超级电容均压技术

超级电容均压技术
超级电容均压技术

本文每一章内容安排如下:

第一章:绪论部分,主要介绍了本文研究背景及现状,阐述了超级电容器的概念和优缺点等相关知识,简要介绍了几种电压均衡方案"

第二章:理论基础部分,介绍了超级电容器的构成!原理和相关参数,分析研究了超级电容器的输入输出特性"

第三章:仿真分析部分,对几种常用的电压均衡方案进行详细的介绍和仿真分析,全面比较几种电压均衡方案的优劣"

第四章:均衡方案确定和改进部分,结合仿真比较和实际情况选择合适的电压均衡方案,针对此方案存在的不足之处提出改进意见并分析其可行性"

第五章:稳压方案设计部分,设计合适的超级电容器输出电压稳压方案,保证其两端输出电压恒定不变"

第六章:硬件搭建部分,在前几章分析讨论的基础上搭建充放电控制系统的 硬件电路,给出硬件的设计过程和调试结果"

第七章:总结展望部分,简要总结论文的主要研究工作,展望超级电容器储 能系统应用的发展前景"

超级电容器作为近年来兴起的一种新型电力储能元件,在电动汽车、有轨列车、新能源等领域的应用日益广泛。但由于超级电容器的电压值很低 ( 1.6-3 V) ,不能满足一些大功率储能系统的要求,所以需要将大量的超级电容器单体进行串联以提高电压等级。生产工艺等原因造成了各个电容单体参数的分散性,导致在串联工作时,各个单体上的电压大小不一,即有可能在储能系统充放电过程中出现过电压和欠电压两种不健康状态。欠电压状态的超级电容器,其容量不能得到充分地利用,存在浪费现象。而处于过电压状态会很大程度上缩短超级电容器的使用寿命,严重时还会发生爆炸。所以必须对超级电容器组引入均压技术,来提高超级电容器组的利用率和可靠性[3-5],同时使超级电容器的使用寿命得以延长。

影响超级电容电压不均衡的原因 1)容量偏差

超级电容器的电压u 、电流i 、电量Q 以及容量W 满足以下的关系式:

2

21

u C W du C dt i Q dt

du C i ??=?=?=?

=

从公式2-1可以看出,在恒定电流充电的条件下,如果电容单体之间,电容值C 存在差异, 电压u 的变化率是不相同的。电容值小的电容电压上升的更快,而电容的容量C 与电压u 的平方成正比(公式2—3),故电容值的差异会导致充电过程中各单体电容电压的大小不一。

图1给出了额定电压为2.7V ,额定容量为220F 的四个超级电容串联后,以100A 恒流充电的电压-时间波形。C1~C4的电容量分别为180F 、200F 、220F 、240F 。

超级电容器恒流充电电压上升曲线 Voltage waveform of 4 super-capacitor with constant current charging

由上图可知,四个超级电容的电压上升速度均不同,电容量最小的超级电容C1(180F )的电压上升速率最快,电容量最大的超级电容C4上升速度最慢。当C1达到额定电压2.7V 时,C4的电压只有2.1V 左右,为额定电压的78%,所以在不采取任何措施的情况下,当C4充电到额定电压时,C1、C2、C3两端电压均会过压。

通常情况下,超级电容器容量偏差为-10%~+30%,在极限情况下偏差达到了1.44倍。在这种偏差达到最大的情况下,在充电时容量最小的单体电容器首先到达额定电压,而这时容量最大单体电容器仅充到额定电压的69%,其储能为最小容量电容器的69%,其关系为:

??

? ???=?=?2min 22min 2

min max 2169.0)44.11(44.12121e e U C U C U C 其中Cmin 为容量最小的超级电容的容量,Cmax 为容量最大的超级电容的容量。则电容器组的平均储能为:

m in 845.021269.012min C e ave W U C W =??

?

????+=

比全部由下偏电容量超级电容构成的电容器组还小,为标称值电容器的76%,即:

()e e e e e e ave W U C U C U C W 76.02176.09.021

275.0121269.01222min =?=?+=??

