聚羧酸分散剂制备及分散性研究

聚羧酸分散剂制备及分散性研究
聚羧酸分散剂制备及分散性研究

OROTAN731A聚羧酸钠盐水性涂料分散剂

OROTAN 731A(聚羧酸钠盐)水性涂料分散剂 OROTAN 731A是一款标准型的环保聚羧酸钠盐水性涂料分散剂,对所有无机颜料和填料都有优异的分散性,用其分散的浆液贮存稳定性好,长期贮存不沉淀、不返粗;OROTAN 731A低V O C的设计,特别适用于众多的内墙涂料体系中,并能获得良好的分散性、稳定性和漆膜性能;OROTAN 731A虽为钠盐产品,但其耐水性远优于同类钠盐分散剂,同样适用于外墙体系的水性建筑涂料中。 典型参数: 外 观:透明淡黄色液体 主要成份:聚羧酸钠盐水溶液 离子属性:阴离子 固 含 量:25% 酸 碱 值:9.5-10.5 比 重:1.0-1.2K G/L 粘 度:20-130C P S/25℃ 产品特点: (1)超低V O C:OROTAN 731A不含甲醛,以水为载体,可用于配制低V O C环保型内外墙涂料。 (2)平缓的分散性,与体系配套性优异,浆料贮存稳定性优异:OROTAN 731A的分散性相对平缓,但是在使用性、适用性方面更加优越,在一定范围内使用,即使过量添加亦不会影响体系的贮存稳定性。(3)良好展色能力,对颜料的承载力强,防止颜料浮色发花,有利于后期调色。 (4)优越的耐水性:OROTAN 731A采用先进复合技术,对钠盐结构进行改性,减少对漆膜耐水性影响。 其耐水性目前远优于同类钠盐分散。 (5)低泡沫:OROTAN 731A是一种复合钠盐分散剂,对钠盐结构的改性,同样减少在分散过程中产生泡沫的可能性。 (6)可改善体系的流平性。 使用指南: OROTAN 731A分散剂能与水按任何比例混溶,建议在涂料生产的研磨阶段加入,一般先直接将OROTAN 731A加入水中,同时加入消泡剂、纤维素和其他助剂,然后加入颜料、填料等粉料,经高速分散或砂磨,可制成分散均匀、稳定的浆料。 参考用量:0.15-0.6% 应用领域: 广泛应用于纯丙、苯丙和醋丙体系的水性内、外墙建筑涂料中。 适用于色浆生产。 适用于纸浆生产。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。

什么是聚羧酸类阻垢分散剂,聚羧酸减水剂

什么是聚羧酸类阻垢分散剂、聚羧酸类减水剂 先说聚羧酸类阻垢分散剂,看这个关键词就能明白大概,是什么类?聚羧酸类,什么药剂?水处理阻垢分散剂,它是一种低分子聚电解质,”聚”指是聚合、凝聚这充分说明了他的特有性质是聚合在一起的,其阻垢分散性能与聚合物分子量有关,比较有代表性的聚丙烯酸钠按分子量200万-10000万絮凝剂;分子量10000-20000为分散剂型,分子量800-1000为阻垢剂,聚羧酸的阻垢分散性能,现分子国的羧基数目和间隔也存在着一定的关系,分子量相同时,羧基数目越多,阻垢分散性能越好。 大量的实验证明了,分子量在一定范围内的聚羧酸能有效地阻止水中碳酸钙、硫酸钙结垢,防止腐蚀产物沉积,而且对水中的泥土(砂)、粉尘等无定形不溶性物质起到的分散作用,使其呈分散状态悬浮在水中。聚羧酸具有溶限效应,少量的聚羧酸可抑制几百倍的钙镁离子成垢。 聚羧酸在与有机膦酸水处理剂复配使用时,效果更佳。聚羧酸型水处理剂在常规使用尝试下基本无毒,故对水体基本无污染。 水处理剂中最为神秘的就是阻垢缓蚀剂,一说水处理剂大家都会的到阻垢缓蚀剂、螯合分散剂、抑制钙垢的形成等等,那么这些水处理药剂的作用机是到底是什么,现在我在这里给大家介绍一下,明白了这些,就能间接明白阻垢分散剂和聚羧酸类减水剂的一些原原理。 1、应该提到的是晶格畸变作用 分子量低于10000的聚羧酸的表面电荷对无机物晶体具有影响。聚羧酸是阴离子型聚合物,在碳酸钙晶体形成的早期阶段,它被吸附在结晶表面,便晶体不能正常生长而发生晶格畸变,晶粒变得细小,从而阻止了垢的生成。 2、增溶作用 聚羧酸是阴离子型聚合物,在水溶液中,可离解生成带负电荷的分子键,可与钙离子形成能溶于水的稳定的络合物,增加了成垢物在水中的溶解度,另外,这种络合物混入晶格内,可使沉淀物变为流态化,具有高效分散作用。 3、静电斥力作用 聚羧酸在不中电离生成的带电荷的阴离子具有强烈的吸附作用,它会吸附到水中的一些泥砂、粉尘等杂质的粒子上,使其表面带有相同的负电荷。由于静电斥力作用,这些粒子就不会聚集,而是呈分散状态,成为稳定的悬浮液。 这些就是水处理剂最为神秘的阻垢缓蚀剂和螯合分散剂的作用原理。而聚羧酸类减水剂就是聚羧酸类阻垢分散剂的一个独立分支,他有聚合物的特性,大家都知道建筑使用的仝工车队来回来的混凝土料,里面是已经配比好的混凝土,但是配比地和使用地存在一定的距离,如果配比不添加减水剂直接运输,途中就会出现块状凝结影响施工质量,所以这个减水剂就被应用到开。减水剂主要能提高砂浆的强度,它的定义是在不影响混凝土施工和易性的条件下,具有减水和增强作用的外加剂称为减水剂。 找个简单的减水剂配方大家看一下:将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。这些里有些就是聚羧酸类阻垢分散剂使用配比在一起的效果。 水处理剂使用的方面很广,减水剂只是使用的一个创新的领域。水处理剂不单独的水处理的阻垢缓蚀剂螯合分散剂、纺织印染、钻井缓蚀、玻璃加工等等这些都会多多少作为添加剂使用进。这里只是简单的介绍一下,希望能大家能有所帮助。 以上内容仅代表人个看法,与其他无关。

