低温合成和真空技术

低温技术已被称为尖端技术的命脉。另外,低温技术总是和真空技术相伴发展的。低温下,物质会发生性能的奇妙变化。如低温下物质的超导性和完全抗磁性等就是很好的例证。

表2-4 获取低温的主要方法和所达到的温度 6.5~ 4.2~ 634.2 ~ 0.73.2 ~ 0.31.3 ~ 0.60.0021 ~ 0.0011 ~ 0.000001气体部分绝热膨胀的三级G-M 制冷机气体部分绝热膨胀的西蒙氦液化器液体减压蒸发逐级冷冻液体减压蒸发(4He)液体减压蒸发(3He)氦涡流制冷3He 绝热压缩相变制冷3He -4He 稀释制冷绝热去磁~ 15077~ 4.2~ 10~ 4.280.020.012一般半导体致冷

三级级联半导体致冷

气体节流

一般气体做外功绝热膨胀

带氦两相膨胀机气体做外

功绝热膨胀

气体部分绝热膨胀的三级

脉管制冷机

气体部分绝热膨胀的六级

脉管制冷机

气体部分绝热膨胀的二级

沙尔凡制冷机可达温度/K 方法名称可达温度/K 方法名称

2-2-1 低温的获得与测量

1. 低温的获得

实验室中最常用、最普通的低温源。将冰块和盐尽量弄细并充分混合(通常用冰磨将其磨细)可以达到比较低的温度。如:

盐/冰质量比可以达到的温度

NaCl/冰= 1:3 ~ -21℃

NH 4Cl/冰= 1:4 ~ -15.8℃

(NH 4)2SO 4/冰= 2:3 ~ -19℃

CaCl 2/冰= 1:1 ~ -40℃

冰盐体系所能达到的低温,不仅随不同盐类而变化,而且决定于盐冰的比例。

常用

的低温源

为了得到更低的温度,实验室中也常使用冰-酸体系,如:

酸/冰质量比可以达到的温度浓盐酸/冰= 1:1 ~ -37.5℃

浓硫酸/冰= 1:3 ~ -43℃

浓硝酸/冰= 1:2 ~ -56℃

升华点为-78.3℃,也是常用的一种低

温源。用时常加一些有机溶剂,如丙

酮、醇、氯仿等,以改善它的导热性

能。

表2-5 干冰与某些有机溶剂组成冷浴的温度-72-77-78-78-82无水乙醇(C 2H 5OH)乙醚(C 2H 5OC 2H 5)丙酮(C 3H 6O)乙酸戊酯(CH 3COOC 5H 11)一氯甲烷(CH 3Cl)-23-42-46-60-61四氯化碳(CCl 4)乙腈(CH 3CN)环己烷(C 6H 12)氯乙烷(C 2H 5Cl)氯仿(CHCl 3)冷浴温度/℃溶剂

冷浴温度

/℃

溶剂

N 2气液化的温度是-

195.8℃,它是在合成

反应与物化性能实验

中经常用的一种低温

浴。当用于冷浴时,

使用温度最低可达-

205℃(减压过冷液氮

浴)

。也是一种常用的冷浴,沸点是-33.4℃,实际使用的温度可达-45℃。需在具有良好通风设备的房间或装置下使用

可以恒定温度。主要是利用纯物质的

固-液或固-气平衡相变构成温度恒定

;或利用纯物质的沸点作为所恒定的

温度。如CS 2可达-111.6℃,这个温

度是标准气压下CS 2的固-液平衡点

表2-6 常用的固定相变冷浴物质及其达到的温度-95-111.6-126.3-130-160-183-195.8

甲苯CS 2甲基环己烷正戊烷异戊烷液氧液氮0-22.8-33.4-45.6-63.5-78.5-83.6冰+水

CCl 4液氨

氯苯

氯仿

干冰

乙酸乙

酯冷浴温度/℃溶剂冷浴温度/℃低温浴

后三种低温计都可准确测定温度,其测温原理是根据物质的某些物理参量与温度之间存在一定的关系,通过测定这些物理参

量就可以获得欲测的温度

度计水银温度计

碳氢化合物温度计热电偶

热电阻温度计蒸汽压温度计

可测量-30 ~ -200℃,但须常常校订,准确度只能控制在±5℃

热电势(V)与温度(T)之间有如下关系:V = KT 。其中K 为温度系数,是常数。通常在73K <T <

273K 之间,可以通过三个固定温度点来标定热电偶。此时有:V = at + bt 2+ ct 3

这三个固定温度点可以选用冰点(0℃),固态二氧化碳的升华点(-78℃)及液氮正常沸点(-196℃)。通过这三定点测得的电势值及固定点温度值,可以定出a 、b 、c 值。从而可得到热电偶的温度分度依据公式,再通过插入法作出温度分度表。

热电偶的测温范围为2 -300 K

表2-7 一些热电偶的测温范围75 –300

20 –300

2 –3002 –300

4.2 –77

2 -300铜-康铜(Cu60-Ni40)镍铬-康铜镍铬(9:10)-金铁(金+ 0.03或0.07%的原子铁)镍铬-铜铁(铜+ 0.02 或0.5%的原子铁)铜-铜铁钯铬钌测温范围

/K

热电偶名称

是利用感温元件的电阻与温度之间存在一定的关系而制成的。其关系如下:R t = R 0(1 + αt + βt 2+ γt 3)式中R t 、R 0是温度t 及0℃时的电阻值,α、β、γ是常数

。制作电阻温度计时,应

选用电阻较大、性能稳

定、物理及金属复制性

能好的材料,最好选用

电阻与温度间具有线性

关系的材料。

用低温热电偶与电阻温度计测量时,主要的要求是精度、可靠性、重复性和实际温度标定。温度标定使用的热力学温标是1989国际温标。此外,选择温度计时应充分考虑测温范围、要求精度、稳定性、热循环的重复性和对磁场的敏感性,有时还要考虑到布线和读出设备等的费用,最好是用某种温度计测量它本身的最佳适用温度,以及考虑寄生热负载的影响(如沿着导线的热传递和在读出期间的焦耳热)。

