的规定苯并 [b]荧蒽 (B[b]F,苯并 [k]荧 (B[k]F, 苯并 [g,h,i]苝 (B[g,h,i]P 和 . 茚并 [1,2,3 - C 类, D]芘 (I[1,2,3-c,d]P。最高污染物水平值分别定为 , 对剧毒 B[a]P为10ngL - 1,对剩余的多环芳烃的总量为100ngL - 1。 欧盟也对浅水域的不同类型下的这类化合物制定了非常严格的限制。对 B[a]P 的限制是年平均值为50ngL - 1、最高容许浓度为100 ngL - 1。对 B[b]F– B[k]F 和 B[g,h,i]P– I[1,2,3-c,d]P的年平均值和最高容许浓度分别限制在30 ngL- 1和2ngL - 1,作为。萘(Naph, 1200 ngL - 1,荧蒽(Flt, 100 ngL - 1和蒽(Anth, 100 ngL - 1也包括在这个指令中。 美国环保局和欧盟制定了水中低浓度多环芳烃的常规量化, 这需要高效合理的分析方法的发展。这些化合物通常用液液萃取 (LLE [8,9]和固相萃取 (SPE [10]两种方法从水样中提取。然而, 现在分析化学的趋势是简化样品的制备。因此, 在过去几年里, 微技术在辨别多环芳烃方面正发挥着重要的作用。固相微萃取 (SPME [11],搅拌吸附萃取 (SBSE[12]和液相微萃取 (LPME [13,14]已经替代了传统的 LLE 和 SPE 技术。

直观演示7大萃取设备的结构和原理

直观演示7大萃取设备的结构和原理 萃取(Extraction)是分离液体混合物的一种单元操作,依据液体混合物中各组分在溶剂中溶解度的差异分离液体混合物,俗称抽提。 萃取设备 ——离心萃取机—— ——混合·沉降萃取器——

——脉冲筛板萃取塔—— ——筛板萃取塔——

——填料萃取塔—— ——往复筛板萃取塔——

——转盘筛板萃取塔—— 萃取设备简介 萃取设备又称萃取器,其作用是实现两液相之间的质量传递。对萃取设备的基本要求是使萃取系统的两液相之间能够充分混合、紧密接触并伴有较高程度的湍动;同时使传质后的萃取相与萃余相能够较完善的分开。萃取设备的种类很多,按两相接触方式,可分为逐级接触式和连续接触式;按形成分散相的动力,可分为无外加能量与有外加能量两类,前者只依靠液体送入设备时的压力和两相密度差在重力作用下使液体分散,后者则依靠外加能量用不同的方式使液体分散;此外,根据两相逆流的动力不同,可分为重力作用和离心力作用两类。

常用的萃取塔型 ①转盘塔 在工作段中,等距离安装一组环板,把工作段分隔成一系列小室,每室中心有一旋转的圆盘作为搅拌器。这些圆盘安装在位于塔中心的主轴上,由塔外的机械装置带动旋转。转盘塔结构简单,处理能力大,有相当高的分离效能,广泛应用于石油炼制工业和石油化工中。 ②脉动塔 在工作段中装置成组筛板(无溢流管的)或填料。由脉动装置产生的脉动液流,通过管道引入塔底,使全塔液体作往复脉动。脉动液流在筛板或填料间作高速相对运动产生涡流,促使液滴细碎和均布。脉动塔能达到更高的分离效能,但处理量较小,常用于核燃料及稀有元素工厂。 ③振动板塔 将筛板连成串,由装于塔顶上方的机械装置带动,在垂直方向作往复运动,借此搅动液流,起着类似于脉动塔中的搅拌作用。 萃取塔设计主要是确定塔的直径和工作段高度。先从液体流量除以操作速度,得出塔截面,算出塔径。然后根据塔的特性以及物系性

(液)膜

(液)膜的分离技术及应用 溶剂萃取一般都对应反萃取。液膜分离(liquid membrane-baded separation) 过程对液体分离来讲是萃取(extraction)和反萃取(back-extraction or stripping) 的微观结合。 一、液膜分类 (液)膜是以液体为材料的膜。液膜分为乳状液膜和支撑液膜两种。有多种不同的液膜: ①沿固体壁面流动着的液膜。这种液膜与互相接触的气体或另一种与其不相溶的液体构成膜式两相流,出现在一些化工设备中,如垂直膜式冷凝器、膜式蒸发器、填充塔和膜式气液反应器等。 ②固体从能使其润湿的液体中取出时,表面上附着的液膜,称为滞留液膜。 ③在液膜分离操作中,用以分隔两个液相的液膜,此液膜是对溶质具有选择性透过能力的液体薄层。 ④气液两相相际传质系统中,假设存在于液相中界面附近的具有传递阻力的液膜。 二、液膜形成的过程及条件 液膜过程对气体分离来讲是吸收(absorption)和解吸(desorption or stripping) 的微观结合。液膜的构型有乳化液膜,疏水微孔膜支撑液膜,再生型的疏水微孔膜支撑液膜,无孔橡胶膜溶涨的液膜,和hollow fiber contained liquid membrane (不知中文如何翻译)。当然,也有人把膜萃取成为液膜萃取。但膜萃取实质上是有固定油-水接触