聚羧酸分散剂的合成性能研究

聚羧酸分散剂的合成性能研究 商品混凝土是当今世界最大宗的建筑工程材料。水泥减水剂是现代商品混凝土不可缺少的组分之一。聚羧酸系减水剂具有高减水率和控制商品混凝土坍落度损失等优点,研究开发新型聚羧酸系减水剂受到广泛关注。国外已有大规模生产,国内仍处于实验室研究阶段。本论文合成了一系列聚氧化乙烯基单丙烯酸酯(Poly(ethylene oxide)monoacrylate,PEA)及聚羧酸系减水剂PCA(polycarboxylic acid water-reducers,PCA),并试验探讨了它们的应用性能。高质量的含聚氧化乙烯基(Poly(ethylene oxide),PEO)的聚乙二醇不饱和羧酸酯大单体,其制备方法是,在无溶剂而有一定量的酸类催化剂浓硫酸或对甲苯磺酸及70-120℃温度的条件下,通过不同分子量的聚乙二醇(PEG200、PEG400、PEG600、PEG1000、PEG3000)与过量的不饱和羧酸-丙烯酸进行酯化反应获得的,通过测定反应物酸值和酯化率来控制聚乙二醇的酯化反应进程,以快速冷却法来终止大单体的酯化反应。新型聚羧酸系减水剂PCA由丙烯酸与不同分子量的聚氧化乙烯基单丙烯酸酯反应,在一定温度的水溶液体系中,经水溶性引发剂过硫酸铵引发共聚反应合成。在掺量为0.45%时,其商品混凝土减水率为24.7%,当掺量为1.0%时,减水率最高可达38.8%。水泥的净浆流动度在2小时内基本无损失,3小时后仍可达到280mm。同时具有较好的抗压强度、缓凝作用。合成的PCA已通过中试实验,具有较好的应用前景。分散剂是染料加工过程上的主要助剂。不论是加工过程还是应用性能,分散剂都起着举足轻重的作用。近年来,有关

新型农药分散剂聚羧酸盐合成的国内外研究进展..

新型农药分散剂聚羧酸盐合成的国内外研究进展 农药剂型中水分散粒剂( Water Dispersible Granule,剂型代码WG)是指入水后能迅速崩解、分散,形成高悬浮液的粒状制剂。该剂型兼具可湿性粉剂(WP)的物理稳定性和悬浮剂(SC)的高悬浮分散性的优点,是一种理想的环保剂型。 农药分散剂是水分散粒剂(WG)的关键组分之一,它吸附于油冰界面或固体粒子表面,阻碍和防止分散体系中固体或液体粒子的聚集,并使其在较长时间内保持均匀分散。传统的农药分散剂一般是具有多环的阴离子表面活性剂,如烷基萘磺酸盐、萘磺酸甲醛缩合物的钠盐、木质素磺酸盐等。 新型的农药分散剂聚羧酸盐是一种高分子类阴离子表面活性剂。与传统的农药分散剂相比,它不含萘、甲醛等有害物质,可减少环境污染;在低掺量条件下赋予农药高分散性与稳定性。国内这类农药分散剂目前主要靠进口。 1 新型农药分散剂聚羧酸盐概况 1.1 分散剂聚羧酸盐的一般合成 聚羧酸盐高性能分散剂是带有羧基、磺酸基、氨基以及含有聚氧乙烯侧链等的大分子化合物。是在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。 合成聚羧酸盐高性能分散剂所需要的主要原料有:丙烯酸、甲基丙烯酸、马来酸、苯乙烯磺酸钠、烯丙基磺酸钠、丙烯酸羟乙酯

等。在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁腈等;链转移剂有:3一巯基丙酸、巯基乙酸、巯基乙醇及异丙醇等。 1.2农药分散剂聚羧酸盐的国外开发概况 目前,国外公司在国内销售的聚羧酸盐农药分散剂主要是亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700和索尔维(SOLVAY)旗下的罗地亚(Rhodia)公司的GEROPON T/368]。 1.2.1 亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700 设在上海的亨斯曼功能化学品农化部曾专门撰文介绍TERSP ERSE 2700。指出,目前在农药水分散颗粒剂中应用较多的聚合型分散剂为聚丙烯酸盐,而TERSPERSE 2700作为此类阴离子聚丙烯酸盐类分散剂的杰出品种,受到广大剂型开发工作者及生产厂商的广泛关注与青睐。TERSPERSE2700是亨斯曼功能化学品农化部研究人员专门针对农药水分散颗粒剂型特点而开发并拥有专利的专用分散剂,其结构同样是由强疏水性骨架长链与亲水性的阴离子低分子聚合所形成的具有“梳型”结构的高分子化合物。由于在开发过程中,其结构经过骨架链长、侧链基团密度及分布等筛选优化,并经多种农药有效成分的配方验证,TERSPERSE2700已成为全球范围内农药厂商加工水分散颗粒剂产品所广泛采用的重要品牌产品之一。 TERSPERSE 2700的分子结构如图1所示。其中疏水性的骨架长链能对农药有效成分微粒产生不可逆的充分包覆,而大量亲水性的低分子梳齿型侧链结构及其所带的电荷能在悬浮液中形成可靠

