烘烤条件对超低碳烘烤硬化钢BH值的影响

烘烤条件对超低碳烘烤硬化钢BH值的影响
烘烤条件对超低碳烘烤硬化钢BH值的影响

第21卷第4期2009年12月

武汉工程职业技术学院学报

Jou rnal of W uhan Engineering Institute

Vol.21No.4

Decemb er2009

烘烤条件对超低碳烘烤硬化钢BH值的影响

段小平 胡吟萍

(武汉钢铁(集团)公司研究院 湖北 武汉:430080)

摘 要 研究分析烘烤温度、烘烤时间、预应变量等烘烤条件对超低碳烘烤硬化钢烘烤硬化性能的影响。结果发现在烘烤温度小于140 时,BH值随着烘烤温度的增加而显著增加,烘烤温度高于140 时,温度对其影响不大;2%预应变、140 烘烤条件下,超低碳钢的烘烤硬化效应在数分钟内迅速表现出来,20分钟内达到最大,随保温时间的继续增加,BH值并无明显变化;预变形量对BH 值有一定的影响,大于2%的预变形反而会减弱烘烤硬化效应。

关键词 超低碳烘烤硬化钢;烘烤温度;BH值;预变形;烘烤时间

中图分类号:T G162.83 文献标识码:A 文章编号:1671 3524(2009)04 0008 03

超低碳烘烤硬化钢(简称ULC-BH钢)具有超低碳无间隙原子超深冲钢的深冲性能和含磷钢板的高强度以及烘烤硬化钢板的抗凹性能,因而具有良好的综合性能,受到了汽车制造业的广泛关注,主要应用于制造汽车内、外面板等大型覆盖件[1 2]。

超低碳烘烤硬化钢的烘烤硬化效应不仅与钢本身有关,还与烘烤温度、时间和预变形量有密切关系,为了更好了解这些条件对U LC-BH钢烘烤硬化特性的影响,本文研究了不同烘烤条件(烘烤温度、烘烤时间、预变形量)下的U LC-BH钢的烘烤硬化特性。

1 实验材料和方法

1.1 实验材料

研究材料取自武钢工业化生产线,钢板的成分如表1所示。

表1 超低碳烘烤硬化钢化学成分(wt%)

C Si M n P S N Nb Ti

0.00150.0490.140.0150.0120.00240.0040.013

1.2 实验方法

工业生产中的钢板试样,在ZWICK-Z050型材料试验机上测试钢板的基本力学性能、烘烤硬化性能。试样加工按照GB/T228-2002标准进行,r 和n的测试和试样加工分别按照GB5027-1999和GB5028-1999标准进行。BH值测定见图1

所示。

图1 BH值测定示意图

2 结果与讨论

2.1 试验钢的组织和性能

金相组织观察试样取自武钢工业化生产的连续退火板,观察面为平行轧向的试样侧面,样品经砂纸研磨、抛光和4%硝酸酒精腐蚀后,在金相显微镜上进行观察。其金相组织见图2所示,从图2中

可以

图2 试验钢金相组织

收稿日期:2009 10 12 修回日期:2009 10 26

作者简介:段小平(1980~),男,硕士,工程师.E m ail:dx p16898@https://www.360docs.net/doc/fe13918105.html,

看出,该钢的显微组织为9级铁素体组织,晶粒细小的铁素体组织保证了钢具有良好的宏观力学性能和优良的成形性能,见表2。

表2 试验钢的力学性能

R p0.2/M Pa

R m /M Pa A 80mm /%

r 90n 90215

335

39

1.95

0.21

2.2 烘烤条件对BH 值的影响2.2.1 烘烤温度的影响

为了考察烘烤温度对烘烤硬化效应的影响,把加工好的试样通过拉伸试验机给其施加2%的预变形(应变速率5mm/min),测试2%应变时的强度R t2.0,然后放入恒温干燥箱内用不同的烘烤温度处理20m in,自然冷却后测定其屈服强度R el (BH ),BH =R el (BH )-R t2.0

图3 烘烤温度对BH 值的影响

图3为不同烘烤温度条件下的BH 值测试结果。从图中可以看出,在2%预变形,烘烤处理20分钟的条件下,随着烘烤温度的升高,烘烤硬化效应增强。在50~140 区间里,BH 值随着温度的升高而有显著的提升,在140~170 范围内,烘烤温度对烘烤硬化效应的影响较小。

BH 钢板经过热轧、冷轧、退火平整后,基体内位错密度很低,给其施加一定的预变形后,基体内位错密度增加,通过烘烤硬化处理,使间隙原子达到发生扩散的临界条件,基体内的间隙固溶原子向晶界处发生扩散,由于受到位错的阻碍,间隙原子在位错处堆积形成柯氏气团,柯氏气团阻碍晶体的变形,表现出强度增大的硬化现象。根据间隙原子机理的扩散系数方程[3]:

D =D 0ex p (-

E a

RT

)(1) 其中,D 为间隙碳原子在铁素体中的扩散系数;R =8.314J/m ol ,表示气体常数;D 0,扩散常量,约为2 10-6m 2/s;E a ,扩散摩尔激活能,约为18018J/m ol 。根据方程(1)可以计算出不同烘烤温度下固

溶C 在钢中的扩散系数,烘烤温度对扩散系数D 的

影响关系见图4。

图4 烘烤温度对扩散系数D 的影响

从图4中可以发现,固溶碳在基体中的扩散系数是随着温度的升高而增大。在低于140 区间,曲线斜率较陡,即扩散系数D 随温度的变化敏感;而140~170 区间,曲线斜率减小,即扩散系数随温度变化趋缓,与试验钢BH 值与烘烤温度的变化趋势一致。扩散系数D 是决定扩散过程的一个重要的物理量,其值越大,扩散过程进行的越快。相同预变形量和烘烤时间,温度越高,扩散系数越大,扩散进行的越快,扩散到基体位错参与形成柯氏气团的固溶C 原子越多,柯氏气团钉扎原子密度越大,晶体摆脱柯氏气团的钉扎继续发生应变所需的力越大,宏观上表现为屈服强度增大。