界面的萃取过程。萃取分离一般指通过混合物中介质相对于萃取剂的溶解度不同而进行分离,一般溶萃取剂只和其中一种介质互溶,如:水可以使甲醇汽油分离成汽油、甲醇水溶液两相。液膜萃取萃取剂和混合物不直接接触,中间有一层液膜,易溶物质通过液膜进入萃取剂。例如:用中油液膜萃取含酚废水中的酚,先在中油中加入氢氧化钠水溶液,形成油包水型萃取介质,废水中的酚通过油膜进入萃取介质内部,和氢氧化钠反应生成酚钠,酚钠不能通过油膜,被固定在油膜内部,使废水中的酚含量降低。这种工艺温度控制要求较高,操作难度较大,但其优势在于中油为煤化工过程副产氧气,消耗较低。具体步骤要看你分离目标和混合物成分来确定的。选择合适的分离膜,选择分离压力、温度等等。 三、特性降膜特性 1、降膜特性 当液膜沿固体壁面下降时,随着雷诺数增加,膜内运动可依次出现层流、波动层流和湍流。当周围气体静止,液膜自由流动时,当雷诺数Re=uδ/v(式中u为液膜平均速度;δ为液膜厚度;v为液体运动粘度)在20~30时的范围内,膜内运动呈层流状态。此时液膜厚度均匀,界面平静,液体沿垂直壁面下降时的速度分布根据理论分析可用下式计算:式中ux为液膜内与壁面距离为y处的点速度;g为重力加速度。这样在已知速度分布的基础上,结合对流扩散方程,可以计算出液膜中的浓度分布,从而确定传质分系数;这是连续接触传质设备设计的基础。结合蒸气冷凝液膜的热量衡算,可确定冷凝传热

液相微萃取在分析化学中的应用

小学期论文 题目:液相微萃取在分析化学中的应用 学生姓名:许婷婷 学生学号:09306008 学院名称:化学与生命科学学院 专业名称:化学(师范) 指导教师:朱永春教授 二○一一年九月

液相微萃取在分析化学中的应用 许婷婷 沈阳师范大学沈阳 100034 【摘要】 本文主要围绕液相微萃取在分析化学中的应用来展开讨论,分别介绍了液相微萃取的含义、萃取方式、基本理论、影响因素以及液相微萃取的应用。以液相微萃取在不同性质的分析物中所表现出来的特征,来选择合适的液相微萃取方式最后达到满意的效果,具有现实意义。 【关键词】浸没式液相微萃取顶空液相微萃取液一液微萃取溶剂棒微萃取分析化学 引言 对于环境样品而言,其最大的特点就是成分组成复杂、不同成分含量差别大,而需要分析监测的通常是其中的微量、痕量物质。随着社会的发展,人们对于水中有机物污染物的关注不断提高,感兴趣的目标物也不断增加,而且要求分析微量或者痕量级别的污染物,对于分析的技术和分析的仪器的要求相对比较高。面对日益复杂的分析目标物,进行ms/L 数量别的样品分析往往无法直接使用分析仪器直接分析,这时就需要引进一种新的技术。 而液相微萃取是一种新的样品前处理技术。它能满足对实验精确度和准确性的要求,是一种合适、方便、快捷、廉价的对于分析化学以后研究起着至关重要作用的前沿技术。 1.液相微萃取的概述 1.1液相微萃取的定义 液相微萃取[1]是一种新的样品前处理技术,它是在液—液微萃取的基础之上发展起来的技术。它比传统的液—液微萃取技术有着更高的灵敏度和更佳的富集效果。它是集采样、萃取、浓缩一体,并且更加的廉价和方便。由于它对环境没有产生危害,所以它还是一项环境友好的新技术,特别适合于对环境中微量污染物的监测。 1.2液相微萃取的发展史 液相微萃取是1996年发展起来的一种新型的样品前处理技术,最初是由Jeannot和Cantwell提出的[2]。 2液相微萃取的萃取方式 考虑到液相微萃取中分析物的物理性质和化学性质的差异,萃取剂样品的性质与实验环境的影响,液相微萃取的萃取方式也就有所不同。大体上分为:浸没式液相微萃取、顶空液相微萃取、液相微萃取—后萃取和溶剂棒微萃取等四种方式。 2.1浸没式液相微萃取(I一LPME) 对于不挥发、半挥发的分析物可以采用浸没式液相微萃取,即直接利用悬挂在色谱微量进样器针头或包含在针尖中空纤维膜中的有机溶剂对溶液中的分析物直接进行萃取的