图2-30蒸气压温度计

结构示意图

制作方法是:将温度计中的水银首先在真空中加热以除去一些挥发性杂质,然后让其冷却在温度计的末端,最后将温度计的两端封死,并在U型管之间配上标尺以供读数。

真空是泛指低于大气压的气体状态。真空度是对气体稀薄程度的一种客观量度,其值常用气体压强来表示,单位为Pa ,常用单位为Torr ,1Torr = 1mmHg = 133.322 Pa 。

根据气体空间的物理特性、常用真空泵和真空规的有效使用范围及真空技术应用特点可将真空度划分为:

粗真空1.013 ×105–1.33 ×103Pa

低真空1.33 ×103–1.33 ×10-1Pa

高真空1.33 ×10-1–1.33 ×10-6Pa

超高真空1.33 ×10-6–1.33 ×10-12Pa

极高真空< 1.33 ×10-12

Pa

常用的真空泵有:水泵、机械泵和油扩散泵等。此外,采用特殊的吸气剂和冷凝捕集气也可产

生真空。

大气中的He 通过玻璃壁渗入容器的速率为6.65 ×10-11Pa ·S -1,目前,还没有通过人工的方法获得比1.33 ×10-10Pa 更高的真空度

图2-31 常用的获得真空的方法及其适用范围

起始压强临界反压强极限压强抽气速率

真空泵开始工作的压强

真空泵排气口一边所

能达到的最大反压强

给定真空泵能达到的最小压强

一定P、T下,单位时间真空泵从容器中抽除气体的体

测量与压强相关的物理量,

压强刻度需用绝对规校正。

表2-8 一些常用的真空规及其应用范围105

-103

103–1010 –10-610-6 –10-12< 10-12U 型压

力计、薄膜压力计、火花真空计(或检漏器)压缩式真空计、热传导真空规

热或冷阴极电离规

改进型热阴极电离规、磁控规

热或冷阴极磁控规

应用压强范围/Pa

常用真空规真空计或

真空规绝对规相对规直接测量压强

图2-32 麦氏真空规的构造简图

1-测量毛细管;2-比较毛细

管;3-连通管;4-玻璃泡;

5-汞储存器

PVD真空镀膜设备行业分析

目录 (一)PVD真空镀膜技术 (1) (二)真空镀膜技术具体应用领域 (2) (三)行业现状分析 (4) (四)行业市场表现分析 (5) (五)行业竞争格局分析 (6) (六)行业与上下游的关系 (6) (七)行业周期性、区域性、季节性特征 (9) (八)进入本行业的主要障碍 (9) (九)影响行业发展的有利因素和不利因素 (10) (十)行业发展方向 (11) (十一)总结 (12)

PVD真空镀膜机设备行业分析

(一)PVD真空镀膜技术 PVD真空镀膜技术,PVD是Physical Vapor Deposition的缩写,意思是“物理气相沉积”,指在真空条件下,用物理方法使材料沉积在被镀工件上的薄膜制备技术。 PVD(物理气相沉积)技术主要分为三类,真空蒸发镀膜、真空溅射镀膜和真空离子镀膜,三种主要的真空镀膜技术可以满足常生产、生活领域的所有常见基材(塑料、玻璃、金属、薄膜、陶瓷等)的镀膜需要。近十多年来,真空离子镀技术发展最快,已经成为当代最先进的表面处理方法之一。 PVD镀膜技术种类表 类型介绍 蒸发镀膜加热靶材使表面组分以原子团或离子形式被蒸发出来,并且沉降在基片表面,通过成膜过程(散点-岛状结构-迷走结构-层状生长)形成薄膜。 溅射镀膜利用电子或高能激光轰击靶材,并使表面组分以原子团或离子形式被溅射出来,并且最终沉积在基片表面,经历成膜过程,最终形成薄膜。 离子镀膜离子镀是在真空蒸发镀和溅射镀膜的基础上发展起来的一种镀膜新技术,将各种气体放电方式引入到气相沉积领域,整个气相沉积过程都是在等离 子体中进行。 其他如真空卷绕镀膜是一种利用物理气相沉积的方法在柔性基体上连续镀膜的技术,以实现柔性基体的一些功能性、装饰性属性。 需要镀膜的被称为基片,镀的材料被称为靶材,基片与靶材同在真空腔中。蒸发镀膜是加热靶材使表面组分以原子团或离子形式被蒸发出来,并且沉降在基片表面,通过成膜过程(散点-岛状结构-迷走结构-层状生长)形成薄膜。溅射类镀膜,可以理解为利用电子或高能激光轰击靶材,并使表面组分以原子团或离子形式被溅射出来,并且最终沉积在基片表面,经历成膜过程,最终形成薄膜。离子镀是在真空蒸发镀和溅射镀膜的基础上发展起来的一种镀膜新技术,将各种气体放电方式引入到气相沉积领域,整个气相沉积过程都是在等离子体中进行的。离子镀大大提高了膜层粒子能量,可以获得更优异性能的膜层,扩大了“薄膜”的应用领域,是一项发展迅速、受人青睐的新技术。广义来讲,离子镀膜的特点是:镀膜时,工件(基片)带负偏压,工件始终受高能离子的轰击,形成膜层的膜基结合力好、膜层的绕

