力学问题解题方式指导

力学问题解题方式指导
力学问题解题方式指导

高一期末复习资料

几种常见力学问题及解题思路指导

一.解题思路:

①明确研究对象。(对一个物体还是整体?)

②对研究对象进行受力分析和运动情况分析(画出受力分析图和运动过程草图),同时还应该把速度、加速度的方向在受力分析图旁边画出来。

③常见问题及方法选择:

(1)纯运动学问题(只涉及运动不涉及力的问题)用运动学公式即可

(2)静力学问题(平衡问题):三力平衡问题(直接做力的平行四边形,结合三角函数得出结果),三力以上的平衡问题(正交分解法,列F x =0,F y=0两个方程);

(3)动力学问题(既涉及运动又涉及力的问题):若研究对象在不共线的两个力作用下做加速直线运动,一般用平行四边形定则解题;若研究对象在不共线的三个及以上的力

作用下做加速直线运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,一般

情况沿加速度方向取一坐标,如沿x轴方向,则列方程F x =ma,F y=0)。

④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。

⑤对结果进行检验,是否符合物理事实!

解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。

二.例题解析

例题1.如图所示,1、2两细绳与水平车顶的夹角分别为300和600,物体质量为m。

(1)现让小车以向右做匀速直线运动,物体与车保持相对静止,求:绳1、2中弹力的大小?

(2)现让小车以g向右做匀加速直线运动,物体与车仍保持相对静止,求:绳1、2中弹力的大小?

(3)现让小车以2g向右做匀加速直线运动,

设技术连

接地线含线槽

口保

高中资案以

行技

术破

,尤其

高一期末复习资料

物体与车仍保持相对静止,求:绳1中弹力

的大小?下面是一位同学的解法

解:以物体m 为研究对象,受力分析如图,由牛顿第二定律得:

x :T 1cos 300-T 2cos 600=

1y :T 1sin 300 + T 2sin 600 =mg

解得:

你认为该同学的解法正确吗?

如有错误请写出正确的解法.

例题2.如图所示,斜面倾角为37°,重100N 的物块A 放在斜面上,若给重物一个沿斜面向下的速

变式1:接上题,如果给物体施加一个沿斜面向上的拉力使物体沿斜面向上匀速运动,那么这个力

要多大?

变式2:接上题,如果沿斜面向上的拉力为150牛,那么物体从斜面底部由静止开始沿斜面向上运

动5S 后速度多大?如果5S 变式3:接上题,如果用250牛的水平推力推物体

11

2

T )mg =

高一期末复习资料

那么物体从斜面底部由静止开始沿斜面向上运动5S 后

速度多大?

例3. 如图所示,质量m =4kg 的物体与地面间的动摩擦因数为

μ=0.5,在与水平成θ=37°角的恒力F 作用下,(1)如果物体

向右做匀速直线运动,求:F 的大小?(2)如果物体从静止起向右前进x =4.0m 后,速度v 达到

4m/s ,求:F 的大小?若撤此时撤去F 力,问物体在地面还能滑行多远?

例题4 酒后驾车严重威胁交通安全.其主要原因是饮酒后会使人的反应时间(从发现情况到实施操

作制动的时间)变长,造成反制距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h

的速度匀速行驶,刹车时汽车的加速度大小为8 m/s 2,正常人的反应时间为0.5 s ,饮酒人的反

应时间为1.5 s ,试问:

(1)驾驶员饮酒后的反制距离比正常时多几米?

(2)饮酒的驾驶员从发现情况到汽车停止需多少时间?

例题5.今年入冬以来我国北方连降大雪,出现了罕见的雪灾.为了安全行车,某司机在冰雪覆盖

的平直公路上测试汽车的制动性能.他从车上速度表看到汽车速度v =36 km/h 时紧急刹车,由于

车轮与冰雪公路面的摩擦,车轮在公路面上划出一道长L =50 m 的刹车痕后停止,取重力加速度

g =10 m/s 2.求:

(1)车轮与冰雪公路面间的动摩擦因数μ;

(2)该司机驾车以43.2 km/h 的速度在相同的冰雪水平路面上匀速行驶,突然发现前方停着一辆故

障车.若刹车过程司机的反应时间为Δt =0.5 s

,为了避免两车相撞,该司机至少应在距故障车

高一期末复习资料

多远处采取同样的紧急刹车措施?

例题6.2010年初,中国北方地区遭受几十年未遇的雪灾,致使道路交通严重受阻.有一辆载重卡

车,正在结冰的路面上匀速行驶,行驶速度是在正常路面上行驶速度的一半,紧急刹车后行驶的距

离却达到了正常路面紧急刹车行驶距离的2倍.设轮胎与正常路面间的动摩擦因数为μ=0.8,取

g =10 m/s 2,问:

(1)轮胎与结冰路面间的动摩擦因数为多少?

(2)为保证安全,卡车在结冰路面上刹车后行驶的距离不得超过8 m,则卡车在结冰路面上的行驶速

度最大不得超过多少?