当烘烤温度在140 以上时,BH 值变化相对平缓,温度对BH 值影响较小。这可能是由于试验钢为超低碳钢并且通过加Ti 减少固溶原子,钢中固溶原子含量较少。当温度达到140 时,烘烤20分钟,钢中固溶原子完成了参与柯氏气团形成的扩散,此时由于没有更多的固溶原子可扩散,任何扩散系数的提高都不会给固溶原子的扩散总量带来大的变化。该试验钢在2%预变形,140 时效20分钟后,烘烤硬化效应已达饱和,此时扩散系数的提高对BH 值影响不大。

2.2.2 烘烤时间的影响

图5为烘烤时间对BH 值的影响关系图。从图中可以看出,2%预变形,140 烘烤温度条件下,试验钢的烘烤硬化值在短短几分钟内迅速增大,20分钟后,时间对烘烤硬化值影响不大。研究[4]认为,超低碳烘烤硬化钢的烘烤硬化值与柯氏气团的溶质浓度有关,当浓度达到临界值(0.2)时,柯氏气团作用产生的烘烤硬化值达到最大,柯氏气团的溶质浓度的继续增大并不会带来更大的烘烤硬化效应。A.K.De 等人[5]通过内耗峰法研究了超低碳烘烤硬化钢的静态烘烤硬化效应,发现在5%预变形,100 烘烤温度下,柯氏气团的溶质浓度在20分钟内达到临界值,柯氏气团作用产生的烘烤硬化效应达到饱

9

段小平 胡吟萍:烘烤条件对超低碳烘烤硬化钢BH 值的影响

和,进一步延长烘烤时间对BH 值没有大的影响,与

本文结果一致。

图5 烘烤时间对BH 值的影响

2.2.3

预变形量的影响

图6 预变形量对BH 值的影响

图6为预变形对烘烤硬化效应的影响关系曲线图。从图中可以看出,预变形量较小时(小于2%)时,预应变量可以提高烘烤硬化值,但随着预应变量的继续增大,烘烤硬化值会有轻微减小。预应变量小于2%时,预变形会使钢板产生少量的新位错,位错的增加会提高钢板的加工硬化,增强固溶间隙原

子与位错的相互作用,从而提高钢板的烘烤硬化效果。而随着预应变的继续增大,产生大量新位错,新位错的产生和新旧位错的移动会使位错相互交织在一起。自行固定,反而减少了可自由运动的位错数量,致使参与形成柯氏气团的位错数量减少,降低钢板烘烤硬化效果[6]。

3 结 论

(1)随着烘烤温度的提高,烘烤硬化效应增加显著;在固溶间隙原子达到饱和状态后,烘烤温度对烘烤硬化效应的影响不明显。

(2)烘烤硬化效应在20分钟内达到最大,之后烘烤时间对烘烤硬化影响甚微。

(3)预应变为烘烤硬化效应提供形成柯氏气团所需的自由运动位错;预应变大于2%后,预应变增大会减弱烘烤硬化效应。

参考文献

[1] 李东升,李雪峰.汽车板材烘烤硬化特性的研究[J ].金属成形

工艺,2001,(19):14-17.

[2] 赵 虎,康永林.终轧温度对超低碳BH 钢板组织和性能的影

响[J].汽车工艺与材料,2006,(6):6-8.

[3] S.Berben ni,V.Favier,et al.A micromechanical approach to

model the bak e hardening effect for low carbon steels [J].J.Scripta M aterialia,2004,51:303-308.

[4] A.H.Cottrell,B.A.Bilby,et al.Pro.Ph ys.Soc.Lond.1949,

A62:49.

[5] A.K.De,et al.S tatic strain aging behavior of ultra low carb on

bake harden ing steel[J ].J.S cripta M aterialia,41(8):831-837.

[6] 焦轶民,傅玉生.国产烘烤硬化钢板BH 值的检测与探讨[J ].

天津汽车,1994,4:36-40.

Effect of baking conditions on bake hardening value of ULC-BH Steel

DU A N Xiaoping H U Y inping

Abstract:The present paper discusses the effect of baking tem perature 、baking time and pre strain on the bake hardenability of ultra low carbon bake hardening steel (U LC-BH steel).The r esults show that w ith increasing of the baking temperature(<140 ).BH values increase significantly,and the hig her bak ing tem perature has little effect on BH v alues.Given 2%pre strain at 140 ,the bake hardening behav io r of the steel becomes noticeable in a few minutes and BH value reaches the max imum w ithin 20m inutes;then baking tim e has little effect o n BH value of the steel.T he pre strain has a cer tain effect o n BH https://www.360docs.net/doc/fe13918105.html,rg er pre strain tends to w eaken the bake hardening behav io r.