真空镀膜的现状与发展趋势

真空镀膜的现状与发展趋势 发布日期:2010-07-17 <<返回前一页 -------------------------------------------------------------------------------- 薄膜是一种物质形态,它所使用的膜材料非常广泛,可以是单质元素或化合物,也可以是无机材料或有机材料。薄膜与块状物质一样,可以是单晶态的,多晶态的或非晶态的。近年来功能材料薄膜和复合薄膜也有很大发展。镀膜技术及薄膜产品在工业上的应用非常广泛,尤其是在电子材料与元器件工业领域中占有及其重要的地位。 镀膜方法可以分为气相生成法,氧化法,离子注入法,扩散法,电镀法,涂布法,液相生长法等。气相生成法又可分为物理气相沉积法,化学气相沉积法和放电聚合法等。 真空蒸发,溅射镀膜和离子镀等通常称为物理气相沉积法,是基本的薄膜制备技术。它们都要求淀积薄膜的空间要有一定的真空度。所以,真空技术是薄膜制作技术的基础,获得并保持所需的真空环境,是镀膜的必要条件。 真空系统的种类繁多。在实际工作中,必须根据自己的工作重点进行选择。典型的真空系统包括:获得真空的设备(真空泵),待抽空的容器(真空室),测量真空的器具(真空计)以及必要的管道,阀门和其它附属设备。 1.真空蒸发镀膜法 真空蒸发镀膜法是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。真空蒸发镀膜又可以分为下列几种: 1.1 电阻蒸发源蒸镀法 采用钽,钼,钨等高熔点金属,做成适当形状的蒸发源,其上装入待蒸发材料,让气流通过,对蒸发材料进行直接加热蒸发,或者把待蒸发材料放入氧化铝,氧化铍等坩锅中进行间接加热蒸发,这就是电阻加热蒸发法。 利用电阻加热器加热蒸发的镀膜机结构简单,造价便宜,使用可靠,可用于熔点不太高的材料的蒸发镀膜,尤其适用于对镀膜质量要求不太高的大批量的生产中,迄今为止,在镀铝制镜的生产中仍然大量使用着电阻加热蒸发的工艺。 电阻加热方式的缺点是:加热所能达到的最高温度有限,加热器的寿命液较短。近年来,为了提高加热器的寿命,国内外已采用寿命较长的氮化硼合成的导电陶瓷材料作为加热器。据日本专利报道,可采用20%~30%的氮化硼和能与其相熔的耐火材料所组成的材料来制作坩锅,并在表面涂上一层含62%~82%的锆,其余为锆硅合金材料。 1.2 电子束蒸发源蒸镀法 将蒸发材料放入水冷钢坩锅中,直接利用电子束加热,使蒸发材料气化蒸发后凝结在基板表面成膜,是真空蒸发镀膜技术中的一种重要的加热方法和发展方向。电子束蒸发克服了一般电阻加热蒸发的许多缺点,特别适合制作熔点薄膜材料和高纯薄膜材料。 依靠电子束轰击蒸发的真空蒸镀技术,根据电子束蒸发源的形式不同,又可分为环形枪,直枪,e型枪和空心阴极电子枪等几种。 环形枪是由环形的阴极来发射电子束,经聚焦和偏转后打在坩锅内使金属材料蒸发。它的结构较简单,但是功率和效率都不高,基本上只是一种实验室用的设备,目前在生产型的装置中已经不再使用。 直枪是一种轴对称的直线加速枪,电子从灯丝阴极发射,聚成细束,经阳极加速后打在坩锅中使镀膜材料融化和蒸

真空镀膜试验

真空镀膜实验 一、 实验目的 真空镀膜技术广泛地应用在现代工业和科学技术中,光学仪器的反射镜,增透镜,激光器谐振腔的高反射膜,计算机上存储和记忆用的磁性薄膜,以及材料表面的超硬薄膜。此外在电子学、半导体等其它各尖端学科也都采用了真空技术。 本实验的目的是学习真空蒸发镀膜技术。通过本门实验,要求学生掌握如下几点:①较系统了解真空镀膜仪器的结构;②了解真空系统各组件的功能;③了解石英晶体振荡器测厚原理;④掌握真空蒸镀的基本原理;⑤了解真空镀膜仪器的基本操作。 二、预习要求 要求学生在实验之前对真空系统有一定了解,可以通过以下几本相关书籍获得相关信息。《薄膜材料制备原理、技术及应用》—— 唐伟忠著,冶金工艺出版社出版社;《薄膜物理与技术》—— 杨邦朝,王文生编著,电子科学出版社;《薄膜技术》—— 王力衡,清华大学出版社;《薄膜技术》—— 顾培夫,浙江大学出版社;《真空技术物理基础》—— 张树林,东北工学院出版社;《真空技术》—— 戴荣道,电子工业出版社。 三、实验所需仪器设备 实验过程需要的主要设备为DMDE 450型光学多层镀膜机。 真空镀膜机:本实验使用DMDE-450光学多层镀膜机,其装置结构如图3所示。它主要由真空系统、蒸发设备及膜厚监控系统组成。真空系统由各种真空器件组成,主要包括:真空室;真空泵(机械泵、和分子泵);真空导管;各种真空阀门和测量真空度的真空计等。高真空阀门为碟式,机械泵与分子泵的连通阀门为三同式,将阀门拉出时,机械泵可以直接对镀膜室抽气,推入时机械泵与分子泵连通,同时也切断了机械泵与镀膜室的连接。 蒸发系统由真空钟罩,蒸发电极(共有二对), 活动挡板,蒸发源,底盘等组成。蒸发源安装在电 图3镀膜机装置图 1电离管 2高真空碟阀 3分子泵 4机械泵 5低真空磁力阀 6储气桶 7低真空三同阀 8磁力充气阀 9热偶规 10钟罩 11针型阀

真空镀膜技术

真空镀膜技术 磁控溅射膜即物理气相沉积(PVD) 金属镀膜不一定用磁控溅射,可以根据成本&工艺需求选择合理的沉积方法,具体有: 物理气相沉积(PVD)技术 第一节概述 物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。