例题7.如图7所示,竖直放置的轻质弹簧一端固定在地面上,另

一端与斜面体P 连接,P 与固定挡板MN 接触,且P 处于静止状态,则斜

面体P 此刻受力的个数有可能为

( )A.2个

B.3个

C.4个

D.5个例题8.如图1所示,水平地面上的物体质量为1 kg ,在水平拉力F =2 N 的作用下从静止开始做匀

加速直线运动,前2 s 内物体的位移为3 m ;则物体运动的加速

度大小( )

A .3 m/s 2

B .2 m/s 2

C .1.5 m/s 2

D .0.75 m/s 2

例题9.如图10所示为一攀岩运动员正沿竖直岩壁缓慢攀登,由于身

背较重的行囊,重

心上移至肩部的O 点,总质量为60 kg.此时手臂与身体垂直,手臂与岩壁夹角为

53°.则手受到的拉力和脚受到的作用力分别为(设手、脚受到的作用力均通过重心

O ,g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)

( )

A.360 N 480 N

B.480 N 360 N

C.450 N 800 N

D.800 N 450 N

例题10.一个做匀减速直线运动的物体,经3.0s 速度减为零,若测出它在最后

1.0s 内的位移是1.0m 。那么该物体在这3.0s 内的平均速度是 ( )

A .1.0m/s

B .3.0m/s

C .5.0m/s

D .9.0m/s

例题11.跳伞运动员做低空跳伞表演,当直升飞机悬停在离地面224 m 高时,运动员离开飞机做自由

图7

图1

高一期末复习资料落体运动.运动一段时间后,打开降落伞,展伞后运动员以12.5 m/s2的加速度匀减速下降.为了保证运动员的安全,要求运动员落地速度最大不得超过5 m/s,取g=10 m/s2.试求:(1)运动员展伞时,离地面的高度至少为多少?(2)上述过程运动员在空中运动的时间为多少?

动力学问题的解题思路

动力学问题的解题思路 一.两类问题:(已知运动求力,已知力求运动) 二:3种力 1:重力( 2:弹力:压力和支持力垂直于接触面; 拉力沿绳 弹簧的弹力F=kx (x指弹簧的形变量) 3:摩擦力:动摩擦F= 静摩擦与正压力无关,由运动情况决定,存在最大值 三:3种运动 1:匀变速直线运动(自由落体运动)F恒定,根据F=ma,a也恒定。v与F共线。 例1:火箭内的台秤上放有质量为18kg的测试仪器,火箭从地面起动后,以加速度a=g/2竖直匀加速上升,g=10m/s2试求: (1)火箭刚起动时,测试仪器对台秤的压力是多大? (2)火箭升至地面的高度为地球半径的一半,即h=R/2时,测试仪器对台秤的压力又是多大? 270N,98N 反思: 2:平抛运动(类平抛运动):(水平抛出的物体只在重力作用下的运动) F恒定,根据F=ma,a也恒定。v与F垂直,定性为:匀变速曲线运动 (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动(2)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为…,竖直方向上在相等的时间内相邻的位

移之差是一个恒量。 (3) 平抛运动的规律:描绘平抛运动的物理量有、、、、 、、 、,已知这八个物理量中的任意两个,可以求出其它六个 方向 方向 方向的 3:圆周运动:(必须要向心力) F 不恒定,根据F=ma ,a 也恒定;F 与v 不共线,定性为非匀变速曲线运动 线速度:v= 角速度: 转速n :单位时间里转的圈数。n= 周期T :转一圈所用的时间。 频率f :单位时间完成圆周运动的次数。 常用关系:n=f=1/T 向心加速度 向心力 ① 匀速圆周运动:F 合=F 向,F 合垂直于v ,只改变速度的方向

最新材料力学实验参考教学教材

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

材料力学习题册答案-第13章能量法

第十三章能量法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其(A )。 M A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; 2 M M C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。—_a—一i—_a—一 (图1) 2?图2所示悬臂梁,当单独作用力F时,截面B的转角为θ,若先加力偶M,后加F,则在加F的过程中,力偶M ( C )。 A 不做功; B 做正功; 1 C 做负功,其值为Md ; D 做负功,其值为一Mr。 2 3 ?图2所示悬臂梁,加载次序有下述三种方式:第一种为F、M同时按比例施加;第二种 为先加F ,后加M;第三种为先加M ,后加F。在线弹性范围内,它们的变形能应为(D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F作用。若已知杆的拉压刚度为 μFl EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为,I为杆件长 EA 度。(提示:在杆的轴向施加另一组拉力F。) A0 ; 卩Fb C EA F l M I *] A B C4 (图2) Fb EA D 无法确定。 b:

、计算题 1.图示静定桁架,各杆的拉压刚度均为 EA 相等。试求节点 C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与 P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 L 2 — 2 Pa 2 Pa 2 ” 2 P ] i 一 2 a 2 EA 2 EA 2 EA 可得出:厶C =2 '2 1 Pa EA 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所杆 N i N i I i N i N t J i AB P 1 a Pa BC P 1 a Pa CD 0 0 a 0 BD -Λ∕2P -√2^ √2a 2、''2Pa AD a (2丁2 +2)Pa EA 则C 点水平位移为: 札 J 2 IPa EA EA ,抗弯刚度均为 El 。试求A 截面的铅直位移。 1 P iC 2 2 ?图示刚架,已知各段的拉压刚度均为

动力学问题解题方法

动力学问题解题方法 常兴艳 一. 正交分解法 将矢量分解到直角坐标系的两个轴上,再进行合成,运用牛顿第二定律解答。我们常见 的是力的正交分解,但有些特殊情况下分解加速度更便于解题。 例1. 如图1—1所示,质量m kg =1的小球穿在斜杆上,斜杆与水平方向成θ=30°角, 球与杆间的动摩擦因数为123 ,小球受到竖直向上的拉力F N =20,则小球沿杆上滑的加 速度为多少?(g m s =102/) 图1—1 解析:小球受四个力的作用(如图1—2所示),沿杆的方向和垂直于杆的方向分别为x 、y 轴(如图1—2所示),将各力分解到x 、y 轴上。 图1—2 x 方向:F mg F ma N sin sin θθμ--= y 方向:F mg F N cos cos θθ--=0

解得a F m g m m s = -- = ()(sin cos) ./ θμθ 252 注意:正交分解时,直角坐标系选择哪两个方向,因题而异,但一般应选加速度a所在的直线为一坐标轴方向。 例2. 如图2所示,倾斜索道与水平面夹角为37°,当载人车厢沿钢索匀加速向上运动 时,车厢中的人对厢底的压力为其体重的19 16 倍(车厢底始终保持水平),则车厢对人的摩 擦力是人体重的(sin.cos. 37063708 °;° ==):() A. 1 4 倍; B. 1 3 倍; C. 5 4 倍; D. 4 3 倍 图2 解析:将车厢的加速度a沿水平方向和竖直方向分解,如图2—1所示,分析人受力如 图2—2所示,重力mg竖直向下,支持力F N 竖直向上,静摩擦力F f 水平向右,由牛顿第 二定律得:

材料力学解题指导

材料力学解题指导-晋芳伟 1、图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。 解:由图可见,60z Mpa σ=为主应力 之一。因此,可简化为二向应力状态,且有: 40,20,30x y x y M p a M p a M p a σστ==-=。 于是有: 所以: 601=σMPa , 4.522=σ MPa , 4.323-=σ MPa 2、求如图所示悬臂梁的内力方程,并作剪力图和弯距图,已知P=10KN,M=10KN ·m 。 解:分段考虑: 1、AC 段: (1)剪力方程为:()10(01)Q x KN m x m =?<< (2)弯矩方程为:()10(2)()(0 1 )M x x KN m x m =--?≤≤ 2、CB 段: (1)剪力方程为:()0(12)Q x m x m =<< (2)弯矩方程为:()10(12)M x KN m x m =-?≤≤ 3、内力图如下: max 52.432.4min 4020{2MPa σσ?-=±=?? 21234()5488.8r r Mpa Mpa σσμσσσ=-+===(M x

3、三根圆截面压杆,直径均为d=160mm ,材料为A3钢(E=206Gpa, 240s Mpa σ=, 200p Mpa σ=,304, 1.12a Mpa b Mpa ==),三杆两端均为铰支,长度分别为123 ,,l l l ,且 123245l l l m ===。试求各杆的临界压力。 解:1μ=,三根杆的柔度分别为: 可见:1杆适用欧拉公式,2杆适用经验公式,3杆适用强度公式。 4、已知一受力构件自由表面上某一点处的两个面内主应变分别为:ε1=240?10-6, ε2=–160?10-6,弹性模量E=210GPa ,泊松比为 μ=0.3, 试求该点处的主应力及另一主应变。 所以,该点处为平面应力状态。 1125 l i μλ'==262.5l i μλ''==331.25l i μλ'''= =1100λ==257 s a b σλ-==()22 112 25364cr cr E d F A KN ππσλ==='2 22()47104 cr cr d F A a b KN πσλ''==-=2 3348234 cr cr s d F A KN πσσ===[]1 1 229 62 121010 (2400.3160)1044.3MPa 10.3 E σεμεμ -'∴=+-?=-??=-[]2 2 129 62121010 (1600.3240)1020.3MPa 10.3 E σεμεμ-'∴=+-?=-+??=--12344.3MPa;0;20.3MPa; σσσ∴===-