Key words:U LC-BH steel;baking temper ature;BH value;pre strain;baking tim e

(责任编辑:栗 晓)

10

武汉工程职业技术学院学报 2009.4

正火,回火,退火,淬火处理

正火,回火,退火,淬火的区别 1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温. 退火有完全退火、球化退火、去应力退火等几种。 a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力. b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢. c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力. 2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 3.淬火

将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。 4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性. B 中温回火350~500;提高弹性,强度. C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。

微合金元素在钢中的作用(精)

为了合金化而加入的合金元素, 最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用 : (1提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。 (2 硅能显著地提高钢的弹性极限、屈服极限和屈强比 , 这是一般弹簧钢。 (3耐腐蚀性。硅的质量分数为 15%-20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层 SiO 2薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4使钢的焊接性能恶化。 2、锰在钢中的作用 (1锰提高钢的淬透性。 (2锰对提高低碳和中碳珠光体钢的强度有显著的作用。 (3锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象; ②锰有促进晶粒长大的作用, 因此锰钢对过热较敏感 t 在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过 1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低。 3、铬在钢中的作用 (1铬可提高钢的强度和硬度。 (2铬可提高钢的高温机械性能。 (3使钢具有良好的抗腐蚀性和抗氧化性

(4阻止石墨化 (5提高淬透性。 缺点:①铬是显著提高钢的脆性转变温度②铬能促进钢的回火脆性。4、镍在钢中的作用 (1可提高钢的强度而不显著降低其韧性。 (2镍可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3改善钢的加工性和可焊性。 (4镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。 5、钼在钢中的作用 (1钼对铁素体有固溶强化作用。 (2提高钢热强性 (3抗氢侵蚀的作用。 (4提高钢的淬透性。 缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。 6、钨在钢中的作用 (1 提高强度 (2提高钢的高温强度。 (3提高钢的抗氢性能。 (4是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

微合金化的元素作用

在普通碳钢通常依靠加入碳来提高强度,这样就造成了提高碳含量的同时必然降低钢的塑性和韧性。使普碳钢不能满足强度与韧性的更好组合,由此人们开始研究不增加碳含量,加入其它元素来提高强度,也就是保持低碳钢的韧性前提下,利用微合金化提高强度。此类钢的综合力学性能比低碳结构钢有很大的改善,而与普通合金钢相比,其添加的合金元素又如此之少,按重量百分比,再继之以控制冷却,才能使钢的性能更佳,此类钢使用之前一般不再进行热处理。微合金化元素在钢中的作用主要是细化晶粒,阻碍再结晶进行以及析出强化。 1Nb的作用 在超低碳贝氏体钢(ULCB)的整个发展过程中,微量Nb起着独特的作用。这类钢中C含量已经降到0.05%,又不加入较多合金元素,因此强化主要靠位错强化,析出强化特别是组织强化。近年来的研究表明,微量Nb在超低碳贝氏体钢(ULCB)中的作用,主要体现在以下两个方面。 1)微量Nb抑制变形再结晶行为,加剧变形奥氏体中的应变积累,大幅度提高相变前组织中的位错密度。超低碳贝氏体钢(ULCB)的优良综合性能主要来自钢的组织细化以及贝氏体中的高位错密度,再实现这一目标,首先需要在控轧过程中,在非再结晶区轧制时引入大量高密度畸变区,这些高密度畸变区在随后的冷却过程中成为相变核心,大幅度促进相变组织细化。同时,要在发生切变形型贝氏体相变过程中,能把相当一部分变形位错保留在贝氏体基体中,从而大幅度提高贝氏体基体强度。为了达到这一点,要求钢种有相当高的热轧再结晶

终止温度以及抑制冷却时扩散型铁素体转变的能力,合金成分设计充分考虑了Nb及Nb—B这方面的作用。 2)微量Nb与B、Cu的复合作用加快了诱导析出,稳定变形位错结构。微量Nb加入贝氏体钢中的第二个作用是,这类钢高温非再结晶轧制阶段会应变诱导形成极细的Nb(C、N)析出物。这些析出物主要析出在变形晶界及变形位错网上,它们阻碍了位错的恢复以及消失的过程,稳定了位错结构,为随后冷却过程相变形核提供更多机会,同时组织新相的长大,最终细化组织。实验研究表明当Nb和B、Cu综合加入时,它们的综合作用会进一步促进析出过程加速,并且进一步降低冷却时的相变温度,使最终组织进一步细化。 2Cu的作用 对含Cu的超低碳硼钢研究发现,Cu能显著地降低B钢的γ→α 转变温度,当采用炉冷时的转变温度降低160℃,即使用最快的冷速,仍可使转变温度降低40℃,实验发现,Cu在单独作用时,对γ→α转变只有中等程度的影响,转变温度降低的数值正比于Cu的含量,大约1%的Cu使转变温度降低11℃,但是在Cu—B系的低碳B钢中Cu和B 的复合作用是很显然的,实际上,它们的复合作用比(Mo+B)的复合作用还强的多。Cu作为合金元素加入到钢中除了对相变点发生影响外,主要是依靠铜钢的时效硬化作用来得到好的综合性能。例如钢中添加了大量的Cu时,依靠Cu的时效硬化,在对韧塑性没有明显损害的条件下,得到高强度。各国的铜钢的Cu含量不同,例如我国常常采用范围在0.08—0.80%,而美国加入的Cu量很高,可达2.0%左右。

45号钢淬火回火实验要点

郑州航空工业管理学院金属材料及热处理 课程设计 学生专业:材料成型及控制工程学生姓名: 学生学号: 所在学院:机电工程学院 指导老师: 报告日期: 2015年5月14日

目录 一、实验综述---------------------------- (3) 二、实验目的---------------------------- (8) 三、实验设备---------------------------- (8) 四、实验过程---------------------------- (8) 五、实验结果---------------------------- (9) 六、实验结果分析------------------------- (12) 七、结论------------------------------- (12) 八、参考文献--------------------------- (13)