真空镀膜工艺流程

真空镀膜工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

真空镀膜工艺流程 一、真空镀膜的工艺流程大致可用以下的方框图表示: 二、具体说明如下: 1、表面处理:通常,镀膜之前,应对基材(镀件)进行除油、除尘等预处理,以保证镀件的整洁、干燥,避免底涂层出现麻点、附着力差等缺点。对于特殊材料,如PE(聚乙烯)料等,还应对其进行改性,以达到镀膜的预期效果。 2、底涂:底涂施工时,可以采用喷涂,也可采用浸涂,具体应视镀件大小、形状、结构及用户设备等具体情况及客户的质量要求而定。采用喷涂方法,可采用SZ-97T镀膜油;采用浸涂方法,可采用SZ-97、SZ-97+1等油,具体应视镀件材料而定。 3、底涂烘干:SZ-97镀膜油系列均为自干型漆,烘干的目的是为了提高生产效率。通常烘干的温度为60-70oC,时间约2小时。烘干完成的要求是漆膜完全干燥。 4、镀膜:镀膜时,应保证镀膜机的真空度达到要求后,再加热钨丝,并严格控制加热时间。同时,应掌握好镀膜用金属(如铝线)的量,太少可能导致金属膜遮盖不住底材,太多则除了浪费外,还会影响钨丝寿命和镀膜质量。 5、面涂:通常面涂的目的有以下两个方面:A、提高镀件的耐水性、耐腐蚀性、耐磨耗性;B、为水染着色提供可能。SZ-97油系列产品均可用于面涂,若镀件不需着色,视客户要求,可选用911、911-1哑光油、889透明油、910哑光油等面油涂装。 6、面涂烘干:通常面涂层较底涂层薄,故烘干温度较低,约50-60oC,时间约1~2小时,用户可根据实际情况灵活把握,最终应保证面涂层彻底干燥。如果镀件不需着色,则工序进行到此已经结束。 7、水染着色:如果镀件需要进行水染着色,则可将面漆已经烘干的镀件放进染缸里,染上所需颜色,之后冲洗晾干即可。染色时要注意控制水的温度,通常在 60~80oC左右,同时应控制好水染的时间。水染着色的缺点是容易褪色,但成本较低。

离子镀膜 (PVD ) 技术和设备常见问题解答

离子镀膜(PVD ) 技术和设备常见问题解答 Q1: 请问什么是PVD? A1: PVD是英文Physical Vapor Deposition的缩写,中文意思是“物理气相沉积”,是指在真空条件下,用物理的方法使材料沉积在被镀工件上的薄膜制备技术。 Q2: 请问什么是PVD镀膜?什么是PVD镀膜机? A2: PVD(物理气相沉积)技术主要分为三类,真空蒸发镀膜、真空溅射镀膜和真空离子镀膜。相对于PVD技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机。 近十多年来,真空离子镀技术的发展是最快的,它已经成为了当代最先进的表面处理方法之一。我们通常所说的PVD镀膜,指的就是真空离子镀膜;通常所说的PVD镀膜机,指的也就是真空离子镀膜机。 Q3: 请问PVD镀膜的具体原理是什么? A3: 离子镀膜(PVD镀膜)技术,其原理是在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质电离,在电场的作用下,使被蒸发物质或其反应产物沉积在工件上。 Q4: 请问PVD镀膜与传统的化学电镀(水电镀)相比有何优点? A4: PVD镀膜与传统的化学电镀的相同点是,两者都属于表面处理的范畴,都是通过一定的方式使一种材料覆盖在另一种材料的表面。 两者的不同点是:PVD镀膜膜层与工件表面的结合力更大,膜层的硬度更高,耐磨性和耐腐蚀性更好,膜层的性能也更稳定;PVD镀膜可以镀的膜层的种类更为广泛,可以镀出的各种膜层的颜色也更多更漂亮;PVD镀膜不会产生有毒或有污染的物质。 Q5: 请问PVD镀膜能否代替化学电镀? A5: 在现阶段,PVD镀膜是不能取代化学电镀的,并且除了在不锈钢材料表面可直接进行PVD镀膜外,在很多其他材料(如锌合金、铜、铁等)的工件上进行PVD镀膜前,都需要先对它们进行化学电镀Cr(铬)。PVD镀膜主要应用在一些比较高档的五金制品上,对那些价格较低的五金制品通常也只是进行化学电镀而不做PVD镀膜。 Q6: 请问采用PVD镀膜技术镀出的膜层有什么特点? A6: 采用PVD镀膜技术镀出的膜层,具有高硬度、高耐磨性(低摩擦系数)、很好的耐腐蚀性和化学稳定性等特点,膜层的寿命更长;同时膜层能够大幅度提高工件的外观装饰性能。 Q7: 请问PVD能在镀在什么基材上? A7: PVD膜层能直接镀在不锈钢以及硬质合金上,对锌合金、铜、铁等压铸件应先进行化学电镀铬,然后才适合镀PVD。 Q8: 请问PVD镀膜能够镀出的膜层种类有那些? A8: PVD镀膜技术是一种能够真正获得微米级镀层且无污染的环保型表面处理方法,它能够

真空镀膜技术的现状及发展

真空镀膜技术的现状及发展 薄膜是一种物质形态,它所使用的膜材料非常广泛,可以是单质元素或化合物,也可以是无机材料或有机材料。薄膜与块状物质一样,可以是单晶态的,多晶态的或非晶态的。近年来功能材料薄膜和复合薄膜也有很大发展。镀膜技术及薄膜产品在工业上的应用非常广泛,尤其是在电子材料与元器件工业领域中占有及其重要的地位。 镀膜方法可以分为气相生成法,氧化法,离子注入法,扩散法,电镀法,涂布法,液相生长法等。气相生成法又可分为物理气相沉积法,化学气相沉积法和放电聚合法等。 真空蒸发,溅射镀膜和离子镀等通常称为物理气相沉积法,是基本的薄膜制备技术。它们都要求淀积薄膜的空间要有一定的真空度。所以,真空技术是薄膜制作技术的基础,获得并保持所需的真空环境,是镀膜的必要条件。 真空系统的种类繁多。在实际工作中,必须根据自己的工作重点进行选择。典型的真空系统包括:获得真空的设备(真空泵),待抽空的容器(真空室),测量真空的器具(真空计)以及必要的管道,阀门和其它附属设备。 1 真空蒸发镀膜法 真空蒸发镀膜法是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。真空蒸发镀膜又可以分为下列几种: 1.1 电阻蒸发源蒸镀法 采用钽,钼,钨等高熔点金属,做成适当形状的蒸发源,其上装入待蒸发材料,让气流通过,对蒸发材料进行直接加热蒸发,或者把待蒸发材料放入氧化铝,氧化铍等坩锅中进行间接加热蒸发,这就是电阻加热蒸发法。