萃取设备中离心萃取机的技术要求

萃取设备中离心萃取机的技术要求 前言 萃取设备是一类用于萃取操作的传质设备,能够实现料液所含组分的完善分离。 萃取设备可按结构分为混合澄清器、萃取塔和离心萃取机。下面我们主要从离心萃取 机的简介,性能要求,技术要求及外观质量方面说明离心萃取机的技术要求。 1.离心萃取机的简介 在离心力场中,利用液/液两相密度的不同,在同一机器中完成混合传质过程和分离过程,达到液/液两相萃取分离的连续萃取设备。(简称“萃取机”) 在离心力场中先进行充分混合,使溶质的转移,再进行两相液体的分离和排出。 轻相液体从靠近转鼓壁处进料,重液相则从转鼓中心进料。在转鼓内形成两相分散的 逆流接触。最终两相达到转鼓另一端时轻重液相分别浓缩在转鼓中心和内壁处排出。 利用管式、多室式和碟片式离心机结构制成离心萃取机,充分地发挥了管式离心机分 离因数高、轴向长度大,适于处理密度差较小的两相液体,室式和碟片式离心机对两 相液体分散度高,接触面积大,停留时间长等特点,有利于萃取过程先使两相流分散 接触,再使两相流分别浓缩的工艺要求。分别称为管式、室式和碟片式离心萃取机。 目前市面上最先进的离心萃取机为CWL-M型离心萃取机。 2.性能要求 2. 1 离心萃取机在额定工况下,转速应不低于额定转速的97%。 2. 2 离心萃取机在额定转速运行时,其空运转时振动速度应不大于4.5 mm/s,负荷运转时振动速度应不大于7.1 mm/s。 2. 3 离心萃取机在额定转速下,空运转时噪声(声压级)应不大于80 dB(A);负荷运转时噪声(声压级)应不大于85 dB(A)。 2. 4 离心萃取机主轴承温升:空运转时应不高于40℃;负荷运转时应不高于45℃。 2. 5 离心萃取机主轴承温度:空运转时应不高于75℃;负荷运转时应不高于80℃。 2. 6 离心萃取机最大通量应符合设计要求。 3.结构要求 3.1 离心萃取机应设置适合于整体吊装的起吊装置。 3.2 离心萃取机各密封部位应密封良好。

HL-20离心萃取器HL-20型离心萃取器解决了目前国内在此微型萃取

HL-20离心萃取器 HL-20型离心萃取器解决了目前国内在此微型萃取设备领域的空白,属于高级实验室专用离心萃取设备。目前国内外专业萃取研究人员在实验室中还是使用传统式的分液漏斗萃取分离方法,若用分液漏斗的间歇操作来模拟四级连续逆流萃取的串联实验就比较困难。经验表明,要使萃取过程达到真正的稳态分液漏斗的进料排料振荡的操作至少要进行48次以上,其操作的复杂可想而知,不仅操作人员费时费力,这样多次的人工操作也难免不出现误操作,这时就会前功尽弃。由于物料倒来倒去,必然造成物料损失,从而使数据误差较大。如果级数再多,使用分液漏斗几乎就是不可能的。 用HL-20离心萃取器取代上述操作,将是很容易的。运用26级离心萃取器可以成功地进行锆铪的分离试验,而采用分液漏斗是根本不可能的。对于极困难的分离体系,我们可以采用多级离心萃取来实现分离,这是分液漏斗不可能实现的。 因此,在萃取实验室,无论是一级操作,还是连续错流、连续逆流操作,HL-20离心萃取器均可完全替代分液漏斗完成分液漏斗可以完成的和无法完成的试验。因此说,用HL-20离心萃取器进行溶剂萃取的实验研究,不但省时省力省经费,还具有可观的经济效益,即可省略再放大的中间试验环节。因为进出料操作是连续进行的,所以由实验室的逐级萃取设备转到工程的离心萃取器已有非常成功的经验。 此外,HL-20离心萃取器的操作简便、流比调节范围宽、萃取分离快速完成、取样方便,省时省力。例如:我单位为北京某研究中心的稀土元素分离项目所做的试验,若是采用分液漏斗模拟逆流萃取来获得不同的实验参数至少需要半个月的时间,工作量非常大,而HL-20只需几个小时即可轻松完成。而且,HL-20萃取器改变流比参数极为方便,只需调节流量计即可。 其特点:HL-20离心萃取器采用先进的CPU电脑程序控制系统,实现了仪器的过压、过热、超速等保护以及控制面板速度设定、分离因数可调等功能。 此设备可多级串联实现逆流萃取,萃取效率高,两相停留时间短,滞留量少,操作智能化,操作简便可任意改变转速及分离因数。适应性非常强、两相流比可在较大范围内进行调整。

液膜萃取技术及其应用的研究

液膜萃取技术及其应用的研究 摘要:由于固体膜的选择性较低、通透量较小等缺点,使其在工业技术领域的应用效率不高,因此,人们试图用改变固体高分子膜的状态,使膜的扩散系数增大、厚度变小,从而增强膜的选择特性并提高物质的迁移效率。本文结合了液膜萃取技术的最新研究进展,对该技术的基本原理、类型、特点作一简单地介绍,同时就该技术在生物工程领域和其他领域的应用进行综述。 关键词:液膜萃取;分离;中空纤维支撑液膜 The Research of The Liquid Membrane Extraction Technology and Its Application Abstract: Due to the low selectivity and a small transportation of the solid membrane, It has been applied efficiency is relatively lower in the industrial field, therefore, some people attempted to change the stage of the solid molecular membrane, make membrane diffusion coefficient increase and thickness decrease, So select features of membrane was enhanced and the migration efficiency of substances was increased. In this paper, the basic principles, types and characteristics of the technique were simply presented, combined with the latest research progress of the liquid membrane extraction technology, at the same time, the application of the technology in the biological engineering field and other fields were summarized. Keywords:liquid membrane separation; extraction; hollow fiber supported liquid membrane 液膜萃取(Liquid membrane separation),又称液膜分离(Liquid membrane extraction),它是一种以液膜为分离介质、以浓度差为推动力的膜分离操作技术。液膜萃取技术实质上是一种液液分离的过程,它的研究开始于20世纪60年代中期,该技术的发展结合了固体膜分离技术和液液萃取技术的特点,是一种新型的膜分离技术。早期,Bloch等[1]采用支撑液膜对金属的提取过程进行了研究,使萃取与反萃可以在同一个单元设备内进行;随后,在1968年,美籍华人Li N N[2]提出了乳状液膜分离法后,各国科学家对液膜萃取技术的研究越来越关注,使该技术先后经历了不同程度的发展,支撑液膜、包容液膜、大块液膜、静电式准液膜、内耦合翠反交替过程等等,并应用于环境保护、石油化工、冶金工业、生物医药等各个领域[3]。随着该技术的发展和不断地改进,20世纪80年代后期,新的液膜构型不断提出,如液体薄膜渗透萃取技术、流动液膜技术、中空纤维包容液膜技术、支撑乳化液膜、中空纤维更新液膜等等,这些技术已经应于相关领域并获得了一定的发展[4]。 1 液膜萃取体系及其机理