一、实验综述 45号钢综述 45 号钢为优质碳素结构用钢 ,硬度不高易切削加工,模具中常用来做模板,梢子,导柱等,但须热处理。45号钢主要成分为Fe(铁元素),且含有以下 热处理是一种很重要的金属热加工的工艺方法,热处理是根据钢在固态下组织转变的规律,通过不同的加热、保温和冷却,以改变其内部组织,达到改善刚才性能的一种热加工工艺。热处理一般是由加热、保温、和冷却三个阶段组成的,其基本工艺方法可分为退火、淬火及回火等,本次试验要求是淬火与回火。(一)钢的淬火 钢的淬火:淬火是指将钢加热到临界温度以上,保温后以大于临界冷却速度的速度冷却,使奥氏体转变为马氏体的热处理工艺。淬火的目的就是为了获得马氏体,并与适当的回火工艺相配合,以提高刚的力学性能。为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热温度、保温时间和冷却速度。 (1)淬火温度选择 正确选定加热温度是保证淬火质量的重要一环。淬火加热温度的选择应以得到细小的奥氏体晶粒为原则,以便淬火后获得细小的马氏体组织。淬火时的具体加热温度主要取决于钢的临界点确定,钢的淬火温度可根据(如图1所示)进行选择。对45#钢的亚共析钢,其加热温度为 Ac3+30~50oC,此实验采用的加热温度为790o。若加热温度不足(低于780oC的Ac3温度),则淬火组织中将出现铁素体而造成强度及硬度的降低;但过高的加热温度(如超过Acm)不仅无助于强度、硬度的增加,反而会由于产生过多的残余奥氏体而导致硬度和耐磨性的下降。

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

BQB416-2009烘烤硬化钢(发布稿)

宝山钢铁股份有限公司企业标准 烘烤硬化高强度冷连轧钢板及钢带 Q/BQB 416-2009 代替Q/BQB 416-2003 1范围 本标准规定了烘烤硬化高强度冷连轧钢板及钢带的术语和定义、分类和代号、尺寸、外形、重量、技术要求、检验和试验、包装、标志及检验文件等。 本标准适用于宝山钢铁股份有限公司生产的厚度为0.50mm~2.5mm的烘烤硬化高强度冷连轧钢板及钢带(以下简称钢板及钢带)。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222-2006 钢的成品化学成分允许偏差 GB/T 223 钢铁及合金化学分析方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB/T 2523-2008 冷轧金属薄板(带)表面粗糙度和峰值数的测量方法 GB/T 2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T 4336-2002 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规 法) GB/T 5027-2007 金属材料薄板和薄带塑性应变比(r值)的测定 GB/T 5028-2008 金属材料薄板和薄带拉伸应变硬化指数(n值)的测定GB/T 8170-2008 数值修约规则与极限数值的表示和判定 GB/T 20066-2006 钢和铁化学成分测定用试样的取样和制样方法 GB/T 20123-2006 钢铁总碳硫含量的测定高频感应炉燃烧后红外吸收法(常 规方法) GB/T 20125-2006 低合金钢多元素含量的测定电感耦合等离子体原子发射 光谱法 GB/T 20126-2006 非合金钢低碳含量的测定第2部分:感应炉(经预加热) 内燃烧后红外吸收法 Q/BQB 400 冷轧产品的包装、标志及检验文件 Q/BQB 401 冷连轧钢板及钢带的尺寸、外形、重量及允许偏差 3 术语和定义 3.1 烘烤硬化高强度钢 bake hardening steels(B) 在钢中保留一定量的固溶碳、氮原子,同时可通过添加磷、锰等强化元素来提高强度。加工成形后,在一定温度下烘烤后,由于时效硬化使钢的屈服强度进一步升高。通常应用于汽车外覆盖件。 4 分类和代号 4.1 钢板及钢带按用途区分应符合表1的规定。 4.2 钢板及钢带按表面质量区分应符合表2的规定。 4.3 钢板及钢带按表面结构区分应符合表3的规定。 表 1 牌号用途 B140H1 深冲压用 B180H1、B180H2、HC180B 冲压用 HC220B 一般用或冲压用 HC260B 结构用或一般用 HC300B 结构用 宝山钢铁股份有限公司 2009-01-08 发布 2008-06-30前实施

微合金钢

发展中国家微合金钢的潜力 Geoffrey Tither Niobium Products Company Inc. Pittsburgh, PA 1.简介 在发展中国家,并不总是适合投资大型、现代化的厚板或热轧/冷轧机组,尤其在未经细致的市场调研的情形下,其实是不明智的。这是因为成本投入巨大,并在许多方面,由于考虑剧烈的竞争-衰退周期,能实现的盈利很少。 一个更明智的方法是开发的产品能在小型工厂更经济的生产,从而只需较少的投资。诸如紧固件、冷镦部件、拉拔线材、汽车锻件及工业、农业机械用锻件等是发展中国家在微合金钢开发和应用方面有待开拓的领域。这是由于微合金钢比普通合金钢成本低,并且在许多方面,微合金钢可减免制造工序,从而实现比单单合金节省更显著的节约。 本文讨论微合金化的基本概念,但主要侧重于微合金钢的商用场合。 2.微合金钢设计 微合金钢可定义为单独或者复合添加少量Nb、V、Ti和Al的低碳至中碳钢。对机械性能的影响是基于这些微合金元素形成碳化物、氮化物或碳氮化物,这些化合物在再加热及后续过程中全部或部分溶解。溶解和析出的动力学决定着通过微合金化所能获得效果。溶解程度依赖于加热温度、保温时间、加热和冷却速率、碳氮化物的溶度积。各种微合金碳化物、氮化物的溶度积如图1所示。 图1 微合金碳化物、氮化物的溶度积