利用电阻加热器加热蒸发的镀膜机结构简单,造价便宜,使用可靠,可用于熔点不太高的材料的蒸发镀膜,尤其适用于对镀膜质量要求不太高的大批量的生产中,迄今为止,在镀铝制镜的生产中仍然大量使用着电阻加热蒸发的工艺。 电阻加热方式的缺点是:加热所能达到的最高温度有限,加热器的寿命液较短。近年来,为了提高加热器的寿命,国内外已采用寿命较长的氮化硼合成的导电陶瓷材料作为加热器。据日本专利报道,可采用20%~30%的氮化硼和能与其相熔的耐火材料所组成的材料来制作坩锅,并在表面涂上一层含62%~82%的锆,其余为锆硅合金材料。 1.2 电子束蒸发源蒸镀法 将蒸发材料放入水冷钢坩锅中,直接利用电子束加热,使蒸发材料气化蒸发后凝结在基板表面成膜,是真空蒸发镀膜技术中的一种重要的加热方法和发展方向。电子束蒸发克服了一般电阻加热蒸发的许多缺点,特别适合制作熔点薄膜材料和高纯薄膜材料。 依靠电子束轰击蒸发的真空蒸镀技术,根据电子束蒸发源的形式不同,又可分为环形枪,直枪,e型枪和空心阴极电子枪等几种。 环形枪是由环形的阴极来发射电子束,经聚焦和偏转后打在坩锅内使金属材料蒸发。它的结构较简单,但是功率和效率都不高,基本上只是一种实验室用的设备,目前在生产型的装置中已经不再使用。 直枪是一种轴对称的直线加速枪,电子从灯丝阴极发射,聚成细束,经阳极加速后打在坩锅中使镀膜材料融化和蒸发。直枪的功率从几百瓦至几百千瓦的都有,有的可用于真空蒸发,有的可用于真空冶炼。直枪的缺点是蒸镀的材料会污染枪体结构,给运行的稳定性带来困难,同时发射灯丝上逸出的钠离子等也会引起膜层的污染,最近由西德公司研究,在电子束的出口处设置偏转磁场,并在灯丝部位制成一套独立的抽气系统而做成直枪的改进形式,不但彻底干便了灯丝对膜的污染,而且还有利于提高枪的寿命。

7-0真空技术基础知识

第七单元真空技术 7-0真空技术基础知识 “真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。真空的发现始于1643,那 年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa的极高真空。 在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。 一、真空物理基础 1. 真空的表征 表征真空状态下气体稀薄程度的物理量称为真空度。单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。 在SI单位制中,压强单位为牛顿/米2( N/m 2): 2 1 牛顿/米=1 帕斯卡(Pascal), (7-0-1) 帕斯卡简称为帕(Pa),由于历史原因,物理实验中常用单位还有托( Torr)。 1 标准大气压(atm) =1.0135 K05(Pa), 1托=1/760标准大气压(7-0-2) 1托=133.3帕斯卡 习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014 )托。各种单位之间的换算关系见附表7-1 2. 真空的划分 真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。通常可分为: 低真空(103 ~10 1Pa)、高真空(10 1 ~ 10 6Pa)、超高真空(10-6 ~ 10-10Pa )和极高真空 (低于10 10Pa )。 20世纪70年代进一步提高到的宽达20个数量级的真空度范围,并随着某些新技术、新材料、新 工艺的应用和开拓,将进一步接近理想的真空状态。 3. 描述真空物理性质的主要物理参数 (1)分子密度:用于表示单位体积内的平均分子数。气体压强与密度的关系为 p nkT (7-0-3) 其中n为分子密度,k为玻耳兹曼常数,T为气体温度。 (2)气体分子平均自由程:平均自由程是指气体分子在连续两次碰撞的间隔时间里所通过的平均 距离。对同一种气体分子的平均自由程为 (7-0-4)

第一章_真空技术基础

第一章真空技术基础 本章主要内容: 1. 真空的基本知识 2. 真空的获得 3. 真空的测量 4. 稀薄气体的基本性质 5. 真空配件、检测 1

§1-1 气体与真空 Air, as a gas, is composed of molecules that you can imagine as round elastic balls. Molecules move in straight lines until they collide with neighboring molecules or the container wall.

THE ATMOSPHERE IS A MIXTURE OF GASES PARTIAL PRESSURES OF GASES CORRESPOND TO THEIR RELATIVE VOLUMES GAS SYMBOL PERCENT BY VOLUME PARTIAL PRESSURE TORR PASCAL Nitrogen N 27859379,000 Oxygen O 22115821,000 Argon Ar0.937.1940 Carbon Dioxide CO 20.030.2533 Neon Ne0.0018 1.4 x 10-2 1.8 Helium He0.0005 4.0 x 10-3 5.3 x 10-1 Krypton Kr0.00018.7 x 10-4 1.1 x 10-1 Hydrogen H 20.00005 4.0 x 10-4 5.1 x 10-2 Xenon Xe0.0000087 6.6 x 10-58.7 x 10-3 Water H 2 O Variable 5 to 50665 to 6650

7-0_真空技术基础知识.

第七单元 真空技术 7-0 真空技术基础知识 “真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。真空的发现始于1643,那年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa 的极高真空。 在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。 一、真空物理基础 1. 真空的表征 表征真空状态下气体稀薄程度的物理量称为真空度。单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。 在SI 单位制中,压强单位为 牛顿/米2 (N/m 2): 1牛顿/米2 =1帕斯卡(Pascal ), (7-0-1) 帕斯卡简称为帕(Pa ),由于历史原因,物理实验中常用单位还有托(Torr )。 1标准大气压(atm )=1.0135×105(Pa), 1托=1/760标准大气压 (7-0-2) 1托=133.3帕斯卡 习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014)托。各种单位之间的换算关系见附表7-1 2. 真空的划分 真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。通常可分为: 低真空(Pa 10~101 3 -)、高真空(Pa 10~1061 --)、超高真空(Pa 10~10-10 -6)和极高真空 (低于Pa 10 10 -)。 20世纪70年代进一步提高到的宽达20个数量级的真空度范围,并随着某些新技术、新材料、新 工艺的应用和开拓,将进一步接近理想的真空状态。 3. 描述真空物理性质的主要物理参数 (1)分子密度:用于表示单位体积内的平均分子数。气体压强与密度的关系为 nkT p = (7-0-3) 其中n 为分子密度,k 为玻耳兹曼常数,T 为气体温度。 (2)气体分子平均自由程:平均自由程是指气体分子在连续两次碰撞的间隔时间里所通过的平均距离。对同一种气体分子的平均自由程为 p kT 2 2πσλ= (7-0-4)