材料力学实验参考

碳钢与铸铁的拉伸、压缩实验(实验一) 一、目的 1、测定碳钢在拉伸时的屈服极限,强度极限,延伸率和断面收缩率,测定铸铁拉伸时的强度极限。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL曲线)。 3、测定压缩时低碳钢的屈服极限。和铸铁的强度极限。 4、观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。 5、掌握电子万能试验机的原理及操作方法 6、了解液压万能试验机的工作原理及操作方法。 二、设备 微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。 三、拉伸试祥 1.为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L0)与试件直径d。必零满足L0/d0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h直径d的比值在下列范围之内: 1≤≤3 为了保证试件承受轴向压力,加工时应使试件两个端面 尽可能平行,并与试件轴线垂直,为了减少两端面与试验 机承垫之间的摩擦力,试件两端面应进行磨削加工,使其 光滑。 四、实验原理 图2为试验机绘出的碳钢拉伸P-△L曲线图,拉伸变 形ΔL是整个试件的伸长,并且包括机器本身的弹性变形图2

和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B‘受变形速度和试件形式影响,下屈服点B则比较稳定,工程上均以B点对应的载荷作为材料屈服时的载荷P S,以试样的初始横截面积A0除PS,即得屈服极限: 屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A。除P b得强度极限为 延伸率δ及断面收缩率φ的测定,试样的标距原长为L0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L1延伸率应为 断口附近塑性变形最大,所以L1的量取与断口的部位有关,如断口发生于Lο的两端或在Lο 之外,则试验无效,应重做,若断口距L。的一端的距离不在标距长度的中央区域内,要采用 断口移中的办法;以度量试件位断后的标距,设两标点CC1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d起,向右取10/2=5格,记作a,这就相当于把断口摆在标距中央,再看a点到C1点有多少格,就由a点向左取相同的格数,记作b,令Lˊ表示C至b的长度,L’表示b至a的长度,则L′+2L‘′的长度中包含的格数等于标距长度内的格数10,即 L′+2L‘′=L1。 图3 试样拉断后,设颈缩处的最小横截面面积为A1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A1,然后按下式计算断面收缩率: 铸铁试件在变形极小时,就达到最大载荷P b而突然发生断裂。没有屈服和颈缩现象,其强度

初中物理力学经典例题难题

1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 39.解: (1)对杠杆进行受力分析如图1甲、乙所示: 根据杠杆平衡条件: G 甲×OA =T 1×OB (G 甲+G 乙)×OA =T 2×OB 又知OA ∶AB = 1∶2 所以OA ∶OB = 1∶3 N 300010N/kg kg 300=?==g m G 甲甲 N 600N/kg 10kg 60=?==g m G 乙乙 N 0001N 0300311=?==甲G OB OA T N 2001N 03603 1)(2=?= += 乙甲G G OB OA T (1分) (2)以动滑轮为研究对象,受力分析如图2甲、乙所示 因动滑轮处于静止状态,所以: T 动1=G +2F 1,T 动2=G +2F 2 又T 动1=T 1,T 动2=T 2 所以: G G G T F 21N 5002N 1000211-=-=-= (1分) G G G T F 2 1N 6002 N 12002 22- =-= -= (1分) 以人为研究对象,受力分析如图3甲、乙所示。 人始终处于静止状态,所以有: F 人1+ N 1, = G 人, F 人2+N 2, =G 人 因为F 人1=F 1,F 人2=F 2,N 1=N 1, ,N 2=N 2, 且G 人=600N 所以: 图22 甲 乙 图1 T B T 动2 F 2 动1 F 1 人 人1 人2 人 图3 甲 乙

力学问题解题方法指导

几种常见力学问题及解题思路指导 一.解题思路: ①明确研究对象。(对一个物体还是整体?) ②对研究对象进行受力分析和运动情况分析(画出受力分析图和运动过程草图),同时还应该把速度、加速度的方向在受力分析图旁边画出来。 ③常见问题及方法选择: 纯运动学问题(只涉及运动不涉及力的问题)用运动学公式即可 静力学问题(平衡问题):三力平衡问题(直接做力的平行四边形,结合三角函数得出结果),三力以上的平衡问题(正交分解法,列Fx =0,Fy=0两个方程); 动力学问题(既涉及运动又涉及力的问题):若研究对象在不共线的两个力作用下做加速直线运动,一般用平行四边形定则解题;若研究对象在不共线的三个及以上的力作用下做加速直线运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,一般情况沿加速度方向取一坐标,如沿x轴方向,则列方程Fx =ma,Fy=0)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 ⑤对结果进行检验,是否符合物理事实! 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。 二.例题解析 例题1.如图所示,1、2两细绳与水平车顶的夹角分别为300和600,物体质量为m。(1)现让小车以向右做匀速直线运动,物体与车保持相对静止,求:绳1、2中弹力的大小?(2)现让小车以g向右做匀加速直线运动, 物体与车仍保持相对静止,求:绳1、2中弹力 的大小? (3)现让小车以2g向右做匀加速直线运动, 物体与车仍保持相对静止,求:绳1中弹力 的大小?下面是一位同学的解法 解:以物体m为研究对象,受力分析如图,由牛顿第二定律得: x:T1cos300-T2cos600=ma y:T1sin300 + T2sin600 =mg 解得: 你认为该同学的解法正确吗? 如有错误请写出正确的解法. 例题2.如图所示,斜面倾角为37°,重100N的物块A放在斜面上,若给重物一个沿斜面向下的速度,重物沿斜面匀速下滑。求物体与斜面之间的动摩擦因数多大? 变式1:接上题,如果给物体施加一个沿斜面向上的拉力使物体沿斜面向上匀速运动,那么这个力要多大? 变式2:接上题,如果沿斜面向上的拉力为150牛,那么物体从斜面底部由静止开始沿斜面向上运动5S后速度多大?如果5S后撤去拉力,物体沿斜面向上最远能运动多远? 变式3:接上题,如果用250牛的水平推力推物体 那么物体从斜面底部由静止开始沿斜面向上运动5S后