? ????+=

通过以上分析可知,电容单体容量的偏差,会导致超级电容器在充电过程中电压的不均

衡,从而使超级电容器组的储能量显著下降,存在浪费现象。

2)等效串联阻抗( Equivalent Series Resistance ,ESR )

等效串联阻抗(ESR)即前面讨论等效模型中提到的等效电路中的Res ,它是表征超级电容器性能的重要参数之一,超级电容器的ESR 比普通电容器要大,而且随着使用时间的增长其值会缓慢增大,这将会导致单体电容间的ESR 的差异越来越显著。

由超级电容器串联RC 等效模型如下图,图中 ESR 决定在初始时刻超级电容器电压的分布。在充放电时,ESR 大的电容器先于ESR 小的结束充放电。超级电容器的ESR 虽然很小,但时超级电容器额定电压值很低并且充放电时电流值可以很大,导致其他 ESR 相对较小的电容器充放电不充分。即在充电时,ESR 越大的电容器越先结束充电;而在放电时, ESR 越大的电容器结束放电越晚。

3)漏电流

储能装置充有电荷后在静置状态下的电荷保持能力取决于漏电流,经过相对长时间的静置后,漏电流大的超级电容器的保持电荷的能力明显低于漏电流小的超级电容器。因此放电时,漏电流大的超级电容器首先达到放电完结,而漏电流小的超级电容器仍保持较多的电荷。充电时则相反,漏电流小的超级电容器首先达到充电完结。对于漏电流的分析主要基于超级电容器动态特性方面的研究[10],但对超级电容器的动态特性描述很困难,需要建立准确的超级电容器的模型。由于影响超级电容器的因素很多,建立准确的模型也是相当繁琐的。为了简化,目前有两种常用的等效模型,其中经典模型如图1所示为,该模型在通常情况下可以相对较好地满足超级电容器动态特性分析的需求。

图中,等效并联电阻( Equivalent ParallelResistance ,EPR )反映漏电流的大小,EPR 越小,漏电流越大,进而影响超级电容器的端电压。

综上所述,超级电容器组各单体电容之间某些参数上的差异客观存在,这些差异导致了电容在充放电过程中超级电容端电压不均衡,如果超级电容器长时间工作在电压均衡的情况下,将导致其使用寿命急剧的缩短。这是因为超级电容器内部电解液的挥发、分解的速度与工作电压有关,工作电压越高,参与氧化反应电解液中的杂质便会越多,电解液的分解也会更快,这些氧化反应会导致电容内部等效串联阻抗(ESR )和自放电率增大,电容容量降低,导致

电容性能变差

[

8BarradeP;PittetS;RuferA.EnergystoragesystemusingaserieseonneetionofsuPereaPaeitors withanaetivedevieeforequalizingthevoltages=C].IPEC,2000:hit脚ationalPowerElectronies Conferenee,2000:3一7

]

可见,对串联超级电容器组来说,电压不均衡的问题是限制其广泛应用的最主要的因素,采取电压均衡措施是很有必要且不可缺少的。

均压技术

超级电容均压技术按照不同的标准有不同的划分。若按照均压过程中能量是消耗还是转移,分为:能量消耗型和能量转移型;若按照均压电路的工作效果进行分类,则又可分为动态均压和静态均压。动态均压是指在充放电的过程中可实现组中单体电压的平衡。与动态均压不同,静态均压是指均压电路只工作在放电进行前、充电完成后这两个状态中,即在相对静态中实现电压的均衡。若均压过程能够动、静态均衡相结合,不仅能使所有超级电容器电压几乎同时到达额定电压,有较快的均压速度,而且还会使在静置状态的超级电容器组能实现高效率的均压。

1)能量消耗型均压

能量消耗型均压方法易于实现,它的原理是将电压高的单体的多余的能量以热或其他能量形式消耗掉,达到降低其电压的目的,实现均压。能量消耗型均压方法主要有:直接并联电阻法、开关电阻法和并联稳压管法