真空镀膜设备项目合作计划书

真空镀膜设备项目合作计划书 规划设计/投资分析/产业运营

摘要说明— 真空镀膜是指在真空环境下,将某种金属或金属化合物以气相的形式 沉积到材料表面(通常是非金属材料),属于物理气相沉积工艺(PVD)。 因为镀层常为金属薄膜,故也称真空金属化。广义的真空镀膜还包括在金 属或非金属材料表面真空蒸镀聚合物等非金属功能性薄膜。 该真空镀膜设备项目计划总投资18780.30万元,其中:固定资产投资14432.45万元,占项目总投资的76.85%;流动资金4347.85万元,占项目 总投资的23.15%。 达产年营业收入36807.00万元,总成本费用27866.37万元,税金及 附加376.87万元,利润总额8940.63万元,利税总额10550.69万元,税 后净利润6705.47万元,达产年纳税总额3845.22万元;达产年投资利润 率47.61%,投资利税率56.18%,投资回报率35.70%,全部投资回收期 4.30年,提供就业职位706个。 报告内容:项目概况、投资背景及必要性分析、项目调研分析、项目 建设方案、项目建设地方案、土建工程说明、项目工艺技术、项目环境影 响分析、安全保护、项目风险、项目节能概况、实施进度、投资方案说明、项目经济效益分析、总结评价等。 规划设计/投资分析/产业运营

真空镀膜设备项目合作计划书目录 第一章项目概况 第二章投资背景及必要性分析第三章项目建设方案 第四章项目建设地方案 第五章土建工程说明 第六章项目工艺技术 第七章项目环境影响分析 第八章安全保护 第九章项目风险 第十章项目节能概况 第十一章实施进度 第十二章投资方案说明 第十三章项目经济效益分析 第十四章招标方案 第十五章总结评价

真空技术基础知识

真空技术基础知识

前言 1. 真空 “真空”来源于拉丁语“Vacuum ”,原意为“虚无”,但绝对真空不可达到,也不存在。只能无限的逼近。即使达到10-14—10-16托的极高真空,单位体积内还有330—33个分子。 在真空技术中,“真空”泛指低于该地区大气压的状态,也就是同正常的大气比,是较为稀薄的气体状态。真空是相对概念,在“真空”下,由于气体稀薄,即单位体积内的分子数目较少,故分子之间或分子与其它质点(如电子、离子)之间的碰撞就不那么频繁,分子在一定时间内碰撞表面(例如器壁)的次数亦相对减少。这就是“真空”最主要的特点。利用这种特点可以研究常压不能研究的物质性质。如热电子发射、基本粒子作用等。 2. 真空的测量单位 一、用压强做测量单位 真空度是对气体稀薄程度的一种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分子数。但是由于分子数很难直接测量,因而历来真空度的高低通常都用气体的压强来表示。气体的压强越低,就表示真空度越高,反之亦然。 根据气体对表面的碰撞而定义的气体的压强是表面单位面积上碰撞气体分子动量的垂直分量的时间变化率。因此,气体作用在真空容器表面上的压强定义为单位面积上的作用力。 压强的单位有相关单位制和非相关单位制。相关单位制的各种压强单位均根据压强的定义确定。非相关单位制的压强单位是用液注的高度来量度。 下面介绍几种常用的压强单位。 【标准大气压】(atm ) 1标准大气压=101325帕 【托】(Torr ) 1托=1/760标准大气压 【微巴】(μba ) 1μba=1达因/厘米2 【帕斯卡】(Pa )国际单位制 1帕斯卡=1牛顿/m2 【工程大气压】(at ) 1工程大气压=1公斤力/厘米2 二、用真空度百分数来测量 %100760 760%?-=P δ 式中P 的单位为托,δ为真空度百分数。此式适用于压强高于一托时。 3. 真空区域划分 有了度量真空的单位,就可以对真空度的高低程度作出定量表述。此外,为实用上便利起见,人们还根据气体空间的物理特性、常用真空泵和真空规的有效使用范围以及真空技术应用特点这三方面的差异,定性地粗划为几个区段。但这种划分并不是十分严格的,下面介绍一种划分方法。 粗真空<760~10托 低真空<10~10-3托 高真空<10-3~10-8托 超高真空<10-8~10-12托 极高真空<10-12托

真空镀膜设备的研究进展及展望

龙源期刊网 https://www.360docs.net/doc/fd2242548.html, 真空镀膜设备的研究进展及展望 作者:李超王鹏飞刘中博 来源:《中国科技博览》2013年第33期 [摘要] 近年来,随着人们对表面工程的追求,表面工程这门新兴学科在国内外得到了很 好的运用,实践证明,镀膜的运用使设备、工具的表面性能得到了有效的提高,提高了生产力,节约了能源。本文主要对几类新型工具镀膜技术的基本原理和特点进行了概述,同时针对我国的可持续发展,发展绿色环保型镀膜技术,对进一步开发新型镀膜技术设备提出了几点供人们思考。 [关键词] 多功能;真空;离子镀;多层镀;绿色环保; 中图分类号:O6-335 前言:随着人类文明的进步和人类认识的提高,工具镀膜,作为离子镀膜技术的一项很主要的应用,其重要性已逐渐被人们所认知,随着镀膜设备的应用和发展,镀膜技术收到了非常好的效果,同时也对取代污染严重的传统水电镀技术研究拓宽了新的思路。如何更好地推进工具镀膜各项技术的发展,也对人们提出了新的要求和挑战,同时也对这项应用技术的发展有了更多方面的想象和思考。 一、新型工具镀膜设备技术的发展 1、多层复合真空离子镀膜设备 进入90年代以来,随着多弧—磁控溅射多功能镀膜设备的研制成功,为后来多层复合真空离子镀膜技术的应用和发展打下了良好的基础,随着社会的不断发展以及人们对镀膜要求认识的不断提高,多层复合镀膜技术应用于产品更加被人们所重视,通过利用TiN良好的韧性来作为过度间隔层,将原有的结构由单层变成多层,提高了镀层的耐磨性和耐腐蚀性,同时在符合真空离子镀膜的技术中改进了原有多弧—磁控溅射所存在的问题,在多层复合真空离子镀膜的运用过程中,不仅保持了原有多弧技术离化率高、沉积速率大的特点,同时避免了原有工艺中“液滴”的缺陷。 2、真空蒸发镀膜设备 真空蒸发镀膜,顾名思义,就是在真空状态下将待镀材料加热后,达到一定的温度使其蒸发而以分子或原子的形态进入空间来达到镀膜的目的。真空镀膜均匀、附着力强,工具的机械性能和化学性能得到了提高,同时膜的纯度非常高、密实性好、表面光亮,大大提高了产品的产量。 3、真空磁控溅射设备