炭黑知识

什么是炭黑的体积密度? 根据炭黑的结构和其物理形态,炭黑的体积密度在各种级别的炭黑中差别很大。由于存在封闭空气,炭黑 的体积密度低于炭黑的真密度(比重)。 什么是炭黑的保质期? 储存于环境条件下时,炭黑不易受分解的影响,其保质期不受限制。随着时间推移,炭黑会吸收湿气,直 至达到一个均衡值。如果湿气影响很重要,则应将炭黑储存于干燥环境下,并尽可能密封。DBPA:什么是邻苯二甲酸二丁酯吸油率 (DBPA)? 邻苯二甲酸二丁酯吸油率是一种用于定量炭黑等级的结构特性数量的技术。较高的邻苯二甲酸二丁酯吸油 率数值对应较高的炭黑结构。 为什么黑墨在不同表面上表现出不同的性能? 由于油墨是一种非常薄的膜,炭黑和载色剂往往会渗入多孔表面,从而允许更多的基体突出此薄膜。与浆 状油墨相比,这种效应在液体油墨中更为明显。高结构炭黑往往比低结构炭黑渗入较少。什么使炭黑具有导电性? 炭黑在很大程度上是由类石墨碳层组成。与石墨类似,炭黑显示出导电能力,并具有相对较低的电阻(即 ,它是一种半导体)。 什么是乙炔炭黑? 乙炔炭黑是通过乙炔的放热分解反应制成。因此,它是非常纯的炭黑。它是所有炭黑中最接近石墨的,通 常用于提供导电性。 什么是炭黑的热导率? 关于炭黑热导率的现有数据很少。关于含炭黑的橡胶化合物与不含炭黑的橡胶化合物的热导率研究表明, 炭黑提高了橡胶产品的热导率。 什么是炭黑聚集体的粒径? 炭黑聚集体的粒径取决于炭黑的等级,每个等级的炭黑具有其自身的平均聚集体粒径。平均聚集体粒径通 常在 0.01 到 1.0 微米的范围内。 什么是着色强度? 着色强度以油料中的炭黑和氧化锌组成的浆料的反射比测量为依据。其用于度量炭黑降低反射光数量的能

农药用聚羧酸盐类分散剂

丙烯酸-(甲基)丙烯酸酯共聚物等高分子分散剂属于均聚物或共聚物,通常在分散体系中可以起到空间稳定作用,有的带电高分子还可以通过静电稳定机制提高分散体系的稳定性,因而高分子分散剂比无机、有机小分子分散剂更为有效。聚羧酸盐类分散剂具有长碳链,较多活性吸附点以及能起到空间排斥作用的支链,由于其特殊的结构而对悬浮体系具有很好的分散性能。 聚羧酸类分散剂与传统木质素磺酸盐、萘磺酸盐甲醛缩合物钠盐分散剂相比有以下特点: ①聚羧酸类分散剂对悬浮体系中的离子,pH值以及温度等敏感程度小,分散稳定性高,不易出现沉降和絮凝; ②聚羧酸类分散剂提高了固体颗粒的含量,显著降低分散体系粘度,在高固含量下具有较好流动性,降低了原料成本,减少设备磨损; ③原材料选择范围广,可选择不同种类的共聚单体,分子结构与性能的可设计性强,易形成系列化产品。 聚羧酸类分散剂采用不同的不饱和单体接枝共聚而成,其代表产物繁多,但结构遵循一定规则,即在重复单元的末端或中间位置带有EO,-COOH,-COO-,-SO3-等活性基团。 聚羧酸类分散剂在分子主链或侧链上引入强极性基团:羧基、磺酸基、聚氧化乙烯基等使分子具有梳形结构,分子量分布范围为10000-100000,比较集中于5000左右。疏水基分子量控制在5000-7000左右,疏水链过长,无法完全吸附于颗粒表面而成环或与相邻颗粒表面结合,导致粒子间桥连絮凝;亲水基分子量控制在3000-5000左右,亲水链过长,分散剂易从农药颗粒表面脱落,且亲水链间易发生缠结导致絮凝。聚羧酸类分散剂链段中亲水部分比例要适宜,一般为20%-40%,如果比例过低,分散剂无法完全溶解,分散效果下降;比例过高,则分散剂溶剂化过强,分散剂与粒子间结合力相对削弱而脱落。 聚羧酸类分散剂分子所带官能团如羧基、磺酸基、聚氧乙烯基的数量、主链聚合度以及侧链链长等影响分散剂对农药颗粒的分散性。分子聚合度(相对分子量)的大小与羧基的含量对农药颗粒的分散效果有很大的影响。由于分子主链的疏水性和侧链的亲水性以及侧链(-OCH2CH2)的存在,也起到了一定的立体稳定作用,以防止无规则凝聚,从而有助于农药颗粒的分散。 聚羧酸类分散剂作用机理:水基性制剂形成的悬浮体系中的原药颗粒很小,与分散介质间存在巨大的相界面,裸露的原药颗粒界面间亲和力很强,吸引能很高,易导致原药颗粒间