低碳高韧高强度低合金钢(HSLA)的实质是通过相变获得细小铁素体晶粒。晶粒细化是唯一同时改善韧性的强化机制。 而对于中碳钢,珠光体团尺寸和珠光体片厚度决定韧性,前者受奥氏体晶粒尺寸影响,后者受碳含量影响,碳含量越低,渗碳体片越薄,韧性越好。另一方面,珠光体片间距决定珠光体钢的强度,片间距受珠光体转变温度控制。相变温度越低,片间距越小,强度越高。 再加热过程中各种微合金元素对晶粒粗化的影响如图2所示(2)。如图所示,高温状态阻止晶粒粗化的效果,Nb比V、Al更为有效,而Ti,通常以TiN微粒弥散分布,是最有效的。为使TiN有效阻止晶粒粗化,必须使Ti:N满足化学计量比,以保证TiN颗粒尺寸处于100-500nm。偏离化学计量比将致使TiN逐渐失效,事实上将减慢凝固冷却,因此,铸锭浇铸通道变得不合适。 图2 各种微合金钢奥氏体晶粒粗化特性 上述阻止晶粒粗化的效果,例如对于正火钢,特别是含量较低时(0.02-0.04%),添加Nb作为晶粒细化剂十分有效,见图3(3)。 图3 Nb、V、Ti对正火型HSLA钢晶粒尺寸的影响 在正火处理或随后的热变形冷却过程中,对于Nb和V,两种主要效应可能依赖于冷却前仍处于固溶态的微合金元素含量和随后的冷却速率。例如,固溶态的Nb有显著的硬化效

钢的淬火回火工艺参数的确定

钢的淬火回火工艺参数的确定

钢的淬火回火工艺参数的确定 作者:长江挖掘机厂 1 前言 淬火是强化材料最有效的热处理工艺方法,其工艺参数的选择直接影响着材料的性能。这就要求热处理工作者不断创新,改进工艺,有效地发挥出材料的潜力,节约能源,降低生产成本。本文简述了钢的淬回火工艺参数的确定及量化依据。 2 淬火加热温度 按常规工艺,亚共析钢的淬火加热温度为Ac3+(30~50℃);共析和过共析钢为Ac1+(30~50℃);合金钢的淬火加热温度常选用Ac1(或Ac3)+(50~100℃);高合金钢含有大量高熔点碳化物,要增大奥氏体化程度,淬火加热温度更高,有些已达到接近熔点的程度。 为了达到钢所要求的不同性能,淬火加热温度

正在向高或低两个方面发展。亚温淬火就是将淬火温度降至Ac3点以下5~10℃的α+γ两相区,在保留大约10%~15%未溶铁素体状态进行淬火,在保证强度及较高硬度的同时,塑性、韧性得到改善,淬火变形或开裂明显减少,回火脆性也有所减弱。现已作为一种新的成熟工艺已获得国内外热处理工作者的共识。 此外,还有人发现[1],以40Cr钢为代表的亚共析钢在Ac3点处有硬化峰出现,此温度淬火不仅可获得最高的硬度,且各项力学性能也为最佳值,掌握得当能充分发挥钢的潜力。 与其相反,提高某些钢的淬火温度也可获得预想不到的结果。如热模具钢5CrMnMo、 5CrNiMo钢的淬火温度由传统的860℃提高至920℃(高出30~80℃)[2],加速了碳化物的溶解,增加了马氏体中的合金含量,组织均匀。可以获得大量的高位错马氏体,断裂韧度大大提高,红硬性更为优异,其使用寿命成倍提高。又如,H13钢淬火温度由1050℃提高至1100℃时,奥氏体晶粒并不明显长大,由于碳

各向同性钢与烘烤硬化钢的烘烤硬化性和抗凹陷性

第18卷第11期 2006年11月 钢铁研究学报 Journal of Iron and Steel Research Vol.18,No.11November 2006 作者简介:朱晓东(19662),男,博士,高级工程师; E 2m ail :xdzhu @https://www.360docs.net/doc/fe13918105.html, ; 修订日期:2006205223 各向同性钢与烘烤硬化钢的烘烤硬化性和抗凹陷性 朱晓东, 程国平, 俞宁峰 (上海宝钢股份有限公司技术中心,上海201900) 摘 要:研究了烘烤温度、烘烤时间和预拉伸应变量对罩式炉退火工艺生产的各向同性钢的烘烤硬化性的影响,并与力学性能相当的冷轧烘烤硬化钢进行了对比。结果表明,在不同的烘烤条件下,各向同性钢的烘烤硬化值均低于同样强度级别的烘烤硬化钢。抗凹陷性测试结果表明,各向同性钢的抗凹陷性低于烘烤硬化钢。汽车外板实物分析结果表明,两种钢冲压成形后再烘烤,其屈服强度几乎没有提高。关键词:各向同性钢;烘烤硬化;抗凹陷性 中图分类号:T G 11312 文献标识码:A 文章编号:100120963(2006)1120043204 B ake H ardenability and Dent R esistance of Isotropic Steel and BH Steel ZHU Xiao 2dong , CH EN G Guo 2ping , YU Ning 2feng (Technology Center ,Baosteel Co L td ,Shanghai 201900,China ) Abstract :The effects of baking temperature ,baking time and prestrain on the bake hardenability and dent resist 2ance of isotropic sheet steel and B H sheet steel produced by batch annealing were studied.The results show that the bake hardenability and strength increment of isotropic steel under various baking conditions are lower compared with B H steel sheet.Experiments of dent resistance show that the dent resistance of isotropic steel is poorer than B H steel.In practical auto outer panel application ,both steels attain a considerably high yield strength after press forming ,but it does not increase after baking. K ey w ords :isotropic steel ;bake hardening ;dent resistance 70年代以来,随着轿车生产向减重节能趋势的 发展,高强度钢板的生产和在轿车上的应用越来越广泛[1,2]。烘烤硬化钢成形后在电泳漆烘烤固化过程中将发生静态应变时效,促使其屈服应力再一次提高[3],有利于抗凹陷性的增强,因此该钢被广泛用于轿车外板。各向同性钢是90年代新开发的汽车板新品种,与烘烤硬化钢一样也已被成功地用于汽车外板[4]。通常各向同性钢不保证烘烤硬化指标。各向同性钢属于低碳钢,它的烘烤硬化性和抗凹陷性是人们关注的问题。各向同性和烘烤硬化这两种不同设计原理的钢种用于轿车外板的异同也是人们所感兴趣的热点。 烘烤硬化效果不仅取决于钢板本身,还与钢板的 变形程度、烘烤工艺制度等密切相关[5]。实际上,汽 车零件的变形程度差异很大,而且烘烤工艺的差别也不小。在此,笔者研究了不同变形和烘烤制度下,各向同性钢的烘烤硬化性并与烘烤硬化钢进行了比较。 1 实验材料及过程 111 实验材料 实验钢板由工业全氢罩式炉退火生产,并经一定量的平整消除了屈服点延伸。垂直于轧制方向取样,拉伸试样标距为80mm ,实验钢的典型力学性能如表1所示。112 实验过程 实验条件如表2所示。首先进行预拉伸,记录预