真空镀膜工艺简介

真空镀膜工艺资料 真空:低于一个大气压的气体状态。1643年,意大利物理学家托里拆利(E.Torricelli)首创著名的大气压实验,获得真空。自然真空:气压随海拔高度增加而减小,存在于宇宙空间。人为真空:用真空泵抽掉容器中的气体。 真空量度单位 1标准大气压=760mmHg=760(Torr) 1标准大气压=1.013x105 Pa 1Torr=133.3Pa 真空区域的划分 目前尚无统一规定,常见的划分为: 粗真空105-103pa(760-10Torr) 低真空103-10-1pa(10-10-3Torr) 高真空10-1-10-6pa(10-3-10-8Torr) 超高真空10-6-10-10pa(10-8-10-12Torr) 极高真空<10-10pa(<10-12Torr) 真空技术的应用 电子技术、航空航天技术、加速器、表面物理、微电子、材料科学、医学、化工、工农业生产、日常生活等各个领域。 真空获得—真空泵:1654年,德国物理学家葛利克发明了抽气泵,做了著名的马德堡半球试验。原理:当泵工作后,形成压差,p1 >p2,实现了抽气。 真空泵的分类 气体传输泵: 是一种能将气体不断地吸入并排出泵外以达到抽气目的的真空泵,例如旋片机械泵、油扩散泵、涡轮分子泵。 气体捕集泵: 是一种使气体分子短期或永久吸附、凝结在泵内表面的真空泵,例如分子筛吸附泵、钛升华泵、溅射离子泵、低温泵和吸气剂泵。 真空泵的主要参数 抽气速率: 定义为在泵的进气口任意给定压强下,单位时间内流入泵内的气体体积 其中,Q为单位时间内流入泵的气体量。泵的抽气速率S并不是常数,随P而变。

极限压强:P n(极限真空) 最高工作压强:P m 工作压强范围(P n-P m):泵能正常工作的压强范围 几种常用真空泵的工作压强范围: 旋片机械泵105-10-2pa 吸附泵105-10-2pa 扩散泵100-10-5pa 涡轮分子泵101-10-8pa 溅射离子泵100-10-10pa 低温泵10-1-10-11pa 几种常用真空泵的工作原理 旋片机械泵 工作过程是:吸气—压缩—排气。 定子浸在油中起润滑,密封和堵塞缝隙的作用。主要参量是:抽速和极限压强。 由于极限压强较高,常用做前级泵(预抽泵)。 旋片式机械泵

真空镀膜机

第一章真空镀膜机工架系统设计 1.1研究目的及意义 1.1.1研究目的 随着人们生活水平的不断提高,越来越多的镀膜产品被广泛的应用,而与之相应的真空镀膜设备的制造也在镀膜技术的提升中变得愈加的重要。现在大部分的真空镀膜机仅能镀制一种膜,但是在实际工程中,有时需对同一工件或样品镀制两种不同的膜,重复定位会产生定位误差,使产品所镀的膜不均匀,这主要是由于镀膜机的工件架设计存在一定不足所造成的。本文将对于真空镀膜的工架系统设计进行研究,了解现有真空镀膜机工架系统设计的优点与不足。全面了解现状,了解真空镀膜机工架系统设计的发展与应用状况、熟知真空镀膜机工架系统设计的基本类型与特征,并在研究的基础之上提出合适观点。 1.1.2研究意义 本文是对真空镀膜机的工件架子系统进行了设计与分析,以半球型或半球壳型工件或样品为研究对象,采用三点支撑、升降换位以及样品自转的方式,使半球型或半球壳型工件或样品进行完全镀膜,确保工件或样品无漏镀现象。采用导轨装置使工件架平移至镀制第二种膜的位置,进行再次镀膜,可以实现对同一工件或样品镀制两种不同的膜,不仅避免了二次定位所产生的偏差与再次定位的繁琐,而且减少了二次定位给操作人员带来的安全方面的危险。运用solidworks 三维设计软件,对磁控溅射离子镀膜机的工件架系统的自转升降部分和平移部分进行了仿真装配与模拟运动,对装配和运动的零部件进行了动态的干涉检查,增加了设计的精确性,减少了生产成本与生产周期。 1.2真空镀膜设备的应用 真空蒸发镀膜最常用的是电阻加热法,其优点是加热源的结构简单,造价低廉,操作方便;缺点是不适用于难熔金属和耐高温的介质材料。电子束加热和激光加热则能克服电阻加热的缺点。电子束加热上利用聚焦电子束直接对被轰击材料加热,电子束的动能变成热能,使材料蒸发。激光加热是利用大功率的激光作为加热源,但由于大功率激光器的造价很高,目前只能在少数研究性实验室中使用。 溅射技术与真空蒸发技术有所不同。 “溅射”是指荷能粒子轰击固体表面(靶),使固体原子或分子从表面射出的现象。射出的粒子大多呈原子状态,常称为溅射原子。用于轰击靶的溅射粒子可以是电子,离子或中性粒子,因为离子在电场下易于加速获得所需要动能,因此大都采用离子作为轰击粒子。溅射过程建立在辉光放电的基础上,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同。直流二极溅射利用的是直流辉光放电;三极溅射是利用热阴极支持的辉光放电;射频溅射是利用射频辉光放电;磁控溅射是利用环状磁场控制下的辉光放电。

7-0 真空技术基础知识.