炭黑知识

什么是xx的体积密度? 根据炭黑的结构和其物理形态,炭黑的体积密度在各种级别的炭黑中差别很大。由于存在封闭空气,炭黑 的体积密度低于xx的真密度(比重)。 什么是xx的保质期? 储存于环境条件下时,炭黑不易受分解的影响,其保质期不受限制。随着时间推移,炭黑会吸收湿气,直 至达到一个均衡值。如果湿气影响很重要,则应将炭黑储存于干燥环境下,并尽可能密封。 DBPA: 什么是邻苯二甲酸二丁酯吸油率(DBPA)? 邻苯二甲酸二丁酯吸油率是一种用于定量炭黑等级的结构特性数量的技术。较高的邻苯二甲酸二丁酯吸油 率数值对应较高的xx结构。 为什么黑墨在不同表面上表现出不同的性能? 由于油墨是一种非常薄的膜,炭黑和载色剂往往会渗入多孔表面,从而允许更多的基体突出此薄膜。与浆 状油墨相比,这种效应在液体油墨中更为明显。高结构炭黑往往比低结构炭黑渗入较少。 什么使xx具有导电性? 炭黑在很大程度上是由类石墨碳层组成。与石墨类似,炭黑显示出导电能力,并具有相对较低的电阻(即 ,它是一种半导体)。

什么是乙炔xx? 乙炔炭黑是通过乙炔的放热分解反应制成。因此,它是非常纯的炭黑。它是所有炭黑中最接近石墨的,通 常用于提供导电性。 什么是xx的热导率? 关于炭黑热导率的现有数据很少。关于含炭黑的橡胶化合物与不含炭黑的橡胶化合物的热导率研究表明, xx提高了橡胶产品的热导率。 什么是xx聚集体的粒径? 炭黑聚集体的粒径取决于炭黑的等级,每个等级的炭黑具有其自身的平均聚集体粒径。平均聚集体粒径通 常在 0."01到 1."0微米的范围内。 什么是着色强度? 着色强度以油料中的炭黑和氧化锌组成的浆料的反射比测量为依据。其用于度量炭黑降低反射光数量的能 力。通过减小初次颗粒的粒度可以获得更高的着色强度。 什么是表面氧化的xx? 某些牌号的炭黑经过了后处理(化学氧化),以增加其表面氧的化学吸附量。在某些最终应用中,这改进 了炭黑的分散性和分散稳定性,并降低了产品的粘度。

碳黑和分散剂对黑度的影响

分散剂及碳黑对黑度的影响 摘要:本文采用不同的分散剂分散进口高色素碳黑及国产高色素碳黑,可以看出分散剂对碳 黑的黑度、粘度有非常明显的影响。合适的分散剂可以得到低粘度、低触变性、高黑度及偏 蓝色色相的碳黑浆。对这两种高色素碳黑而言,分散剂D均获得了最佳的试验结果。采用 不同的分散剂,两种碳黑之间的黑度差别也不同。当采用分散剂D时,两种高色素碳黑的 黑度值比较接近。 关键词:分散剂、碳黑、黑度 概论 颜料是色漆生产中不可缺少的成份之一,起到了很好的色彩和装饰性1。黑色颜料能提供黑 色,并在和其他颜料调配时降低饱和度,在各种涂料中尤其是高档的汽车漆中,占有一定有 市场。碳黑是最重要的黑色颜料,高色素碳黑能提供极高的黑度。对高黑度及偏蓝色色相的 渴望,永远是使用高色素碳黑的涂料人的追求。 本文选用了进口和国产两种高色素碳黑,分别采用不同的进口知名品牌的市场上反映对碳黑 分散效果较好的分散剂在2K PU体系中进行研磨。比较了不同的分散剂对碳黑分散性的差 异,以及相同的分散剂不同碳黑之间的差异。 1 试验部分 1.1 仪器和试剂 电子天平(精确到0.001g,METTLER提供);100微米涂膜器、光泽及雾影仪、25微米 刮板细度计(以上由BYK-Gardner提供);HAAKE RheoStress 600流变仪(Thermo提 供);Disperser DAS 200振荡分散仪(Lau GmbH提供)、Xrite MA-68II五角度分光光度 计(爱色丽提供)。 颜料:国产高色素碳黑(以HCC-1来表示)、进口高色素碳黑(以HCC-2表示)。 树脂:SM510n(由氰特提供);N-3390(Bayer提供)。 各种溶剂(工业级):醋酸丁酯、丙二醇甲醚醋酸酯(PMA)、二甲苯等。 助剂:分散剂A、分散剂B、分散剂C、分散剂D、分散剂E、EFKA 3288(由Ciba提供)。 1.2 色浆的配制 按表1所示的配方,在玻璃瓶中首先添加溶剂及分散剂,混合均匀后加入颜料、树脂和玻 璃珠,密闭后置于Disperser DAS 200振荡分散仪中振荡3小时。取出后过滤备用。 表1 碳黑研磨浆配方 色浆名称HCC1-A HCC1-B HCC1-C HCC1-D H 分散剂名称分散剂A分散剂B分散剂C分散剂D分分散剂固含30%46%30%50% HCC18.008.008.008.00 分散剂添加量10.36 6.7610.36 6.22