烘烤硬化钢(H220BD)的时效性

烘烤硬化钢(低碳型H220BD)的时效性 The Aging Character of Bake Hardening Steel (H220BD of ULC) 摘要brief 标准规定,烘烤硬化钢的力学性能值适用时间为3个月。那么在3个月内和3个月以外,力学性能值的变化规律是什么?在目前所能见到的文献上查不到答案。通过实测,烘烤硬化钢在3个月内已经发生时效,如果不适当提高初始性能值的话,无法保证全部力学性能都在3个月内适用。 引言foreword 烘烤硬化钢是对时效比较敏感的钢种,在成型之前,人们不希望其有时效反应;在成型后,人们希望通过烤漆过程提高材料的屈服强度,从而获得加工性能和使用性能完美结合。但是自然规律是不以人的愿望而转移的,随着时间的推移,时效总是要发生的,问题的关键是发生这个变化程度和规律是什么。为了规范供需双方验收和使用,相关标准规定烘烤硬化钢力学性能适用期为3个月,那么在3个月内是否力学性能变化不大?如果不能及时使用,3 个月以后会有何种影响?影响相关性能变化的主要因素是什么?为了回答这个问题,本文设计了5组对应实验,在自然条件下时效不同时段,试图揭示其变化规律。 1. 实验材料与方法experiment that materials and methods 分别作了5组对比试验:A组,储存3个月。B组,储存6个月。C组,储存9个月。D组,储存12个月。E组,储存17.5个月。各组试样代号如下表所示: 各组材料化学成分构成如下表chemistry components 2. 时效前后力学性能实测结果measurement results of the mechanical capability 抗拉强度Rm 测试结果tensile strength (Rm)

实验报告:40钢试样退火、正火、淬火、热处理

西安交通大学实验报告 课程_机械工程材料_实验名称____________________ 系别______________________实验日期年月日 专业班号____________ 组别_________交报告日期年月日 姓名_______学号______________报告退发(订正、重做) 同组者____________________________________教师审批签字 实验名称 一、实验目的 (1)了解碳钢热处理操作。 (2)学会使用洛氏温度计测量材料的硬度性能值。 (3)利用数码显微镜获取金相组织图像,掌握热处理后的钢的金相组织分析。 探讨淬火温度、淬火冷却温度、回火温度T12钢的组织和性能影响。 二、实验内容 (1)40钢试样退火、正火、淬火、热处理。 (2)用洛氏硬度计测定试样热处理实验前后的硬度。 (3)观察样品,获取其纤维组织图像 对照金相图谱,分析讨论本次实验可能获得的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。 三、实验概述 (1)热处理工艺参数的确定

Fe-Fe3C状态图和C-曲线是制定碳钢热处理工艺的重要依据。热处理工艺参数主要包括加热温度、保温时间和冷却速度。 (2)基本组织的金相特征 碳钢经热退火后可得到(近)平衡组织,淬火之后则得到各种不平衡组织。普通热处理除退火、淬火之外还有正火和回火。这样在研究钢热处理后的组织时,还要熟悉索氏体、托氏体、回火马氏体、回火托氏体、回火索式体等基本组织的金相特征。 (3)金相组织的数码图像 金相组织照片可提供材料内在质量的大量信息及数据,金相分析是材料科研、研发及生产中的重要分析手段。 XJP-6A金相显微镜数字采集系统是在XJP-6光学显微镜基础上,添加光学适配镜,通过图像采集和信息化处理,提供计算机数码图像的系统,可获得真实、精细的影像,以及高品质的金相显微组织照片 四、实验材料及设备 (1)砂纸、玻璃板、抛光机等金相制样设备。 (2)40钢 (3)马福电炉 (4)洛氏硬度计 (5)淬火水槽、油槽 (6)铁丝、钳子 (7)金相显微镜、数码金相显微镜

微合金化低碳钢的力学性能.