液相微萃取相关小结

新兴样品预处理技术—液相微萃取 液相微萃取是近年来新兴的一种微型化样品前处理技术。该技术集萃取、净化、浓缩于一体,具有溶剂耗量少、成本低廉、操作便捷、精确和灵敏度高的特点。本文全面深入地综述了液相微萃取的各种工作模式及其原理和特点,阐述了相关的联用分析技术和方法的适用性,归纳和分析了影响萃取的主要影响因素及优化的方法,突出了上述几方面中具有发展潜力的新进展,包括各种动态萃取模式与装置、与其他技术联用的新策略、离子液体作为萃取溶剂等,详细总结了近年来液相微萃取技术在环境、药物和食品等分析领域中的应用情况。 液相微萃取技术由Jeannot 等在1996 年提出,它在液液萃取(LLE) 基础上发展起来,结合了LLE和SPME 的优点,溶剂用量少、快速、廉价,且萃取与进样都只需一个极简单的装置———微量进样器。其基本原理与LLE 相似,是有机物在不同相之间进行分配富集的过程。它是微型化了的液液萃取,但对微量待测物的富集作用是传统LLE 不能及的,不需要进一步浓缩过程,灵敏度与LLE 相当。因为液相微萃取的优点显著,它的发展非常迅速,目前越来越多的人开始研究LPME ,已经开发出多种不同萃取模式并在环境、药物和食品等复杂基质的样品分析领域中体现出优异的应用效果。 液相微萃取技术,将成为一种有极大应用潜力的样品前处理技术。 主要萃取模式及原理 1单滴微萃取(SDME) SDME 是将萃取用的有机溶剂液滴悬挂在微量进样器的针端,同液2液萃取一样,SDME 的萃取也是基于分析物在不同相中分配系数不同而达到萃取的目的。有机相液滴体积一般为1 —5μl ,远远小于样品体积,所以可以达到对

一种新型离心萃取机

说明书摘要 本实用新型公开了一种新型离心萃取机,包括底座,溶剂底座的内部设有第一电机,溶剂第一电机的主轴穿过底座的上侧固定连接有转桶,溶剂转桶的内部设有滑轨,溶剂滑轨上滑动连接有滑块,溶剂滑块上设有齿条,溶剂滑块上设有放料框,溶剂转桶的内部转动连接有圆杆,溶剂圆杆上设有齿轮,溶剂圆杆的一端穿过转桶固定连接有手轮,溶剂齿轮与齿条相啮合,溶剂转桶的内部设有横板。本实用新型的优点是,通过齿条、齿轮、手轮,使放料框可以根据所要萃取物料量的大小来调整与转桶底端的距离,以节省萃取溶剂,通过第二电机、凸轮、挡块、弹簧、振动杆,使设备可以边离心,边对所要萃取的物料进行锤压,尽可能使萃取物不产生残留。

摘要附图

权利要求书 1.一种新型离心萃取机,包括底座(1),其特征在于:所述底座(1)的内部设有第一电机(2),所述第一电机(2)的主轴穿过底座(1)的上侧固定连接有转桶(9),所述转桶(9)的内部设有滑轨(6),所述滑轨(6)上滑动连接有滑块(23),所述滑块(23)上设有齿条(10),所述滑块(23)上设有放料框(20),所述转桶(9)的内部转动连接有圆杆(7),所述圆杆(7)上设有齿轮(11),所述圆杆(7)的一端穿过转桶(9)固定连接有手轮(5),所述齿轮(11)与齿条(10)相啮合,所述转桶(9)的内部设有横板(12),所述转桶(9)上设有第二电机(13),所述第二电机(13)的主轴穿过转桶(9)的内壁固定连接有连接杆(14),所述连接杆(14)上设有凸轮(15),所述横板(12)上设有振动杆(18),所述振动杆(18)上设有挡块(17),所述挡块(17)与横板(12)之间设有弹簧(16),所述振动杆(18)上设有压板(8),所述转桶(9)上设有出料管(3)。 2.根据权利要求1所述的一种新型离心萃取机,其特征在于:所述压板(8)上设有矩形块(19)。 3.根据权利要求1所述的一种新型离心萃取机,其特征在于:所述底座(1)上设有圆形凹槽(22),所述转桶(9)上设有滑动杆(21),所述滑动杆(21)滑动连接于圆形凹槽(22)内。 4.根据权利要求1所述的一种新型离心萃取机,其特征在于:所述转桶(9)的内部设有过滤网(4),所述过滤网(4)与出料管(3)相贴合。 5.根据权利要求1所述的一种新型离心萃取机,其特征在于:所述转桶(9)内壁的底端为斜面。 6.根据权利要求1所述的一种新型离心萃取机,其特征在于:所述转桶(9)、放料框(20)均为矩形。