炭黑及其改性

炭黑及其改性 1 炭黑简介 碳黑(CB),也称为炭黑,这是一种无定形的碳。是一种很轻、松而且很细的黑色粉末。它的表面积非常大,范围很广从10~3000m2/g。这是由于在空气不足的条件下燃烧或者是受热分解而得的产物。比重为1.8-2.1。通过天然气制成的 “槽黑”、通过炉法制得的炉黑。按照炭黑的性能可以区分为补强炭黑、导电炭黑、耐磨炭黑等[8]。 (1)炭黑的形态 炭黑的微观构造:炭黑粒子在微观结构中是具有微小的晶体结构的,在炭黑中,碳原子排列的方式和石墨很相似,碳原子会组成一个六角形的平面形状,炭黑原子的每个微晶体都是由三四个这样的层面组成的,但是因为炭黑微晶中,在平面上炭黑排列是有规律的,但是从相邻的碳层上看,炭黑的排列又是无序的。所以又叫作准石墨晶体。 炭黑的粒径:炭黑的粒径范围是很大的,炭黑生产的工艺方法不同,得到的炭黑粒径就不同。用灯黑生产这个工艺得到的产品相对而言是比较粗糙的,用气黑这个生产工艺生产出来的炭黑粒径是比较小的,相对而言是比较精细的。用炉黑这种生产工艺方法生产出来的炭黑粒径分布的范围很大,几乎具有所有粒径的炭黑。即使生产炭黑使用的工艺方法相同,它的粒子大小也并不是完全相同的,而是呈现出一个粒径的分布范围。一般来说,炭黑粒子较细的品种,粒径的分布范围会比较窄。 (2)化学性质:炭黑表面的化学性质跟生产工艺有关。生产炭黑的工艺方法不相同,炭黑表面的化学性质就不一样。炭黑的真实表面积和计算出来的几何表面积并不相同,这是因为炭黑的表面存在着很多小孔,这种小孔大大增加了炭黑的表面积。在炭黑表面,存在着很多种含氧基团。这个理论的研究认为,随着炭黑填充量的增大,炭黑粒子的密度就会变大,炭黑粒子间相互接触的几率就会变大,这样一来,聚合物的导电性能也就会随之上升。因为炭黑表面的含氧基团有很多是极性基团,随着炭黑含量的增加,聚合物的极性也会增加,这样一来就

农药用聚羧酸盐类分散剂

农药用聚羧酸盐类分散剂 分类:表面活性剂| 标签:羧酸农药颗粒甲醛高分子 2014-02-25 22:53阅读(33)评论(0)烯酸-(甲基)丙烯酸酯共聚物等高分子分散剂属于均聚物或共聚物,通常在分散体系中可以起到空间稳定作用,有的带电高分子还可以通过静电稳定机制提高分散体系的稳定性,因而高分子分散剂比无机、有机小分子分散剂更为有效。聚羧酸盐类分散剂具有长碳链,较多活性吸附点以及能起到空间排斥作用的支链,由于其特殊的结构而对悬浮体系具有很好的分散性能。 聚羧酸盐类分散剂与传统木质素磺酸盐、萘磺酸盐甲醛缩合物钠盐分散剂相比有以下特点: ① 聚羧酸盐类分散剂对悬浮体系中的离子,pH值以及温度等敏感程度小,分散稳定性高,不易出现沉降和絮凝; ② 聚羧酸盐类分散剂提高了固体颗粒的含量,显著降低分散体系粘度,在高固含量下具有较好流动性,降低了原料成本,减少设备磨损; ③ 原材料选择范围广,可选择不同种类的共聚单体,分子结构与性能的可设计性强,易形成系列化产品。 聚羧酸盐类分散剂采用不同的不饱和单体接枝共聚而成,其代表产物繁多,但结构遵循一定规则,即在重复单元的末端或中间位置带有EO,-COOH,-COO-,-SO3-等活性基团。 聚羧酸盐类分散剂在分子主链或侧链上引入强极性基团:羧基、磺酸基、聚氧化乙烯基等使分子具有梳形结构,分子量分布范围为10000-100000,比较集中于5000左右。疏水基分子量控制在5000-7000左右,疏水链过长,无法完全吸附于颗粒表面而成环或与相邻颗粒表面结合,导致粒子间桥连絮凝;亲水基分子量控制在3000-5000左右,亲水链过长,分散剂易从农药颗粒表面脱落,且亲水链间易发生缠结导致絮凝。聚羧酸类分散剂链段中亲水部分比例要适宜,一般为20%-40%,如果比例过低,分散剂无法完全溶解,分散效果下降;比例过高,则分散剂溶剂化过强,分散剂与粒子间结合力相对削弱而脱落。 聚羧酸类分散剂分子所带官能团如羧基、磺酸基、聚氧乙烯基的数量、主链聚合度以及侧链链长等影响分散剂对农药颗粒的分散性。分子聚合度(相对分子量)的大小与羧基的含量对农药颗粒的分散效果有很大的影响。由于分子主链的疏水性和侧链的亲水性以及侧链(-OCH2CH2)的存在,也起到了一定的立体稳定作用,以防止无规则凝聚,从而有助于农药颗粒的分散。 聚羧酸类分散剂作用机理:水基性制剂形成的悬浮体系中的原药颗粒很小,与分散介质间存在巨大的相界面,裸露的原药颗粒界面间亲和力很强,吸引能很高,易导致原药颗粒间

分散剂的7种类型

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/fe12188784.html,)分散剂的7种类型 分散剂又称湿润分散剂,它除具有湿润作用外,其活性基团一端能吸附在粉碎成细小微粒的颜料表面,另一端溶剂化进入漆基形成吸附层(吸附基越多,链节越长,吸附层越厚),产生电荷斥力(水性涂料)或熵斥力(溶剂型涂料),使颜料粒子长期分散悬浮于漆基中,避免再次絮凝,因而保证制成的色漆体系的贮存稳定。 分散剂有很多种,初步估算,现存世界上有1000多种物质具有分散作用。现按其结构来区分,可分为以下7种类型。 阴离子型润湿分散剂 大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。它的品种有:油酸钠c17h33coona、羧酸盐、硫酸酯盐(r—o—so3na)、磺酸盐(r—so3na)等。阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。多元羧酸聚合物等也可应用于溶剂型涂料,并作为受控絮凝型分散剂广泛使用。 阳离子型润湿分散剂 非极性基带正电荷的化合物,主要有胺盐、季胺盐、吡啶鎓盐等。阳离子表面活性剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。 非离子型润湿分散剂