北京交通大学土木工程学院950材料力学考验复习经验之谈

北京交通大学材料力学(950)考研资料经验交流篇 材料力学的复习我觉得有以下四本资料就足够。 第一本是招生目录里规定的教材参考书!《材料力学》高教出版社(第4版)或者《材料力学》西南交大出版社(第4版),分别对应孙训方刘和鸿文的材料力学教材!至于选择哪本教材这是很多人经常问到的问题!个人觉得俩本书都可以,时间够的话最好俩本书都看看!因为从12年最后一道证明题就是刘书能量法那章的一道原题,而13年第一道选择题感觉是孙书里的一道思考题。故俩书都挺重要。但时间不够的话建议选择刘鸿文的材料力学书,因据说北交学生用的是刘书,从我买的课件中也可以看出学校的教学偏于刘书。俩书最大的区别是在做弯矩图时弯矩正负号的规定不同,但这个不影响考试!再者刘书偏于机械而孙书偏于土木,从书本例题和课后习题就可以看出。 第二本书是参考目录指定的《材料力学学习指导》清华出版社北京交通大学出版社(绿皮的),这本书是根据本校老师的上课讲义和课件编写的,故具有很大的参考价值。许多同学在论坛求材料力学的考试大纲(应该没有,至少我没找到,我觉得这本书就可以作为考试的参考大纲,考试内容主要是上册的全部和下册的能量法和动荷载,但是不排除选择填空中考到疲劳等其他不太重要的知识点。但唯一的缺陷是书本山有一定的错误,尤其是前几张,但也不是很多好好研究透这本书,在考试中很有可能遇到选择题或者填空题的原题。 第三本书是你选择的参考书的配套答案,考完材料力学我的第一感觉是什么资料你都可以不要,但必须有教材和相应的答案,指定的教材永远是最重要的,书本上的每到例题、每到思考题、每道课后习题都必须认真的去研究。不要随意的猜测老师会考哪些知识点。去年我就是在看书的过程中觉得关于压杆稳定的证明肯定不会考,但拿到试卷后发现有一道证明题20分就是要求你证明俩端铰支情况下的临界应力的计算公式,当时就懵了,因为压根没看所以基本没动,最后材料力学131,可能就是错了那道题。所以对于材料力学的复习突出重点的条件下对于每个知识点基本都不要放过,尤其是上册,还有重视下证明题的考试,连续俩年考过。

力学中的多过程问题

热点八 力学中的多过程问题 力学中三种重要的运动形式和两种重要解题方法的综合应用 命题特点:多物体、多过程——三种重要运动形式(直线运动、圆周、平抛)的组合、两大解题方法(动力学和功能关系)的应用 此专题为力学综合问题,涉及知识点多,综合性强,以论述和定量计算为主,一般作为高考卷的第一个计算题。题目情景设置一般是匀变速直线运动、平抛运动和圆周运动的综合,涉及较多的过程;涉及几乎所有的力学主干知识和主要的解题方法;难度较大,区分度较大,是考卷中的高档题。 例1.如图所示、四分之一圆轨道OA 与水平轨道AB 相切,它们与另一水平轨道CD 在同一竖直面内,圆轨道OA 的半径R=0.45m ,水平轨道AB 长S 1=3m ,OA 与AB 均光滑。一滑块从O 点由静止释放,当滑块经过A 点时,静止在CD 上的小车在F=1.6N 的水平恒力作用下启动,运动一段时间后撤去F 。当小车在CD 上运动了S 2=3.28m 时速度v=2.4m/s ,此时滑块恰好落入小车中。已知小车质量M=0.2kg ,与CD 间的动摩擦因数μ=0.4。(取g=10m/2s )求 (1)恒力F 的作用时间t . (2)AB 与CD 的高度差h 。 主要涉及的知识点有:运动的等时性,匀速直线运动,匀变速直线运动,平抛运动,牛顿第二定律,机械能守恒定律等。题目的设计背景学生较熟悉,入手容易,涉及到了两个物体五个运动过程,比较繁琐。 【解析】(1)设小车在恒力F 作用下的位移为l ,由动能定理得2212 Fl Mgs Mv μ-= : 由牛顿第二定律得 F M g M a μ-= 由运动学公式得 212l at = 联立以上三式,带入数据得a = 4m/s 2 , 1t s == (2)滑块由O 滑至A 的过程中机械能守恒,即212A mgR mv = AB 段运动时间为11A s t s v === 故滑块离开B 后平抛时间与小车撤掉恒力F 后运动时间相同。 由牛顿第二定律得μMg =Ma′ 由运动学公式得 v=at -a′t′ 由平抛规律得212 h gt = 带入数据得h=0.8m 考生答题中出现的主要错误有: (1)不能确定两个独立运动的物体的等时关系。 (2)对小车的运动过程分析不清,误认为小车在CD 段上一直做匀加速直线运动,将v =2.4m/s 看做是小车的最大速度,求出了加速的时间t =0.6s 。 (3)本题第(1)问采用动能定理的方法可简化解题过程,但不少考生选用了运动学方法,导致运算过程复杂,失分较多。