第七单元真空技术 7-0 真空技术基础知识 “真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。真空的发现始于1643,那年托利拆利(E.Torricelli)做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa的极高真空。 在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。 一、真空物理基础 1.真空的表征 表征真空状态下气体稀薄程度的物理量称为真空度。单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。 2在SI单位制中,压强单位为牛顿/米(N/m2): 2 1牛顿/米=1帕斯卡(Pascal),(7-0-1) 帕斯卡简称为帕(Pa),由于历史原因,物理实验中常用单位还有托(Torr)。1标准大气压(atm)=1.0135×105(Pa), 1托=1/760标准大气压(7-0-2) 1托=133.3帕斯卡 习惯采用的毫米汞柱(mmHg)压强单位与托近似相等(1mmHg=1.00000014)托。各种单位之间的换算关系见附表7-1 2.真空的划分 真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。通常可分为:低真空(10~10Pa)、高真空(10 (低于10-103-1-1-6-10~10-6Pa)、超高真空(10~10Pa)和极高真空Pa)。 20世纪70年代进一步提高到的宽达20个数量级的真空度范围,并随着某些新技术、新材料、新工艺的应用和开拓,将进一步接近理想的真空状态。 3.描述真空物理性质的主要物理参数 (1)分子密度:用于表示单位体积内的平均分子数。气体压强与密度的关系为p=nkT (7-0-3)

真空技术基础

真空技术基础 一个标准大气压为1.0133×105 帕。“真空”是指气压低于一个大气压的气体状态。在真空状态下,单位体积中的气体分子数大大减少,分子平均自由程增大,气体分子之间、气体分子与其它粒子之间的相互碰撞也随之减少。这些特点被应用于科研、生产的许多部门中。例如:加速器,电子器件,大规模集成电路,热核反应,空间环境模拟,真空冶炼等。在高真空中,由于材料中易挥发物的损失,表面吸附层的变化,物体表面特性也随之改变。七十年代以来,表面科学的研究一直十分活跃,它不仅有很强的理论性,还有重大的应用价值。随着科研、生产的发展,获得并保持真空已形成一门相应的技术??真空技术。它包括:真空的获得、真空测量、检漏、真空系统的设计等。 依据真空概念,低于一个大气压的气体状态称为真空。真空度愈高,压强愈低,故用气体压强表示真空度。我国采用国际单位??帕(Pascal),以前曾长期使用另一真空度单位托。 一、真空的获得 1. 机械泵 机械泵是利用机械方法使工作室的容积,周期性地扩大和压缩来实现抽气的。属于这一类型的有活塞抽气机和旋转抽气机。这是一种低真空泵,单独使用时可获得低真空,在真空机组中用作前级泵。 旋片式真空泵结构如图3-1 所示。主要部件为圆筒形定子、偏心转子和旋片。工作原理 如图3-2 所示。偏心转子绕自己中心O 轴按箭头所示方向转动,转动中定子、转子在B 处保持接触、旋片靠弹簧作用始终与定子接触。两旋片将转子与定子间的空间分隔成两部分。进气口C 与被抽容器相连通。出气口装有单向阀。当转子由(a)转向(b)时,空间A 不断扩大, 气体通过进气口被吸入;转子转到(C)位置,空间A 和进气口隔开,转到(d)位置以后,气体受到压缩,压强升高,直到冲开出气口的单向阀,把气体排出泵外。转子连续转动,这些过程就不断重复,从而把与进气口相连通的容器内气体不断抽出,达到真空状态。 机械泵在工作过程中,转子在快速运动,两片旋片在不断伸缩,在定子与转子、旋片与定子、旋片与转子各自的接触处都存在磨擦,同时为了实现相对运动,活动零件相互间留有一定的公差,即存在着微小间隙。因此整个泵体必须浸没在机械泵油中,才能工作。泵油起着密封润滑和冷却的作用。 机械泵使用注意事项为: (1) 机械泵转子转动方向,必须按泵上规定方向,不能反向。否则会把泵油压入真空系统。 (2) 由于被抽气体在泵内被压缩,而且压缩比又大,如气体中含有蒸汽,会因压缩而凝成液体混人泵油中排不出去。因此,一般机械泵不宜用于抽蒸汽,或含蒸汽较多的气体,具有气镇装置的机械泵,才适于抽含有蒸汽气体。 (3) 机械泵停机后要防止发生“回油”现象(为什么会发生回油?)。为此停机后须将进气口与大气接通,也可在机械泵进气口接上电磁阀,停机时,电磁阀断电靠弹簧作用转向接通大气。

物理气相沉积真空镀膜设备介绍

物理气相沉积真空镀膜设备介绍 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要:本文主要介绍了五类物理气相沉积的真空镀膜设备。五种设备分别为:电阻式蒸发装置、电子束蒸发装置、电弧蒸发装置、激光蒸发装置以及空心阴极蒸发装置。介绍了相关设备的原理,优缺点等。其中,着重列出了有关电子束蒸发装置的其中一个应用,是厚度为200μm左右的独立式的铁铬-Y2O3非晶态/晶态复合涂层的已经从基板温度500oC左右的铁铬和氧化钇材料的电子束物理气相沉积产生。 Abstract:It describes the five physical vapor deposition vacuum coating equipment in this article.Five kinds of equipment are: resistive evaporation apparatus, an electron beam evaporation apparatus, arc evaporation apparatus, laser evaporation apparatus and a hollow cathode evaporation apparatus.It introduces the principle of related equipment, advantages and disadvantages. Emphatically identifies the electron beam evaporation apparatus in which an application.It is that Freestanding FeCrAl-Y2O3 amorphous/crystalline composite coating with a thickness of about 200nm has been produced from electron-beam physical vapor deposition of FeCrAl and yttria materials with a substrate temperature of 500 ℃ around. 关键词:电阻式蒸发装置、电子束蒸发装置、电弧蒸发装置、激光蒸发装置、空心阴极蒸发装置 Keyword :Resistive evaporation apparatus, an electron beam evaporation apparatus, arc evaporation apparatus, a laser evaporation apparatus, a hollow cathode evaporation device

相关文档
最新文档