在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。主要分为乙二醇性和多元醇型,降低表面张力和提高润湿性。与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。 两性型润湿分散剂 是由阴离子和阳离子所组成的化合物。典型应用的是磷酸酯盐型的高分子聚合物。这类聚合物酸值较高,可能会影响层间附着力。 电中性型润湿分散剂 分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性。如油氨基油酸酯c18h35nh3oocc17h33等均属于这种类型,在涂料中应用相当广泛。 高分子型超分散剂 高分子型分散剂最为常用,稳定性也最佳。高分子型分散剂也分为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯或聚酯型高分子分散剂等,由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。 受控自由基型超分散剂

常用炭黑的牌号

常用炭黑的牌号、性能及其使用 资料来源:好颜料网作者:日期:2009-1-4[字体大中小] N110 ASTM 标准命名N110 其它名称超耐磨炉黑(super abrasion furnace black;SAF) 物化性质本品是橡胶用炭黑中粒径最小的品种,具有标准的结构性,其性能的典型值:吸碘值145g/kg, DBP吸收值113cm3/100g。 用途本品主要用于越野轮胎和载重轮胎胎面、桥梁用胶垫、输送带及其它要求耐磨性能极好的橡胶制品。 用法和作用本品是橡胶用炭黑中补强性能最高、耐磨性能最好的品种之一,但因其胶料的加工性能不好(混炼能耗高、分散困难、压延 及压出不易等),在使用上受到限制。本品可与N220 、N330炭 黑并用。 注意事项本品在混炼时要注意分散均匀,防止混炼时升温过快而引起焦烧。混炼时一般不另加分散剂,必要时可加防焦剂或与其它炭黑 并用。 N220 ASTM 标准命名N220 其它名称中超耐磨炉黑(Intermediate super abrasion furnace black;ISAF) 物化性质本品是一种广泛使用的高补强型炉法炭黑,具有较高的结构性,耐磨性介于超耐磨炉黑和高耐磨炉黑之间,其性能的典型值: 吸碘值121g/kg, DBP吸收值114cm3/100g。 用途本品用于载重胎、乘用胎等胎面胶,及需要高强度、高耐磨的橡胶制品,如高强度运输带、工业橡胶制品等。 用法和作用本品适用于各种橡胶,与N330炭黑相比,使用N220炭黑的胶料的耐磨性要高10~20%,能赋予胶料较高的拉伸强度和抗撕裂 强度,并有一定的导电性,但生热和硬度较高。 N234 ASTM 标准命名N234 其它名称新工艺高结构中超耐磨炉黑(Intermediate super abrasion furnace black-high structure[New technology];ISAF-HS[New technology]) 物化性质本品具有较高的结构,是N200系列炭黑中耐磨性和补强性较好的一个品种。其性能的典型值:吸碘值120g/kg, DBP吸收值 125cm3/100g。 用途本品用于高速轮胎胎面胶和高质量的橡胶制品。

聚羧酸系分散剂的新变化

聚羧酸系分散剂的新变化 2009-02-22 14:42:11| 分类:外加剂| 标签:|字号大中小订阅 在混凝土行业中,使用化学外加剂提高混凝土性能,已是一项广为接受的应用实践。引气剂、早强剂和减水剂都已成为有价值的添加剂,提供给混凝土生产商。有时,减水剂特别有助于满足两项具有竞争性的要求,即在混凝土浇筑过程中所需的良好工作性,以及混凝土耐久性和其他各种硬化性能要求所需的低水 胶比(w/cm)。 减水剂这个产品术语的使用已有很多年了。ASTM C494标准中,把减水剂分成若干类:A类为(普通)减水剂;D类为缓凝型减水剂;E类为早强型减水剂;F类为高效型减水剂;G类为高效缓凝型 减水剂。 此外,ASTM(美国材料试验学会)在ASTM C1017标准中,还包括了生产流动性混凝土所用的化学外加剂。该标准的重点是,在不降低用水量的状况下,生产高坍落度混凝土拌合物时,如何使用化学外加剂。在大多数情况下,ASTM C494标准中分类为F 型和G型的化学外加剂,被ASTM C1017标准规定用于生产流动性混凝土。这些高效减水剂不仅仅只是起减水作用,它们还会分散水泥颗粒。这种分散作用

既可降低用水量,又可产生较高的坍落度,或者两者兼而有之。因此,这类高效减水剂能提供的应用灵活性更大,产品也更有价值。 聚羧酸系分散剂 近十年来,分散剂化学已取得了重大的进展。其中包括在混凝土行业的所有产品领域中,均广泛引进和应用聚羧酸系分散剂。在此之前,大多数分散剂的化学性能只局限于对分子的改性。但是,聚羧酸系分散剂的应用,已为开发各种新分子结构铺平了道路。聚羧酸系新分子结构不仅会影响混凝土的各种具体性能,而且还可以为混凝土定制各种性能。这对于混凝土行业无疑是个巨大的技术进步。应用各种开发出的新分子结构,能单独分散波特兰水泥颗粒,而以前所用的分散剂,大多只是其他工业的副产品而已。 只有为混凝土的应用专门设计的分子,才能使混凝土产品真正受益。在进行聚羧酸分子结构设计时,应使用户更深入地懂得,为什么它能在混凝土行业的应用中,会有如此多的可靠性和灵活性。聚羧酸是具有梳状结构的聚合物,其命名本身就意味着其分子结构的特征,即由一个主杆和接枝多个侧链组成的,就像一个梳头的梳子,其分子结构,使这类分散剂具有