材料力学例题及解题指导总结

材料力学例题及解题指导 (第二章至第六章) 第二章拉伸、压缩与剪切 例2-1试画出图a直杆的轴力图 解:此直杆在A、B、C、D点承受轴向外力。先求AB段轴力。在段内任一截面1-1处将杆件截开,考察左段(图2-5b)。在截面上设出正轴力2。 由此段的平衡方程ZX = 0得 N L 6= 0, N i =+ 6kN 图2-5 理得CD段内任一截面的轴力都是一4kN。 画内力图,以水平轴x表示杆的截面位置, 的比例尺画出轴力图,如图 N i得正号说明原先假设拉力是正确的,同时也就表明轴力是正的。AB段内任一截面的轴力都等于+6kN。 再求BC段轴力,在BC段任一截面2-2处将杆件截开,仍考察左段(图2-5C),在截面上仍设正的轴力N 2,由ZX= 0得 —6 + 18+ N2 = 0 N2=- 12kN N2得负号说明原先假设拉力是不对的 (应为压力),同时又表明轴力N2是负的。 2-5 (d)所示。由此图可知数值最大的轴力发生在

BC段内任一截面的轴力都等于—12kN。同以垂直x的坐标轴表示截面的轴力,按选定 BC段内。 解题指导:利用截面法求轴力时,在切开的截面上总是设出正轴力N,然后由3X= 0求出轴力N ,如N得正说明是正轴力(拉力),如得负则说明是负轴力(压力)。

例2-3图2-7所示两根圆截面杆材料相同,试计 算两杆的应变能,并比较其大小。 解:a 杆: U a P 2 丨=P 2 l _ 2 2EA 2E 「:d 4 二 2 P l E d 例2-2试求自由悬挂的直杆(图2-6a ) 由 纵向均匀分布荷载 q (力/长度)引起 的应力和纵向变形。设杆长 I 、截面积A 及弹性模量E 均已知。 解:在杆上距下端为 x 处取一任意横 截面m-m ,则该截面轴力为 N (x )= qx , 根据此式可作出轴力图如图 2-6b 所示。 m-m 截面的应力为 (x ) = N (x )/A = qx/A 。 显然,悬挂端有最大轴力 N max = ql 及最 大正应力■- 'max =ql / A 。 段出发。在x 处取微段dx ,其纵向伸长可写为 杆件的总伸长 研究上端固定杆件由于自重引起的伸长时,杆件自身重量就是一种均匀纵向分布力,此 时单位杆长的分布力 q =A1 ,此处 是材料单位体积的重量即容重。将 q 代入上式得到 Al 2 Al I Gl -2EA - 2EA - 2EA 此处G = Al 是整个杆的重量。上式表明等直杆自重引起的总伸长等于全部重量集中于 下端时伸长的一半。 解题指导:对于轴力为变数的杆,利用虎克定律计算杆件轴向变 形时,应分段计算变形,然后代数相加得全杆变形,当轴力是连续函 数时则需利用积分求杆变形。 (b) 图2-6 求杆纵向变形, 由于各横截面上轴力不等, 不能直接应用公式(2-4),而应从长为dx 的微 .:dx 二 N xdx EA i °xdx 二 ql 2EA (a) 杆 7/ (a) 图2-7