[

],如下图所示。

耗能法电压均衡电路

V oltage equalization circuit using dissipative Principle

如图(a )所示,超级电容器两端并联耗能电阻后,当相邻超级电容电压不等时,并联电阻上将会流过电流,将电压高的超级电容器的能量以热的形式耗散掉,以使其电压与电压低的超级电容器的电压逐渐一致;图(b)中,在每个超级电容器的两端并联一稳压二极管,在稳压管的击穿电压选择合理的情况下(选择与充满电时超级电容器两端的电压一致),在超级电容端电压达到稳压管击穿电压之前,稳压管不工作,达到稳压管击穿电压时,超级电容器的端电压就被限制在稳压管的稳定电压值,从而不至于过充电;图(c)所示为开关电阻法,这是直接并联电阻法的改进方法,它工作原理是,耗能电阻一开始并不工作,直到与其并联的超级电容器的端电压到达一个定值时开关闭合,这是耗能电阻进入工作状态,开始发热消耗多余的能量,从而使超级电容器的端电压稳定在一个定值而不会过充。

显然,上述这三种方法都是是通过消耗能量的方式将多余能量耗散掉,这一方面是对能量的浪费。另一方面,在给超级电容器以大电流充电时,电阻上流过大电流产生的热量也很大,还需考虑加装散热装置,增加了成本。 2)能量转移型均压

能量转移型均压技术,它是通过能量变换器将单体间的偏差能量转移至组内其他单体中,从而实现动态均压。它的一般思路如下,定义超级电容器电容值的分散度为d ,设两只容量为 C1、 C2的超级电容器的分散度分别为 l1 、l2 ,若超级电容器的标称容量为 CN ,则它们的容量表达式为

)1()1(2211l C C l C C N N +=+=

设ΔC 为实际电容容量差,如以同样大的电流 I 给两只电容充电,在相同时间 t 内,二者的电压差△U

It C C C

U 2

1?=

?

由此式可得出,只要存在电容容量差,电压差就与时间成正比,即随着充电时间的增大,电压差会越来越大。

设想能否使流入两个电容单体的充电电流不同。在相同的时间 t 内,若两只电容器以大小不同的电流 I1 和 I2进行充电,则可得出二者的电压差为

t C I C I U )(

2

2

11-=?

在电压差为 0 时刻,可得二者各自的充电电流满足

2

1

2111l l I I ++=

即当充电电流 I1和 I2满足式 ( 9) 所描述关系时,两只电容单体电压差为 0,实现了均压。 文献[刘雪冰。。。。。。]提出了能量转移型均压电路的基本模型,如图 4 所示,I 是外部电流源,在每只电容器两侧各并联一平衡电流源 Ieq( 两者电流方向相反),平衡电流源的实际电流方向是通过2个电容的电压大小关系而得,现假设 C1的电压大于C2的电压,则平衡电流源电流的方向如图 4 所示,设 Ieq= KI ,K 为平衡系数,则得出2个超级电容器的充电电流分别为

)

1()1(21K I I K I I +=-=

将式 ( 10) 代入式 ( 9) 可得

2

11

22l l l l K ++-=

式 ( 11) 表明,当超级电容器组各单体电容电压保持在均压状态时,电压均衡电路的平衡电流 Ieq 和充电电流 I 需满足

I l l l l I eq 2

11

22++-=

通过以上分析可知,平衡电流源只会在两电容单体间存在电压差时才工作。再者,通过式 ( 12)计算出的 Ieq 值后,可以进一步为储能器件选择合适的数值和为功率器件选择合适的开关频率等。当两个超级电容器的初始电压差不为零时,需使初始平衡电流 Ieq 大于或等于KI ,显然平衡系数越大,电压差减小得越快,均衡速度也就越快。在此过程中,Ieq 的大小随两电容单体电压差变化也在不断地变化,当电压差为零时,Ieq 也减小至零,这时均压过程结束,完成了超级电容器电压的均衡。

目前较为成熟的能量转移型串联均压技术有如图 5a ~ c 所示的 DC/DC 变换器法、开关电容法和开关电感法。

参考文献:[1]

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估” 来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217 的基 本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确定各元 器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK- 217E.F计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon 品牌的电解电容的寿命计算公式 L X=Lr X2【(T°-Tx)/1°】X2(A r s/Ao- A Tj/A) L X预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(C), △Ts:额定纹波电流(Io)下的电解电容中心温升「C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25XZTj,(0

Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Q), S:电解电容的表面积(cm2), S=dDX(D+ 4L)/4 , B:热辐射常数,一般取3= 2.3 X1O-3XS0.2, D:电解电容的截面积的直径(cm), L:电解电容的高度(cm), nichicon品牌的电解电容的寿命计算公式 2 L X= Lr X2【(To-Tx)/10] x21-(Ix/Io )/K, K:温升加速系数,二10—6X(Tx—75 C)/30 (Tx W75C 时,K 值 取 10) 其余字符的表达含意同上。 其余品牌的电解电容的寿命计算公式 2 b= L r X2【(To-Tx)/10]眾1-(Ix/Io ) ] XZTo/10 △To:最高工作温度下的电解电容中心容许温升(取△T o= 5C), K= 2,纹波电流允许的范围内;K= 4,超过纹波电流允许的范围时。

超级电容器串联应用中的均压问题及解决方案

超级电容器串联应用中的均压问题及解决方案 摘要:本文详尽的分析了超级电容器串联应用中影响各单体电容器上电压的一致性的原因,对不同的电压均衡的方法及存在的问题,提出使用的电压均衡电路单元,最后给出了实验结果。 关键词:超级电容器电压均衡温度系数 Abstract: In this papper the reason has been analysed that si the ultra capacitor in series infkuence the consistency of the voltage of each unit capacitor in detailed .For different methods of the voltage balance and the questions existing,the voltage balance citcuit unit and the test result has been provided . Keywords: Ultra Capacitor Voltage Balance Temperature Coeffcient 1. 问题的提出 超级电容器的额定电压很低(不到3V),在应用中需要大量的串联。由于应用中常需要大电流充放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。如果不采取必要的均压措施,会引起各个单体电容器上电压较大,采取更多的串联数来解决问题是不可取的。影响均压的因素主要有: 1.1 容量的偏差对电容器组的影响 通常超级电容器容量偏差为-10%--+30%,上下偏差1.44。当电容器组中出现容量偏差较大时,在充电时容量最小的电容器首先到达额定电压而电容量偏差最大的仅充到69%的额定电压,其储能为最小容量电容器的0.69%。如式(1) (1) 其中C min为最大负偏差电容量。电容器组的平均储能为: (2)

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

超级电容电量简易计算

超级电容电量简易计算 2011-05-21 00:49:18| 分类:默认分类 | 标签: |字号大中小订阅 电压(V) = 电流(I) x 电阻(R) 电荷量(Q) = 电流(I) x 时间(T) 功率(P) = V x I = 能量(W) = P x T = Q x V 容量 F= 库伦(C) / 电压(V) 将容量、电压转为等效电量 电量 =电压(V) x 电荷量(C) 实例估算: 电压5.5V 1F(1法拉电容)的电量为5.5C(库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V,所以有效 电量为1.7C。 1.7C=1.7A*S(安秒)=1700mAS(毫安时)=0.472mAh(安时) 若电流消耗以10mA计算,1700mAS/10mA=170S=2.83min(维持时间 分钟)。 转 电荷量 通常,正电荷的电荷量用正数表示.负电荷的电荷量用负数表示. 任何带电体所带电量总是等于某一个最小电量的整数倍 这个最小电量叫做基元电荷 它等于一个电子所带电量的多少,也等于一个质子所带电量的多少 而库仑是电量的单位 1库仑=1安培·秒 库仑是电量的单位,符号为C。它是为纪念物理学家库仑而命名的。若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。 库仑不是国际标准单位,而是国际标准导出单位。一个电子所带负电荷量e= 1.6021892×10^19库仑(元电荷), 也就是说1库仑相当于6.24146×10^18个电子所带的电荷总量。 电荷量的公式: C=It(其中I是电流,单位A ;t是时间,单位s) 电量 电量表示物体所带电荷的多少。

超级电容器原理和应用

超级电容器原理和应用 分类:移动互联的基本知识或讲座 2007.6.13 20:14 作者:kimberye | 评论:0 | 阅读:5029 超级电容器简介(图) 作者:Maxwell Technologies Bobby Maher 随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。 电池技术的缺陷 Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 超级电容器的特点和优势 超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。 除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。因此,必须采用恒流或恒压充电器。 10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。