水性体系中炭黑分散的影响因素_魏彤

水性体系中炭黑分散的影响因素 魏 彤 王利军 张友兰 尹月燕 刘志华 (天津大学化工学院,天津300072) 摘 要 通过使用不同结构的分散剂分散表面性质各异的炭黑,考察了炭黑的表面性质、分散剂的结构、体系pH值及电解质的加入对水性体系中炭黑分散的影响。研究发现以疏水端为平面分子、亲水端为可解离盐基的离子型聚合物分散剂来分散原生粒子较小的酸性炭黑时,会得到良好的分散液。 T he Effects on Dispersion of Carbon Black in Water Wei Tong W ang Lijun Zhang Youlan Yin Yueyan Liu Zhihua (Chemical Engineering Institute of Tianjin University,Tianjin300072) Abstract Effects of surface property of carbon black,structure of dispersant,pH value of sy stem and addition of electroly te on the dispersion of carbon black in w aterborne system are investig ated.It was found that w hen carbo n black with small primal particle size is dispersed with ionized poly mer dispersant in w hich plane molecular seroes as hydrophobic g roup and salt group serves as hydrophilic g roup,a good dispersion can be abtained. 1 前言 随着世界环保意识的加强,水性涂料及印墨这种既节省能源又保护大气环境的产品愈来愈受到人们的重视。近几年来,各国先后开展了大量的工作,进行实用水性涂料及印墨的开发和研制〔1~6〕。在其开发过程中,除去研究性能优异的成膜材料之外,使得着色剂均匀而稳定地分散于展色料中是决定涂料和印墨性能的又一重要因素。因此,随着水性涂料和印墨的迅速发展,关于着色剂在水性体系中分散稳定性的研究愈来愈受到人们的关注。炭黑是一种广泛应用于印墨中的着色剂,许多生产厂家从提高炭黑在水中的润湿性着手,推出各种适于水性体系使用的炭黑,如美国Cabot公司生产出REGAL-400R等。然而,关于水性体系中影响炭黑分散稳定的各种因素尚无系统的报道。水高介电常数的特点使得在水性体系中能够影响粒子间电斥力的因素不容忽视,因此,系统地研究炭黑表面酸碱性、分散剂结构、体系pH值以及电解质的加入对水性体系中炭黑分散的影响不仅能够为国产炭黑及分散剂的改性提供理论依据,而且对开发实用性的水性涂料及印墨具有普遍的指导意义。 本文在对炭黑表面酸碱性测定的基础上,用各种类型的分散剂对表面性质各异的炭黑进行研磨分散,同时考察了体系pH值以及电解质的加入对炭黑研磨分散的影响,依据分散后粒径的变化,分析了分散剂与炭黑表面的结合特点及影响水性体系中炭黑分散的各种因素,所得的结果对制备水性印墨和涂料时选择适当的炭黑和分散剂具有较高的应用价值。 2 实验方法 2.1 实验用原材料 炭黑:实验用炭黑包括REGAL-400R(R-400R)、MOGU L-L(M-L)和TC-415由Cabot 公司提供。各种炭黑比表面积、原生粒子直径、吸油量和挥发份列于表1。 分散剂:实验室所用分散剂包括Joncry168(J-68)、BYK-154和Solsperse27000(S-27000),其结构见表2。其中J-68为阴离子型聚合物分散剂,由日本Johnson poly mer株式会社生产;BYK-

橡胶用白炭黑填料的分散剂

橡胶用白炭黑填料的分散剂 David Jividen1,Harvey Kaufman2 (11Western Reserve Chemical Corp.,Stow,Ohio;21Polymer Process Technologies,Akron,Ohio) 摘要:以一种新型白炭黑分散剂PPT2HDI作为研究对象,它是一种作用于白炭黑表面的极性材料,可以打碎白炭黑附聚体,改善其在胶料中的分散;它对胶料的动态性能有积极作用,使胶料易加工,并改善胶料抗静电性能。 中图分类号:TQ330138 文献标识码:B 文章编号:100628171(2001)0620361203 众所周知,在轮胎胎面胶中使用白炭黑和偶联剂可以改善轮胎的性能,即滚动阻力、磨耗和牵引性能。但是这种胶料的加工很困难也是众所周知的。这些困难部分来源于白炭黑粒子间强烈的相互作用。硅烷偶联剂可以有效地降低填料与填料之间的相互作用,促进聚合物与填料的相互作用。 PPT2HDI是一种有效的廉价分散剂,它能极大地提高混炼效率,可以使偶联剂在用量很低的情况下便能有效降低填料与填料之间的相互作用。 1 实验 本研究中选用典型添加白炭黑的轿车轮胎胎面胶(胶料配方见表1),混炼采用常规的二段密炼工艺。 试验胶料硫化至硫变仪测量的正硫化点(t90),硫化胶性能采用工业上通常应用的方法来测定。 2 混炼 一种有效的分散剂将减少混炼过程中的能量消耗并能够使填料快速地混入。功率消耗测量结果(见表2)表明,添加分散剂可以降低功率消耗和胶料温度。 加与不加分散剂的胶料混炼功率曲线表明,随着白炭黑、偶联剂和分散剂的加入,功率消耗量立即急剧增大,尔后又迅速降低。当白炭黑与偶联剂单独加入时却看不到明显的波 表1 白炭黑轿车轮胎胎面胶配方 配合剂用量/份配合剂用量/份SBR Duradene70670防老剂6PPD 1.5 BR Budene120730微晶蜡 1.0 沉淀法白炭黑23365防老剂TMQ 1.0 德固萨X50512.5芳烃油25.0 炭黑N11010.0促进剂CZ 1.6 氧化锌 3.0促进剂D 2.0 硬脂酸 2.0硫黄 1.6表2 加与不加分散剂胶料混炼功率消耗对比项 目 分散剂用量/份 03 功率/kW 3.38 3.27 能耗/(kW?h)0.6080.573 胶料温度/℃144.4141.7 测头温度/℃165.0158.3 峰。这种差异被认为是由于分散剂迅速打碎了白炭黑附集体的结果。波峰的比较也表明加入分散剂后白炭黑的混入加快了。 3 流变性能 硫化仪数据(见表3)表明了含有分散剂的混炼胶具有较低转矩值,转矩值较低通常表明填料与填料之间的相互作用较弱。 4 硫化性能 分散剂对硫化速度有轻微的延迟作用,从而导致硫化胶物理性能降低(见表4)。没有试图为本研究调节硫化速度或硫化程度,这个问题将留给配方设计人员。应注意,作为公认的 163 第6期 David Jividen et al.橡胶用白炭黑填料的分散剂