大断面V、Ce、Nb微合金化低碳钢的力学性能M. Ya. Belkin, V. P. Krivosheev, V. M. Belkin, V. T. Alekseenko and L. L. Litvinenko 近些年来,作为具有高延性、低应力集中敏感性、低脆性断裂倾向性以及有良好工艺性能的低碳钢材料引起人们了兴趣[1]。提高低碳钢的强度,同时保持或者改善其脆性的问题已经出现,众所周知,解决这一问题的一个办法就是微合金化。我们这里提供锭重达68吨的大锻件低碳钢的力学性能研究的一些结果。 钢号为25的2个锭是按照标准条件在一个真空除气的酸性炉内生产的,一个锭是没有添加微合金化元素的,另一个锭是添加了Nb、V和Ce等微合金化元素,微合金化元素添加量是按照推荐值选择的[2, 3]。铌微合金化是在沸腾阶段添加铌铁的,钒是以钒铁形式在预脱氧之后加入的,最后的脱氧是在真空中1635℃下进行的,铈是以铈铁粉末形式在真空腔内模具即将立起来的时候加入的。为了避免铈铁损耗,套筒的温度没有超高100℃。最后的真空除气是在1590℃下进行的,剩下的熔炼和浇铸步骤与标准的过程是一致的。 两个锭的平均化学成分如表1所示。 为了确定锭的力学性能,我们在三个道次上都准备了2个三步锻件,它们重达44吨,长度为12m,在三个步骤时的直径分别为900、750和600mm。热处理包括正火和高温回火(标准热处理),随后将锻件切割成段,在长度方向和横向上取试样做抗拉强度和冲击弯曲实验,我们还确定了钢的疲劳强度和脆性断裂倾向。静态和疲劳实验样品是在锻件的不同部位截取的(表面处、半径上距表面1/3处以及中心处)。疲劳实验是在20~25个试样上(图1a和b)按照载荷分步变化进行的[1-4],应力集中(图1b)是由实验机的夹钳产生的,试验是在MUI-6000型实验机上进行的,可以对称弯曲弧面,N=106。 表1 成分, % 钢 C Mn Si Ni S P V Nb Ce 0.650.320.210.0200.017——— 25# 0.24 25#微合金化钢0.22 0.700.180.130.0200.0180.13 0.10 0.01 从锻件表层到心部的样品脆性断裂抗力取做临界平面应变应力强度因子KIC,该因子是由技术和机械建筑中心科学研究所(TsNIITMASh)发展的动态方法来确定的[5]。

高强度汽车板的烘烤硬化特性

作者简介:江海涛(1976-),男,江西都昌人,博士后,主要从事高性能新型汽车板的开发与研究. 高强度汽车板的烘烤硬化特性 江海涛1,康永林1,王全礼2,熊爱明2 (1.北京科技大学材料学院,北京100083;2.首都钢铁集团公司技术研究院,北京100041) 摘 要:综述了烘烤硬化钢板(B H )、双相钢板(DP )和相变诱发塑性钢板(TRIP )烘烤硬化特性研究的最新进展,并展望了今后几年我国高强度汽车板的烘烤硬化特性研究工作。关键词:烘烤硬化特性;B H 钢板;DP 钢板;TRIP 钢板 中图分类号:T G 142.1 文献标识码:A 文章编号:100121447(2006)0120054204 B ake H ardenability of High Strength Automobile Sheet J IAN G Hai 2tao 1,KAN G Y ong 2lin 1,WAN G Quan 2li 2,XION G Ai 2ming 2 (1.School of Materials ,University of Science and T echnology Beijing ,Beijing 100083,China ; 2.The Institute of T echnology Research ,Shougang G roup ,Beijing 100041,China ) Abstract :The latest research development of bake hardenability of automobile sheet ,including bake hardening steel (BH ),dual phase steel (DP )and transformation induced plasticity steel (TRIP ),is reviewed in this paper.The future research work in coming years is also discussed.K ey w ords :bake hardenability ;BH steel ;DP steel ;TRIP steel 减轻汽车自重是降低油耗的主要措施之一。轿车车身的钢板消耗量约占整车钢材消耗量的75%, 因此,采用高强度钢板(HSS )、减薄厚度以减轻汽车自重是降低油耗的主要措施。20世纪90年代起,全球钢铁厂家开展了一系列减轻汽车自重的研究,包括ULSAB (超轻车身研究)、ULSAC (超轻覆盖件研究)和ULSAS (超轻悬挂件研究)等等。接着1999年又启动了ULSAB 2A VC (超轻钢车体研究)项目,以及谋求减轻车门等壳体部分和行走部分重量。UL 2SAB 2A VC 的目标是到2005年左右在满足安全性要 求的基础上,减轻车体重量达25%左右。在新一代轿车的用材中BH 钢约为10%,DP 钢约为74%,TRIP 钢约为4%[1~3]。因此,可以通过发展高强度 钢板,逐渐提高高强度钢板的使用比率,从而实现确保安全性的前提下车身重量的降低。 不同品种的高强度钢板因其固有的特性不同,用途也不同。如烘烤硬化钢板具有冲压成形前较软、形状稳定性好和烘烤后抗凹痕性能较高的特点,特别适合于冲制汽车的外覆盖件。双相钢板和相变诱发塑性钢板具有高的强度、高的碰撞吸收能和高 的抗疲劳性能等特点,适合于冲制结构件和安全件等[4]。在IF 2HSS 、BH 、IS 、HSLA 、DP 和TRIP 等高强度钢板中,BH 、DP 和TRIP 钢板都具有较高的烘烤硬化特性,因此,下面就近年来汽车使用较多的BH 、DP 和TRIP 钢板的烘烤硬化特性予以分析介 绍。 1 B H 钢板的烘烤硬化特性 BH 钢板是为了克服高强度钢板屈服应力高、 冲压成形性差的缺点而开发的一种汽车用钢板。传统高强度钢板屈服应力高、强度好,对覆盖件的局部凹痕抗力有利,但其冲压成形性能差,特别是起皱、回弹等缺陷比较显著,而BH 钢板在交货状态下有较低的屈服应力,在成形后经过烘烤高温时效处理,屈服强度会得到很大程度的提高,这刚好与车身生产工艺及使用性能要求一致[5]。从图1中可以看出,BH 钢板明显比传统钢板具有更高的抗凹陷性能[6]。近年来,国内外试制和生产出了许多品种和规格的BH 钢板,成熟掌握了BH 钢板生产的工艺控制技术,一些BH 钢板的力学性能和烘烤硬化性 ?45? 2006年 2月 第34卷第1期钢铁研究 Research on Iron &Steel Feb.2006Vol.34 No.1