液膜萃取法

液膜萃取法文献综述 液膜萃取技术结合了固体膜分离法和溶剂萃取法的特点,是一种新型的膜分离方法.液膜是乳状液滴分散在另一水相或油相中聚集成平均直径为1mm的聚集体时形成的(W/O)/W或(O/W)/O型复相乳液体系。在前一种情况,两种不同的水相(分别称为内相、外相)被一层油膜隔开,后一种情况是两种不同的油相被一层水膜隔开,液膜本身的厚度为1~10Lm。由于液膜的厚度只有人工固体薄膜的十分之一,所以物质穿过液膜的迁移速度更快。液膜萃取就是利用液膜的选择透过性,使料液中的某些组分透过液膜进入接受液,然后将三者各自分开,从而实现料液组分的分离。液膜萃取过程是由三个液相所形成的两个相界面上的传质分离过程,实质上是萃取与反萃取的结合。 应用领域:30多年来,液膜一直是一个十分活跃的研究课题。液膜传质速率高与选择性好的特点,使之成为分离、纯化与浓缩溶质的有效手段,

它与其它辅助设备、仪器、检测方法相结合,在石油化学、冶金工业、海水淡化、废水处理和综合回收、医学、生物学等方面的应用已日益受到人们的重视。 应用优点:一些物理化学性质相似的碳氢化合物很难分离,采用液膜技术可以成功分离碳氢化合物。利用液膜萃取技术可以有效地提取某些金属,提取率达99.5%。液膜萃取法处理废水,使废水达到了国家排放标准,有效的回收了可循环利用的成分,同时也减少了环境的污染。液膜萃取在生物学方面。青霉素是一种应用广泛的抗生素类药物,传统的提取方法采用溶媒萃取法。青霉素易分解损失。莫凤奎等使用青霉素G钠盐纯品溶液,模拟考察了乳状液膜法分离青霉素的条件,在最佳条件下青霉素的提取率可达92%。浓缩比可达9,且具有青霉素不易损失,工艺简单等优点。 废水处理中液膜萃取应用的优点:对含有机质废水的处理,大多采用有机溶剂萃取法,但处理后的废水中仍含有较高浓度的有机物质,采用液膜法则可使废水得到彻底的处理。 发展前景:经过多年的发展,液膜萃取在机理