超级电容容量及放电时间的计算方法

超级电容容量及放电时间的计算方法 2008-10-28 13:10:29 [点击次数:2450] 现在超级电容的很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放 电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效串联电阻; Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2I(Vwork+ Vmin)t; 超电容减少能量=1/2C(Vwork2 -Vmin2), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)It/( Vwork2 -Vmin2) 举例如下:

如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能 够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork=5V 工作截止电压Vmin=4.2V 工作时间t=10s 工作电源I=0.1A 那么所需的电容容量为: 应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效串联电阻; Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

超级电容基本参数概念

超级电容基本参数概念 寿命Lifetime 超级电容器具有比二次电池更长的使用寿命,但它的使用寿命并不是无限的,超级电容器基本失效的形式是电容内阻的增加( ESR)与(或) 电容容量的降低.,电容实际的失效形式往往与用户的应用有关,长期过温(温度)过压(电压),或者频繁大电流放电都会导致电容内阻的增加或者容量的减小。在规定的参数范围内使用超级电容器可以有效的延长超级电容器的寿命。通常,超级电容器具有于普通电解电容类似的结构,都是在一个铝壳内密封了液体电解液,若干年以后,电解液会逐渐干涸,这一点与普通电解电容一样,这会导致电容内阻的增加,并使电容彻底失效。 电压Voltage 超级电容器具有一个推荐的工作电压或者最佳工作电压,这个值是根据电容在最高设定温度下最长工作时间来确定的。如果应用电压高于推荐电压,将缩短电容的寿命,如果过压比较长的时间,电容内部的电解液将会分解形成气体,当气体的压力逐渐增强时,电容的安全孔将会破裂或者冲破。短时间的过压对电容而言是可以容忍的。 极性Polarity 超级电容器采用对称电极设计,也就说,他们具有类似的结构。当电容首次装配时,每一个电极都可以被当成正极或者负极,一旦电容被第一次100%从满电时,电容就会变成有极性了,每一个超级电容器的外壳上都有一个负极的标志或者标识。虽然它们可以被短路以使电压降低到零伏,但电极依然保留很少一部分的电荷,此时变换极性是不推荐的。电容按照一个方向被充电的时间越长,它们的极性就变得越强,如果一个电容长时间按照一个方向充电后变换极性,那么电容的寿命将会被缩短。 温度Ambient Temperature 超级电容器的正常操作温度是-40 ℃~70℃,温度与电压的结合是影响超级电容器寿命的重要因素。通常情况下,超级电容器是温度每升高10℃,电容的寿命就将降低30%~50%,也就说,在可能的情况下,尽可以的降低超级电容器的使用温度,以降低电容的衰减与内阻的升高,如果不可能降低使用温度,那么可以降低电压以抵清高温对电容的负面影响。比如,如果电容的工作电压降低为1.8V,那么电容可以工作于65℃高温下。如果在低于室

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

超级电容器均压电路状况与展望

超级电容器均压电路状况与展望 摘要:本文分析了现有的超级电容器限幅型均压电路和动态均压电路的特点与实用性以及存在的问题,其本质就是均压电流远低于充电电流,导致分流效果差。针对这些问题提出了改进的方法,采用加大均压电流方式减缓单体电压在充电过程中可能出现的过电压。最后提出非能量损耗型均压电路是解决超级电容器电压均分的最好方法。 关键词:超级电容器;限幅型均压电路;动态均压电路;非能量损耗型均压电路 引言 超级电容器的额定电压很低(不到3V),在应用中需要大量的串联。由于应用中常需要大电流充、放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。影响超级电容器电压是否均分的因素主要有:电容量、ESR、漏电流等,尽管超级电容器在应用初期这些参数对超级电容器的电压均分的影响比较小,但是在超级电容器应用的中后期,随着这些参数的离散性变大,对超级电容器电压均分的影响越来越大,最终导致超级电容器寿命的急剧缩短。如果不采取必要的均压措施,会引起各个单体电容器上电压较大,采取更多的串联数来解决问题是不可取的。 1 超级电容器常用的均压方法及存在的问题