物理力学试题类型及其解题技巧及解析

物理力学试题类型及其解题技巧及解析 一、力学 1.使用弹簧测力计时,下列说法中不正确的是: A.所测量的力不能超过测量范围 B.使用前轻轻拉动挂钩来回运动几下 C.使用前应校零 D.使用时弹簧测力计必须竖直拉着 【答案】D 【解析】 A、弹簧测力计的量程是由弹簧的弹性限度决定的,超过这一限度弹簧的伸长与拉力不再成正比,所以是正确的; B、使用前轻轻拉动挂钩是为了防止弹簧、挂钩等与外壳产生摩擦或卡壳,这样会影响正常的测量,所以是正确的; C、使用前应调整指针,使其指在刻度盘的零刻度线上,这样才能保证测量的正确性,所以是正确的; D、弹簧测力计测重力时要竖直拉,测其它力时,则要求拉力方向与弹簧伸长的方向一致,也是为了尽量避免弹簧与外壳的摩擦,所以是错误的. 故选D. 2.列关于弹力的说法中,正确的是() A. 相互接触的物体之间一定存在弹力作用 B. 只有受弹簧作用的物体才受到弹力作用 C. 只有相互接触并发生形变的物体间才存在弹力作用 D. 弹簧的弹力总是跟弹簧的长度成正比 【答案】 C 【解析】【解答】A、相互接触的物体如果不发生弹性形变,物体间不存在弹力作用,故A 不符合题意; B、只要两物体直接接触且发生弹性形变,两物体间就会产生弹力作用,弹力的产生并不只局限于弹簧,故B不符合题意; C、根据产生弹力的条件可知,要产生弹力,物体间相互接触并发生弹性形变,故C符合题意; D、弹性限度内,弹簧的弹力跟弹簧的形变量成正比,故D不符合题意。 故答案为:C 【分析】物体受力且发生弹性形变,在恢复原状时,对接触的物体产生的力,就是弹力。 3.如图所示,金属块P沿竖直墙壁(墙壁粗糙)向上做匀速直线运动,水平向右的力F1(F1>0)将金属块P压向竖直墙壁,竖直向上的力F2沿着墙壁竖直向上拉动金属块P,金属块P所受重力为G,金属块P对竖直墙壁的压力为F3,竖直墙壁对金属块P的压力为

材料力学实验

1,为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2, 分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状, 且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 3,分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏. 4,低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 5,试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 6, 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 7, 试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。 8,测G时为什么必须要限定外加扭矩大小? 答:所测材料的G必须是材料处于弹性状态下所测取得,故必须控制外加扭矩大小。 9, 碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

高中物理“力学”解题的三大思路

高中物理——“力学”解题的三大思路1.力学研究的是物体的受力作用与运动变化的关系,以三条线索(包括五条重要规律)为纽带建立联系,如右表所示: 2.解决动力学问题,一般有三种途径: (1)牛顿第二定律和运动学公式(力的观点); (2)动量定理和动量守恒定律(动量观点); (3)动能定理、机械能守恒定律、功能关系、能的转化和守恒定律(能量观点).以上这三种观点称.三条线索(主要是五条重要规律),俗称求解力学问题的三把“金钥匙” ☆3.三把“金钥匙”的合理选取:

①研究某一物体所受力的瞬时作用与物体运动状态的关系(或涉及加速度)时,一般用力的观点解决问题; ②研究某一物体受到力的持续作用发生运动状态改变时,一般优先选用动量定理,涉及功和位移时优先考虑动能定理; ③若研究的对象为一物体系统,且它们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对路程的则优先考虑能量守恒定律. ④一般来说,用动量观点、 能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点。有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化. 4.解决力学问题的常用程序是: ⑴.确定研究对象,进行运动和受力分析; ⑵.分析物理过程,按特点划分阶段.

⑶.选用相应规律解决不同阶段的问题,列出规律性方程. ⑷.找出关键性问题,挖掘隐含条件,根据具体特点,列出辅助性方程. ⑸.检查未知量个数与方程个数是否匹配. ⑹.解方程组. 【例题展示】 1.滑雪运动员到达高为h的斜坡顶端时速度为v1,如图4所示.已知斜坡倾角为θ,滑雪板与斜坡的摩擦因数为μ.求运动员滑到底端的速度.

浅谈高中力学的解题思路及技巧

龙源期刊网 https://www.360docs.net/doc/f94477009.html, 浅谈高中力学的解题思路及技巧 作者:张万武 来源:《文理导航》2018年第08期 【摘要】力学知识是高中物理学习的基础,同时也是一项重点、难点内容,在每年高考中占有很大比例的考试内容,在实际中也有广泛的应用。所以要不断提高对力学题目的思维能力、解题效率,不仅要充分理解和掌握基础知识、多做练习,还要掌握正确的解题思路和方法技巧。 【关键词】高中力学;解题思路;解题技巧 在高中物理力学知识的学习过程中,大多同学能够完全掌握相关的概念、定律等,然而解题中却不知从何插手,没有解题思路,以至于在考试中大量丢分。所以,提高高中物理力学解题效率的重点是形成力学解题思维能力,对题目有思考的方向后,才能找到正确的解题思路和解题技巧,最终取得满意的成绩。 一、理解解题方法重点,为正确解题提供思路 在大多高中物理力学题目中,一道题目中会有很多相互关联的物体和条件,一些条件直接给出,或者给出了部分条件,还有一些条件是隐含在题目中的,用一些干扰条件影响解决思路,在审题过程中一定要做出很好的区分,确定出哪些条件是解题所需要的,哪些是作为干扰条件存在的,能够推理出题目中隐含的条件,这些都是正确解题的基础。在解题过程中要注意以下几个问题的出现:第一,掌握解题的正确步骤。在进行力学题目的求解过程中,首先对研究对象进行受力分析,得出受力方程,将题目中条件带入其中进行计算,将得出的计算结果做验证;第二,要明白物体的整个运动过程。求解题目之前要想清楚物体是怎样运动的,例如,物体是做匀速运动还是做变速运动,是单个物体进行运动,还是存在多个物体关联运动。能够正确分析出物体的整个运动过程,是正确解题的关键所在;第三,明确物体的运动状态。力学