液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用

液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用 【作者】吴秋华; 【导师】王志 【作者基本信息】河北农业大学,农产品加工及贮藏工程,2011,博士 【摘要】样品预处理,是分析过程中最重要、最关键的步骤,尤其是分析复杂基质样品中痕量组分时,样品预处理技术往往成为分析成功与否的关键。样品预处理的目的不仅是从样品中分离出目标分析物,从而减少或消除其他组分的干扰,同时还要对分析物进行浓缩以实现痕量测定。传统的样品前处理技术如液液萃取、固相萃取,存在操作繁琐耗时,需要使用大量的对人体和环境有毒或有害的有机溶剂等缺点。所以多年来人们致力于建立省时、高效、有机溶剂使用量少的样品前处理技术。液相微萃取(Liquid phase microextraction, LPME)是近年来发展起来的一种操作简单、成本低、有机溶剂用量少、环境友好的样品前处理新技术,受到国内外研究工作者的广泛关注。本论文将液相微萃取与高效液相色谱(High performance liquid chromatography, HPLC)技术相结合建立了水样、土样和蔬菜等样品中多种农药残留的检测方法。在系统查阅有关文献资料的基础上,主要进行了以下研究工作:(1)由于农药的广泛使用而造成的水污染问题,已经成为一个严重的全球环境问题,监测水环境中的农药残留对保障人类健康和保护环境都具有重要意义。本文将分散液液微萃取(DLLME)与高效液相色谱联用建立了水样中的4种氨基甲酸酯类农药(呋喃丹、西维因、抗蚜威和乙霉威)残留的测定方法。对影响DLLME的实验条件进行了优化,包括萃取剂和分散剂的种类及其用量、萃取时间和盐浓度等。在优化实验条件下4种氨基甲酸酯类农药的富集倍数可达101 ~ 145倍,线性范围为5 ~ 500 ng/mL,线性相关系数为0.9978 ~ 0.9998。检出限(S/N = 3)在0.4 ~ 1.0 ng/mL之间,该方法成功的应用于实际水样中4种氨基甲酸酯类农药残留的测定,加标回收率在76.0% ~ 94.0%之间,相对标准偏差RSDs为4.7% ~ 6.5% (n = 5)。(2)将分散液液微萃取与高效液相色谱荧光检测(HPLC-FD)相结合,建立了一种测定水样和土样中多菌灵和噻菌灵的方法。在该方法中,将含有0.75 mL四氢呋喃(作为分散剂)和80.0μL CHCl3(作为萃取剂)的混合溶液用微量进样器快速注入5.00 mL样品溶液中。在此过程中,水相中的待测物被萃取到CHCl3的小液滴中,然后离心分离,将萃取剂转移到另一个锥形试管中,室温下氮气吹干,用15.0μL甲醇将残余物溶解,取10.0μL进行色谱分析。考察了各种实验参数的影响,如萃取剂和分散剂的种类、体积,萃取时间,盐浓度的影响等。在最佳的实验条件下,该方法对多菌灵和噻菌灵的富集因子分别为149和210,绝对回收率分别为50.8%和70.9%,线性范围分别为5 ~ 800 ng/mL(水样),10 ~ 1000 ng/g (土样),线性相关系数(r)介于0.9987至0.9997之间。检出限(LOD,S/N = 3)分别为0.5 ~ 1.0 ng/mL (水样), 1.0 ~ 1.6 ng/g (土样),相对标准偏差RSDs为3.5% ~ 6.8% (n = 5),加标回收率在82.0% ~ 94.0%之间,且所建立的方法已被用于实际水样和土样的分析。(3)将分散液液微萃取与高效液相色谱二极管阵列检测(HPLC-DAD)联用,建立了测定水样中四种磺酰脲类除草剂(甲磺隆、氯磺隆、苄嘧磺隆、氯嘧磺隆)的新方法。考察了各种实验参数的影响,如萃取剂和分散剂的种类、体积,萃取时间,盐浓度的影响等。在最佳的实验条件下,该方法对四种磺酰脲类除草剂的富集因子在102 ~ 216之间,线性范围为1.0 ng/g ~ 100 ng/g,线性相关系数为0.9982 ~ 0.9995,检出限为0.2 ng/g ~ 0.3 ng/g,该方法已成功应用于水样(河水、溪水和井水)中四种除草剂的分析,并得到了满意的分析结果。(4)将分散固相萃取(DSPE)结合分散液液微萃取(DLLME)与高效液相色谱二极管阵列检测联用建立了测定土壤中四种磺酰脲类除草剂(甲磺隆、氯磺隆、苄嘧磺隆、氯嘧磺隆)的新方法。在DSPE-DLLME方法中,首先用丙酮-0.15 mol/L碳酸氢钠(2:8,v/v)为提取液,从土壤中提取磺酰脲类除草剂, 然后对提取液进行DSPE净化处理,即直接在提取液中加入吸附剂C18,摇动并过滤,用2 mol/L的HCl调节滤液的pH为2.0,取滤液5.0 mL,并加入60μL氯苯(用作萃取剂)进行分散液液微萃取。滤液中的丙酮起分散剂的作用。在最优条件下,对四种磺酰脲类除草剂的富集因子在102 ~ 216之间,该方法的线性范围为5.0 ng/g ~ 200 ng/g,线性相关系数为0.9967 ~ 0.9987,检出限为0.5 ng/g ~1.2 ng/g,相对标准偏差为5.2% ~ 7.2% (n = 5)。加标浓度分别在6.0,20.0和60.0 ng/g时,相对回收率在76.3% ~ 92.5%之间,该方法已成功

中药液膜分离技术的应用及发展

2 液膜分离技术在废水处理中的应用 2.1去除重金属离子 液膜分离技术可以有效地分离并回收废水中的重金属离子。奥地利Graz工业大学的Marr等人采用乳状液液膜分离技术,对去除粘胶废水中的Zn2+、Cu2+、Cd2+、Pb2-、C产、Ni2+等重金属离子作了大量试验。表I为试验结果。 表1从粘胶废水中去除各种剧金属离子的中试结果 重金厲离子废水涼矗 /(L*h-T) 初始厳度 /(mg ? L_ 11 处理肓浓度 /(mu-L-1) 2r严3045004 Z严30500 Zn I+701500,5 Cu i+20SOOO27 3*408003 Ni沖202200360 Cd"60[40 t01 Pb叶6080. 01 Cr3*4015004 从表I中可以看出,除Ni夕卜,其他金属离子的去除率均高于99%,以Zn的去除与回收为例,与溶剂萃取、化学沉淀、离子交换等方法比较,液膜分离法最经济。分离Zn的工艺采用逆流萃取塔和静电聚结破乳装置,内包相使用 DTPA[ ( 2-乙基己基)二硫代磷酸]。回收1 0 0 k g Zn的费用为54.4美元,而市售100 kg Zn为133美元采用液膜法从废水中回收zn具有一定的经济效益。美国Syracuse大学Jongheop Yi采用陶瓷支撑膜分离Cu他们认为,充满有机螫合酸的孔状陶瓷支撑膜,作为分离稀溶液中金属离子的无机支撑膜系统.其性能优于聚合物支撑膜,具有广阔的应用前景。因为聚合物支撑膜对温度、pH敏感,易变形老化,而陶瓷支撑膜正好弥补了聚合物支撑膜的缺点。在分离Cu 2+过程中,陶瓷支撑膜制成a铝/硅片型,其中注入2-羟基-5-壬基乙酰苯。 2 .2分离废水中的有机酸、无机酸 美国科罗拉多矿业大学的Wan gC.C研究了用液膜分离法去除水溶液中的多种

冷诱导分散液—液微萃取与色谱法的联用[文献综述]