目前超级电容器均压电路主要有两种:限幅型均压电路和动态电压均压电路。 1.1 限幅型均压电路及特点 限幅型均压电路如图1。从图中可以看到,当电压低于转折电压时,电路处于“阻断”状态,仅有很小的漏电流;而电压达到并超过转折电压后,流过电路的电流将随电压的增加而急剧增加,呈现稳压二极管特性,以达到分流充电电流或泄放过充的电荷,最终超级电容器的电压被限制在转折电压以下。 图1 限幅型均压电路 这种电路的优点是电路工作原理简单,工作可靠,参数一致性好,一般的最大工作电流在1A以下。这种特性也带来了应用时的问题,也就是充电过程超级电容器组中的某些超级电容器单体会出现比较严重的过电压。

电容器的定义以及相关的公式介绍

[知识学堂] 电容器的定义以及相关的公式介绍 定义 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容与电池容量的关系: 1伏安时=25法拉=3600焦耳 1法拉=144焦耳 相关公式 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电

容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S 为极板面积,d为极板间的距离。) 定义式C=Q/U 电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

超级电容组的均压问题

超级电容组的电压由串联的电容器数量决定,而功率则是由并联的电容器数量决定。超级电容和电动汽车动力电池类似,每个超级电容单体的电压范围为 1~3.0V(和电容器类型有关),所以,需要将超级电容串联使用才能得到所需的电压。理想状态时,每个超级电容单体性能应该是一致的,即每个超级电容单体的电压是一样的。但是,由于制造误差、自放电率等因素,电容器单体之间的电压是有差异的。在制造时和整个产品寿命周期内,电容值的变化和泄漏电流影响电容器电压的分布,所以,使用超级电容单体管理电路来提高串联使用的超级电容单体的性能和寿命,是最有效的管理超级电容单体的方法(另一种管理方法是把过压的单体放电达到保护超级电容的目的,但也产生了其他问题)。一个好的均衡电路可以对异常的单体迅速做出响应,超级电容单体平衡方法有两种,即被动均衡式(图5-15)和主动均衡式(图5-16)。 1.被动均衡电路 (1)电阻直接与超级电容并联的结构 这种方式如图5-15 (a)所示,在每个超级电容单体上并联一个电阻来抑制泄漏电流,实际上,就是使用公差很小的电阻强制单个模块的电压一致。 超级电容在充电过程中,内阻决定充电电流的大小以及最终电压。超级电容充电之后,自放电内阻是一个重要参数,用一个小的电阻就可以实现超级电容单体之间的电压平衡。电阻阻值应比超级电容的内阻大许多,但比自放电电阻小。不同的电阻值,电压的平衡过程可能花几分钟到几小时。 这种方法最适合低负荷运行工况,如UPS电源,充电电流不大,充电时间长,可以延长超级电容的使用寿命。该方法具有结构简单和低成本的优点,最大的确点是在外电阻上产生很大的功率损失,这个损失与电阻值和电流大小有关。如果充电时间足够长可以完成均衡过程,在电动汽车上也可应用,但是

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

超级电容选用计算

二、超级电容的主要特点、优缺点 尽管超级电容器能量密度是蓄电池的5%或是更少,但是这种能量的储存方式可以应用在传统蓄电池不足之处与短时高峰值电流之中。相比电池来说,这种超级电容器有以下几点优势: 1.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极,与电解液接触的面积大大增加,根据电容量的计算公式,两极板的 表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容量可达5000F。 2.充放电寿命很长,可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次;可以提供很高的放电电流,如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流,一些高放电电流的蓄电池在如 此高的放电电流下的使用寿命将大大缩短。 3.可以数十秒到数分钟快速充电,而蓄电池在如此短的时间充满电将是极危险的或是几乎不可能。 4.可以在很宽的温度围正常工作(-40℃~+70℃),而蓄电池很难在高温特别是低温环境下工作;超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池均具有毒性;而且,超级电容器可以任意并联使用来增加电容量,如采取均压措施后,还可以串联使用。 因此,可以用简短的词语总结出超级电容的优点: ● 在很小的体积下达到法拉级的电容量; ● 无须特别的充电电路和控制放电电路 ● 和电池相比过充、过放都不对其寿命构成负面影响; ● 从环保的角度考虑,它是一种绿色能源; ● 超级电容器可焊接,因而不存在象电池接触不牢固等问题。 缺点:

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

超级电容器基本原理及性能特点

聚焦超级电容选型与应用 上网时间:2010-05-27 作者:Zoro 来源:电子元件技术网 超级电容和电池都是能量的存储载体,但二者有不同的特点。超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。 超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。 超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。 除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:

超级电容器基本原理及性能特点 超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容与电池的比较 相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。本文通过图表来对比各种不同储能产品的特点。 超级电容的典型应用与选型 超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。本文介绍超级电容的工作原理,并着重介绍在集装箱龙门吊车和智能电表上的应用。

超级电容常识

超级电容常识 超级电容基本知识 寿命 超级电容具有比电池更长的使用寿命,但是寿命也不是无限延长的。寿命终止失效模式为等效串联内阻的增加(ESR)升高和容量降低。超级电容实际的寿命失效取决于应用要求,比如长期置于 高温下,高电压和超电流将会导致ESR升高和容量降低。这些参数降低将会延长超级电容的寿命。 电压 超级电容具有推荐的额定工作电压,电压值是根据超级电容在最高的额定温度下最长寿命来设定的。如果使用电压超出额定电压,将会导致寿命缩短,若过压时间较长则内部电解液将会分解为气体,当气体的压力逐渐增强时,超级电容内部将会漏液或防爆阀破裂。 极性 超级电容采用对称的电极设计,正负极具有类似的结构,当电容首次装配时,任一电极都可以被当成正极或者负极,一旦超级电容被第一次充满电时,超级电容将会形成极性化。所以我们在生产过程中将会100%的充放电将极性定型,同时在每一个电容的外壳上面都有一个负极标志。提醒一点:虽然超级电容可以被放电使电压降低到零电压,但是电极还是保留非常少的电荷,此时变换极 性是不可以的。超级电容按照一个方向被充电的时间越长,他们的极性就变得越强。若此时更改极性将会使电容的寿命缩短或损坏。 环境温度 能量型超级电容的正常工作温度是-25℃--70℃,功率型超级电容的正常工作温度是-40℃--60℃,温度及电压对超级电容寿命有影响。一般来说,超级电容的环境温度每升高10℃,超级电容的寿 命就会缩短一半。也就是说在可能的情况下尽可能在最低温度下使用超级电容,那么就可以降低电容的衰减与ESR的升高。若低于正常室温环境下,那么可以降低电压以抵消高温对电容的负面 影响。相反在低温下提高超级电容的工作电压,可以有效的抵消超级电容在低温下内阻的升高。在高温情况下,电容内阻升高。在低温下,电容的内阻升高时暂时的,因为在低温下电解液的稠性升高,降低了电离子的远动速度。 放电特性 超级电容放电时,是按照一条斜率曲线放电,当确定应用时超级电容的容量与内阻要求时,最重要的就是要了解电阻及容量对放电特性的影响。在高脉冲电流应用时,ESR是重要的因素。而在低电流应用时,容量是最重要的因素。计算公式如下: Vd=I(R+T/C) Vd是起始工作电压与截止电压之差,I是放电电流,R是超级电容的(ESR),T是放电时间,C是电容的容量。在脉冲应用中,由于瞬间放电流很大,为减少电压的降幅,选用低内阻(ESR) 的超级电容,而在低电流应用中则需要选用高容量的超级电容。 充电方法 超级电容可用各种方法进行充电,如:恒定电流、恒定功率、恒定电压或与能量储存器,或者电源并联(如电池、DC变换器等)。