《理论力学》静力学典型习题+答案

1-3 试画出图示各结构中构件AB的受力图 1-4 试画出两结构中构件ABCD的受力图

1-5 试画出图a和b所示刚体系整体各个构件的受力图 1-5a 1-5b

1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。试求二力F 1和F 2之间的关系。 解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。 解法1(解析法) 假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有: ∑=0x F 045cos 0 2=-BC F F 对C 点有: ∑=0x F 030cos 0 1=-F F BC 解以上二个方程可得:2 2163.13 62F F F ==

解法2(几何法) 分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和 C 点上的力构成封闭的力多边形,如图所示。 对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC = 解以上两式可得:2163.1F F = 2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。试求A 和C 点处的约束力。 解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): 0=∑M 0)45sin(100=-+??M a F A θ a M F A 354.0= 其中:31 tan =θ 。对BC 杆有:a M F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。 2-4 F F

高中物理力学综合题解题技巧

高中物理力学综合题解 题技巧 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高中物理力学综合题解题技巧 一力学综合题的特点 力学综合题是一种含有多个物理过程、多个研究对象、运用到多个物理概念和规律、难度较大的题目。它的特点就在于知识的综合与能力的综合上。综合题的题型可以是计算、证明,又可以是选择、填空、问答。但以计算题为多,故在此着重研究综合计算题。 二、力学综合题求解要领 力学的知识总的来说就是力和运动问题,因而它包含了两大方面的规律:一是物体的受力规律,二是物体的运动规律。 物体的运动是由它的受力情况和初始条件所决定的。由于力有三种作用效果:1、力的即时作用效果——使物体产生加速度(a)或形变,2、力对时间的积累效果——冲量(I);3、力对空间的积累效果——功(W)。所以,加速度a,动量P和功W就是联系力和运动的桥梁。 因而与上述三个桥梁密切相关的知识是:牛顿运动定律、动量知识(包括动量定理和动量守恒定律)、功能知识(包括动能定理和机械能守恒定律),这些知识就是解决力学问题的三大途径。若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同,处理问题的难易、繁简程度可能有很大的差别.若研究对象为一个系统,应优先考虑两大守恒定律,若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理,涉及功和位移问题的应优先考虑动能定理.因为两个守恒定律和两个定理只考查一个物理过程的始末两个状态有关物理量间关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力作用问题,在中学阶段无法用牛顿定律处理时,就更显示出它们的优越性.解题的路子是多种多样的,可有不同的变通和组合,也还会有别的巧妙方法,如图象解题等。只要在实践中积极思考,认真总结,是不断会有所发现和发展的。 具体说,求解力学综合题的要领如下:在认真审题、做好受力分析和运动分析的基础上,选取一个相对比较好的解题途径,而途径的选取,又该如何考虑呢选择的依据如下: 1、题目中如果要求的是始、末状态的量,而它们又满足守恒条件,这时应优先运用守恒定律解题。 2、如问题涉及的除始、末状态外,还有力和它的作用时间,可优先选用动量定理。 3、如问题涉及的除始、末状态外,还有力和受力者的位移,可优先选用动能定理。 4、若题目要求加速度或要列出各物理量在某一时刻的关系式,则只能用牛顿第二定律进行求解。 5、若过程中的力是变力(不能用牛顿第二定律了),而且始末动量不齐(又不能用动量定理),则唯一的解题途径就是应用动能定理,此时变力的功可用“pt”求得。 三、力学综合题的分类 1、以设问的内容来划分,可分为“递进式”和“并进式”。 “递进式”——题目中有两个以上的小问,所问的内容依次深入,问题的难度依次增加,前后问间有密切的牵连,前一问解答的正确与否将直接影响到下一问的解答,这就是“递进式”题型。 “并进式”——题中的各个小问的解答各自独立,彼此并列,互不包含,互不影响,前一问做错了,不影响对后一问的正确解答,这就是“并进式”题型。 2、以内容的综合方式来划分,可分为“积木式”和“混合式”。 “积木式”——题目中包含着前后连贯的两个或两个以上的物理过程,各个过程都遵循本身的规律,前后过程之间又相互牵连。这就是“积木式”题型。 “混合式”——题目中所描述的物理现象包含着几个同时出现的物理过程,它们交织在一起,互相联系,互相制约,互相影响。这就是“混合式”题型。 四、求解动量守恒定律、机械能守恒定律、动能定理、功能关系的综合应用类题目时要注意: 1.认真审题,明确物理过程.这类问题过程往往比较复杂,必须仔细阅读原题,搞清已知条件,判断哪一个过程机械能守恒,哪一个过程动量守恒 2.灵活应用动量、能量关系.有的题目可能动量守恒,机械能不守恒,或机械能守恒,动量不守恒,或者动量在整个变化过程中守恒,而机械能在某一个过程中有损失等,过程的选取要灵活,既要熟悉一定的典型题,又不能死套题

相关文档
最新文档