毕业论文文献综述 环境工程 冷诱导分散液—液微萃取与色谱法的联用 一、前言部分 2008年9月,国内爆发了三鹿问题奶粉事件,导致数百万名食用含三聚氰胺奶粉的婴幼儿患肾结石等病症住院治疗。国家质检总局在全国紧急开展婴幼儿奶粉三聚氰胺含量专项检查。由于三聚氰胺的含氮量高达66.63%,而目前测定牛奶中含蛋白质的含量是采用食品行业通行的“凯氏定氮法”,即通过测定食品中氮原子的含量而间接推算的方法,因此,三聚氰胺经常被不法生产者和销售商作为“蛋白精”用来提升牛奶中所谓蛋白质含量的指标。三聚氰胺是一种重要的氮杂环有机化工原料,白色无味结晶粉末[1]。这种化学品常被用于生产塑料、胶水和阻燃剂,在部分亚洲国家,它也被用于制造化肥。不易被机体代谢,具有肾毒性与致癌作用。大量动物实验表明,长期摄入三聚氰胺会造成生殖泌尿系统的损害,膀胱,肾结石,尿毒症和慢性肾衰竭,并可进一步诱发膀胱癌,对消费者造成了极大的危害。卫生部等五部门立即颁布了“2008年第25号乳制品及含乳食品中含三聚氰胺临时管理限量值规定”的公告,规定:婴幼儿配方乳粉中三聚氰胺的限量值为1 mg/kg,液态奶(包括原料乳),奶粉及其他配方乳粉中三聚氰胺的限量值为2.5mg/kg。因此,建立快速的检测方法以确保食品的安全十分必要。目前乳制品中三聚氰胺的检测方法主要包括:试剂盒检测法,液相色谱法(LC),液相色谱—质谱法(LC-MS)[2-5],气相色谱法(GC-MS)[6]。选用试剂盒检测法结果容易出现假阳性。LC是目前最常用的测定方法,但由于三聚氰胺属于强极性化合物,其在普通的C18色谱柱上几乎无保留,因此需添加庚烷磺酸钠或者辛烷磺酸钠对试剂以得到较好的保留。GC—MS和LC—MS均可作为三聚氰胺的确证方法,但GC-MS需要衍生化,操作繁琐;由于LC—MS不能使用离子对试剂,因此只能使用一些特殊填料的色谱柱使三聚氰胺得到更好的保留。新颁布的农业部标准NY/T1372.2007建立了HPLC法和GC—MS法。以上方法,存在过程冗长、需要衍生、试剂用量较大及灵敏度低等缺点。 近年来建立了多种新型样品前处理技术,如固相萃取、分子印迹技术、固相微萃取、悬滴液相微萃取、离子液体双水相。这些方法需采用大量的有机溶剂,而有机溶剂本身又会对环境造成污染,因此开发具有有机溶剂用量少、富集效率高的样品处理方法,对于化学工业走

液相微萃取的概念及应用

新科技 新名词 液相微萃取的概念及应用 淡美俊 赵 怡 (国家知识产权局专利审查协作北京中心,北京 100000) 摘 要:液相微萃取是近十几年发展起来的一种新型的样品前处理技术,集采样二萃取和浓缩几个步骤于一体,具有快速二简便二绿色环保等优势,已被广泛应用于各个领域化学分析检测的样品前处理过程三文章对液相微萃取的概念二特点二技术分支及应用进行了介绍三 关键词:液相微萃取,样品前处理中图分类号:N04;O6  文献标识码:A 文章编号:1673-8578(2015)01-0057-03 Concept and Technology of Liquid?Phase Microextraction DAN Meijun ZHAO Yi Abstract :Liquid?phase microextraction (LPME )is a kind of novel sample pretreatment technique that in?tegrates sampling ,extraction and concentration into a single step.LPME has many advantages ,such as rapid ,simple ,convenient ,environment?friendly ,and is widely used in various fields.This paper introduced LPME in the aspects of conception ,features ,technology and application. Keywords :liquid?phase microextraction ,sample preparation 收稿日期:2014-10-21 作者简介:淡美俊(1984 ),女,汉族,硕士,助理研究员,主要从事色谱领域专利审查三通信方式:danmeijun@https://www.360docs.net/doc/f816554581.html,三 引 言 在任何化学分析检测过程中,特别是对于复杂样品中微量/痕量有机成分的分析检测,样品前处理是整个过程中十分重要的一个环节三有报告显示,在一次完整的分析检测过程中,超过80%的时间都被用于样品前处理三迄今为止,各种传统的样品前处理技术多达几十种,最常用的有液液萃取二索氏萃取二超声萃取二蒸馏及固相萃取等三传统的样品前处理技术,样品萃取后还需要进行净化二浓缩富集等多个步骤才能进行分析检测三这些技术往往操作步骤烦琐,过程复杂,处理时间长,而且还 需要使用大量对人体和环境有毒害的有机溶剂,难以实现自动化和分析仪器联用化三因此,开发快速二简便二有机溶剂消耗少二环境污染小的样品前处理技术一直都是分析检测研究领域中的热点三 一 液相微萃取的概念及特点 液相微萃取(liquid?phase microextraction,LPME)是1996年首次开发出的一种新型绿色环保的样品前处理技术三液相微萃取的基本原理是利用分析物和微量萃取溶剂(微升级甚至是纳升级)之间不同的分配系数,实现目标物的萃取富集,整个过程集采样二萃取和浓缩几大步骤于一体三 7 5