如果超级电容与电池并联,加一个低阻值串联电阻将降低超级 电容的充电电流,并提高电池的使用寿命。但是如果使用串联电阻,必须要保证电容的电压输出端是直接与应用器连接而不是通过电阻与应用器连接,否则超级电容的低内阻特性将是无效的。在高脉冲电流放电时,许多电池系统寿命均会缩短。 超级电容最大充电电流I计算公式如下: I=V/5R I是推荐的充电电流,V是充电电压,R是超级电容的ESR。超级电容持续大电流或者高压充电,超级电容将会过度发热,过度发热将会导致ESR增加,电解液分解气化,缩短寿命、漏液、防爆 阀爆裂。如果要使用高于额定值的电流或电压充电请与生产厂商联系。 自放电与漏电流 以不同方法进行测量时自放电与漏电流在本质上是相同的,针对超级电容的结构,从正极到负极具备高的耐电流特性。也就是说保留电容电荷,需要少量的额外电流,这个电流就是漏电流。而当移除充电电压时,电容不在负荷时,额外的电流会促使超级电容放电,称为自放电流。 电容串联 单体超级电容的电压一般为2.5V或2.7V,而在许多应用领域要求高电压,超级电容可以设置串联的方法来提高工作电压。确保单一的超级电容电压不超过其最大的额定工作电压是很重要的,否 则会导致电解液分解产生气体,ESR升高,寿命减短。 在放电或者充电时,在稳定状态下因容量和漏电流的差异,都将会导致串联的超级电容电压不平衡现象。在充电时,串联的超级电容将起到电压分配作用,因此低容量单体超级电容将承受更大的电压。例如: 2.5V1F的超级电容串联,两个容量分别为+20%与-20%,则电压分配如下: V1=V供*(C1/(C1+C2)) V供是供给给串联两端的充电电压。 假设V1是+20%容量偏差的电容,若供应充电电压是5V,则: V1=5*(1.2/(1.2+0.8))=3V 所以,为避免超出3V的超级电容浪涌电压范围,串联超级电容的容量必须在同一个趋势范围内。在选择上可以用主动电压平衡电路来降低因容量不平衡而产生的电压不平衡。注意大多数的电压 平衡方法都是取决于具体的应用。 主动电压平衡 主动电压平衡电路能使串联的超级电容上的电压与额定电压驱同而不管有多少电压不平衡产生。同时在确保精确的电压平衡时,主动平衡电路在稳定的状态下只有非常低的电流,只有当电压超出平衡范围时才会产生比较大的电流,这些特性使得主动电压平衡电路是超级电容频繁充放电及如电池等能量组件使用的最理想电路。 被动电压平衡 被动电压平衡电路是忽略超级电容的低内阻直接用高电阻来做平衡电路的一种方式,采用与电容并联电阻进行分压,这就允许电流从高电压的超级电容上流至低电压的超级电容上实现电压的平衡。最重要的是选择平衡电阻值来提供超级电容更高电流的流动而不增加超级电容的漏电流。同时要注意:“漏电流在温度升高的时候会上升的”。 被动平衡电路使用在不频繁对超级电容进行充放电的应用,同时要能够承受平衡电阻的额外电流负载时推荐使用。使用平衡电阻时,建议使用平衡电阻的应能提供最差超级电容漏电流50倍以上 的额外电流,根据最高使用温度选择在3.3KΩ-22KΩ。尽管更大阻值的平衡电阻在大多数情况下也能工作,但其不可能在不匹配的超级电容串联时起到保护作用。 逆向电压防护 当串联使用的超级电容被快速放电时,低容量超级电容的电压将潜在地变为负电压。这是不允许的,同时会降低超级电容的使用寿命。一个简单的防护逆向电压的方法是在超级电容上的两端增加一个二极管。使用适当的额定的限流二极管替代标准的二极管,还可以保护超级电容出现过电压现象。在选择二极管时,“二极管必须能够承受电源的峰值电流”。 脉动电流 超级电容虽然有比较低的内阻,但是相对电解电容而言,其内阻还是比较大的,若应用在脉冲电流的环境中容易引起内部发热,从而导致电解液分解、ESR增加,从而引起超级电容寿命缩短。为了保证超级电容的使用寿命,在应用在脉冲环境中时,最好要保证超级电容表面的温度上升不超过3℃。 比能量: 是指电容器在单位重量或单位体积下所给出的能量。(通常也叫:重量比能量、体积比能量、能量密度)单位:WH/KG、WH/L 超级电容器的能量与本身的容量与电压有关。其计算方式: E=CV2/2 (单位焦耳J)

相关文档
最新文档