碳黑和分散剂对黑度的影响

碳黑和分散剂对黑度的影响

分散剂及碳黑对黑度的影响 摘要:本文采用不同的分散剂分散进口高色素碳黑及国产高色素碳黑,可以看出分散剂对碳黑的黑度、粘度有非常明显的影响。合适的分散剂可以得到低粘度、低触变性、高黑度及偏蓝色色相的碳黑浆。对这两种高色素碳黑而言,分散剂D 均获得了最佳的试验结果。采用不同的分散剂,两种碳黑之间的黑度差别也不同。当采用分散剂D时,两种高色素碳黑的黑度值比较接近。 关键词:分散剂、碳黑、黑度 概论 颜料是色漆生产中不可缺少的成份之一,起到了很好的色彩和装饰性1。黑色颜料能提供黑色,并在和其他颜料调配时降低饱和度,在各种涂料中尤其是高档的汽车漆中,占有一定有市场。碳黑是最重要的黑色颜料,高色素碳黑能提供极高的黑度。对高黑度及偏蓝色色相的渴望,永远是使用高色素碳黑的涂料人的追求。 本文选用了进口和国产两种高色素碳黑,分别采用不同的进口知名品牌的市场上反映对碳黑分 散效果较好的分散剂在2K PU体系中进行研磨。

比较了不同的分散剂对碳黑分散性的差异,以及相同的分散剂不同碳黑之间的差异。 1 试验部分 1.1 仪器和试剂 电子天平(精确到0.001g,METTLER提供);100微米涂膜器、光泽及雾影仪、25微米刮板细度计(以上由BYK-Gardner提供);HAAKE RheoStress 600流变仪(Thermo提供);Disperser DAS 200振荡分散仪(Lau GmbH 提供)、Xrite MA-68II五角度分光光度计(爱色丽提供)。 颜料:国产高色素碳黑(以HCC-1来表示)、进口高色素碳黑(以HCC-2表示)。 树脂:SM510n(由氰特提供);N-3390(Bayer 提供)。 各种溶剂(工业级):醋酸丁酯、丙二醇甲醚醋酸酯(PMA)、二甲苯等。 助剂:分散剂A、分散剂B、分散剂C、分散剂 D、分散剂 E、EFKA 3288(由Ciba提供)。 1.2 色浆的配制 按表1所示的配方,在玻璃瓶中首先添加溶剂及分散剂,混合均匀后加入颜料、树脂和玻璃珠,

炭黑的结构和性质大汇总

炭黑的结构和性质大汇总 为什么黑墨在不同表面上表现出不同的性能? 由于油墨是一种非常薄的膜,炭黑和载色剂往往会渗入多孔表面,从而允许更多的基体突出此薄膜。与浆状油墨相比,这种效应在液体油墨中更为明显。高结构炭黑往往比低结构炭黑渗入较少。 什么使炭黑具有导电性? 炭黑在很大程度上是由类石墨碳层组成。与石墨类似,炭黑显示出导电能力,并具有相对较低的电阻(即,它是一种半导体)。 什么是乙炔炭黑? 乙炔炭黑是通过乙炔的放热分解反应制成。因此,它是非常纯的炭黑。它是所有炭黑中最接近石墨的,通常用于提供导电性。 什么是炭黑的热导率? 关于炭黑热导率的现有数据很少。关于含炭黑的橡胶化合物与不含炭黑的橡胶化合物的热导率研究表明,炭黑提高了橡胶产品的热导率。 什么是炭黑聚集体的粒径? 炭黑聚集体的粒径取决于炭黑的等级,每个等级的炭黑具有其自身的平均聚集体粒径。平均聚集体粒径通常在0.01 到 1.0 微米的范围内。 什么是着色强度? 着色强度以油料中的炭黑和氧化锌组成的浆料的反射比测量为依据。其用于度量炭黑降低反射光数量的能力。通过减小初次颗粒的粒度可以获得更高的着色强度。 什么是表面氧化的炭黑? 某些牌号的炭黑经过了后处理(化学氧化),以增加其表面氧的化学吸附量。在某些最终应用中,这改进了炭黑的分散性和分散稳定性,并降低了产品的粘度。 体积密度为何重要? 体积密度的值表示不同炭黑级别所占据的空间面积。 何谓炭黑结构? 炭黑的聚集体通过称为初次颗粒的较小单元融合形成,形成立体支链结构或簇。这种融合由反应器控制,从而产生不同程度的簇。允许颗粒聚集形成相对大且复杂的聚集体的炭黑等级被称为高结构等级。聚集范围最小化的等级被称为低结构等级。 初次颗粒:什么是炭黑初次颗粒? 制造过程中形成的最初微粒称为初次颗粒。形成之初,这些颗粒是半固态的。这些颗粒通过反应器时,它们碰撞并熔凝在一起,形成称为聚集体的球团。

相关文档
最新文档