液膜分离技术与应用

液膜分离技术与应用 李萍 山西省太原师范学院化学系030031 [摘要]液膜分离技术是一种高效、快速,并能达到专一分离目的的新分离技术,已在废水处理、温法冶金、石油化工等许多领域内显示出极为宽广的应用前景。本文主要对液膜做了概述、介绍了液膜的传质机理、液膜分离技术在处理废水中的应用和液膜分离技术发展趋势。 [关键词] 液膜分离技术传质机理应用发展趋势 1 前言 液膜分离技术(Liquid membrane permeation ,LMP)是利用对混合物各组分渗透性能的差异来实现分离、提纯或浓缩的分离技术,是一种模拟生物膜传质功能的新型分离方法,解决了分离因子、选择性等间题。它是1968年由美国埃克森公司的美籍华人黎念之博士提出的。液膜是指两液相问形成的界面膜,通过它将两种组成不同、但又互相混溶的溶液分开,经选择性渗透,使物质达到分离提纯的目的。液膜分离技术比固体膜分离技术具有高效、快速、选择性强和节能等优越性;比液液萃取具有萃取与反萃取同时进行,分离和浓缩因数高,萃取剂用量少和溶剂流失量少等特点。该法的研制成功,不仅促进了环境分析、石油化工、医药、卫生等各不同领域分离问题的研究,也使分离科学上升到一个新水平。 2概述 2.1 液膜的概念 液膜是悬浮在液体中的一层极薄的膜,这层膜是分隔液-液,气-液,气-气两相的中介相,它是 两相之间进行物质传递的桥梁。通常由膜溶剂,表面活性剂和膜增强添加剂等组分构成[1]。 2.2 液膜的结构与液膜的形成 液膜是一层很薄的液体膜,它可以把两个不同组分的溶液隔开,并且。通过渗透现象起着迁移分离一种或一类物质的作用。当被隔开的两种溶液是水相时,液膜应是油型(油泛指与水不相混溶的有机相);当被隔开的两个溶液是有机相时,液膜应是水型。 水膜和油膜的结构是不相同的,下面着重讨论油膜结构。乳状液型油膜是一个呈球形的液珠,由有机溶剂、表面活性剂和流动载体三部分组成,构成一个与水互不相溶的混合相。有机

绿色化学----浊点萃取和悬浮液滴分散液液微萃取技术在中药及制剂检测中的应用

密级:学校代码:10075 分类号:学号:20090955 理学硕士学位论文 浊点萃取和悬浮液滴分散液液微萃取 技术在中药及制剂检测中的应用 学位申请人: 颜骏景 指导教师: 石志红 教授 学位类别: 理学硕士 学科专业: 分析化学 授予单位: 河北大学 答辩日期: 二〇一二年六月

Classified Index: CODE:10075 U.D.C: NO:20090955 A Dissertation for the Degree of M. S. The Application of the Cloud-point Extraction Method and DLLME-SFO Technique in the Determination of Traditional Chinese Herb and Preparation Candidate: Yan Junjing Supervisor: Prof. Shi Zhihong Academic Degree Applied for: Master of Science Specialty: Analytical Chemistry University: Hebei University Date of Oral Examination: June,2012

摘 要 中药材历史悠久,资源丰富,具有很高的实用价值和丰富的科学内容,是我国医药宝典中的重要组成部分。但近些年因中药材中有害成分的残留影响了中药材的品质,同时阻碍了中药材走进国际市场的脚步,成为中药材发展的瓶颈。为了尽早达到国际贸易的检测和限量标准,建立一套简便、快速、有效的检测技术具有十分重要的意义。 中药制剂的质量控制标准是决定中药制剂能否在国内外顺利发展的重中之重,解决质量控制技术问题迫在眉睫。对中药制剂中多个有效成分的定性、定量检测是使中药制剂的质量控制得到提高的有效方法之一。本文中详细介绍了一种新型的萃取方法,对中药制剂的质量控制标准制定和关键技术问题均能起到指导的作用。 全文共分为三章: 第一章:在参考大量文献的基础上,对中药材中有害物质的前处理方法进行归纳总结,同时对中药制剂质量控制方法进行综述。 第二章:建立了超声辅助-浊点萃取法萃取中药材中多环芳烃并采用高效液相色谱-荧光检测器进行检测。对表面活性剂浓度、超声波辅助提取时间、液固比、盐浓度 以及平衡时间和温度等诸因素进行了优化。五种多环芳烃在0.05-20 ng/mL的 浓度范围内,峰面积对浓度的线性关系良好,相关系数在0.9989-0.9999之间,此方法已成功应用于地黄、板蓝根、黄莲、白芪、黄芩等五种中药材中多环芳 烃残留的检测。相对标准偏差为4.6 %-6.6 %。在最佳条件下对地黄、板蓝根、黄莲、白芪、黄芩五种中药材中多环芳烃的含量进行测定。 第三章:建立了一种新型的悬浮凝固液滴-分散液液微萃取测定复方丹参注射液中丹参酮的新方法。对分散剂和萃取剂的种类和用量以及离心速率和盐效应进行了优 化。在最佳条件下对四种品牌的复方丹参注射液中的丹参酮进行了检测。本方 法具有检出限低、耗用有机溶剂少、萃取时间短、灵敏度高、重现性好、操作 简便等优点。 关键词 HPLC 浊点萃取法 悬浮凝固液滴-分散液液微萃取法 多环芳烃 丹参酮

相关文档
最新文档