什么是微合金化技术_微合金化钢

图2 黑匣子温度测定曲线 Fig.2 Curve of temperature determination in black box (2)升温试验过程中,加热炉各段供热能力均有30%~40%的富余量,说明炉子的供热能力不是限制炉子产量的原因1而是板坯水梁黑印温度差超标,限制了炉子的出钢速度,使炉子未能达到设计的产量1通过非水印和移动水印中心温度曲线比较可看出,在预热段、一加热段,后者的升温速度比前者稍高,而一进入高温的二加热段,前者的升温速度加快,而后者由于水梁的影响升温速度变慢,这样的情况一直持续到出炉,约占50%的在炉时间1说明支撑梁交错点的位置设计不当,在进入高温段直到出钢口,板坯移动水印处始终处于受支撑梁遮蔽的状态,不能接受下加热的炉气辐射热,造成温度偏低,从而成为限制炉子产量的主要原因1也说明,象这样采用前后交错式步进结构的加热炉,其交错点应布置在二加热段和均热段即2个高温段之间,才能起到降低水管黑印的目的1 4 结束语 运用温度数据记录仪对加热的钢坯进行在线温 度测定,其结果不但可以为加热炉计算机数学模型 的编制提供可靠的数据,还可以对加热炉热工工艺 制度进行优化,同时也可对加热炉的结构提出更加 合理的设计方案1 参考文献: [1] 王秉铨,等1工业炉设计手册[M]1北京:机械工业出 版社,19961 知识窗 什么是微合金化技术、微合金化钢 微合金化技术是20世纪70年代在国际冶金界出现的新型冶金学科1微合金化钢是采用 现代冶金生产流程生产的高技术钢铁产品1它是在普通的低碳C2Mn钢中添加微量(通常小于011%)的强碳氮化物形成元素(如:铌、钒、钛等)进行合金化,通过高纯洁度的冶炼工艺(脱气、 脱硫及夹杂物形态控制)炼钢,在加工过程中施以控制轧制/控制冷却等新工艺,通过控制细化 钢的晶粒和碳氮化物沉淀强化的物理冶金过程,在热轧状态下获得高强度、高韧性、高可焊接 性、良好的成型性能等最佳机械性能配合的工程结构材料—微合金化钢。 摘录自《中国冶金报》2001204204(3) 513 张 宇等:钢坯在线温度测定方法及结果的研究 ? 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved. https://www.360docs.net/doc/fe13918105.html,

微合金化技术的开发与应用

微合金化技术的开发与应用 中信微合金化技术中心专家委员会 王祖滨 (2000年11月) 1. 开发微合金化技术的重要意义 在不久前召开的第四届国际低合金高强度钢会议(HSLA Steel '2000)的一篇特邀报告(W.B.Morrison)中写道,过去半世纪中,钢铁材料最重要的发展无疑要数低合金高强度钢。在1984年,有人估计世界低合金高强度钢的产量约为5千万吨,并将以每年5%的速度增长。而目前的估计约为8千万吨,相当于世界钢产量的十分之一,这与当时的预测是很接近的。作者认为,低合金高强度钢普及之快的原因在微合金元素Nb、V、Ti的合理和经济的使用。虽然并不是所有的低合金高强度钢都进行微合金化,但是由于微合金化对提高低碳结构钢强度的显著作用,在不少场合往往把微合金钢和低合金高强度钢等同起来。应该指出,目前微合金化已经不仅用于以板带材为主,以供应状态直接供用户使用的低合金高强度钢,而且在线材、钢筋、钢轨以及锻材方面广泛应用。专家预测,在即将到来的21世纪中,微合金化的低合金高强度钢不仅在用量上有大幅度增长以及在广阔的用途上取代碳素钢,而且微合金化可以作为一种能降低成本,符合可持续发展要求又能促进技术进步的手段来开发综合性能更好的钢铁产品。 2. 微合金化技术的原理 众所周知,传统的低合金高强度钢采用固溶强化机制,加入的合金元素Mn、Si、Ni、Cu、Cr等元素大约在百分之一、二的数量级。增加含量不仅不能提高强度,而且使其他性能恶化。根据文献资料,V、Ti等元素在本世纪初即已开始使用,而Nb在本世纪中发现有较大储量后也开始用于钢铁产品。它们的加入量分别在千分之一、二甚至万分之几的数量级。数量虽小,但是由于它们的作用机制不清楚,产品性能不稳定,甚至牺牲塑性、韧性这样一些重要结构材料性能,而未受到重视。这个局面直到进行了大量研究工作,对微合金钢的物理冶金有了深入的理解以后才有根本变化。理解这些问题的关键是Petch发现的晶粒尺寸与强度及断裂性能之间的定量关系。这个关系式能区分微合金化元素的不同作用并加以定量化,而且早期的研究即已表明,主要是碳化物及氮化物的形成而引起晶粒细化和析出强化,这是这些微合金化元素强烈影响性能的原因所在。 用Al来细化钢的晶粒从而改善钢的强、韧性,已有半个多世纪的历史。从广泛意义上讲,微合金元素有七、八种,但是,研究得最多、用得最广的是Nb、V、Ti。微合金元素与钢中的C、N、O、S形成多种化合物,从而对性能产生多种影响。微合金元素能够影响的显微组织参数是晶粒尺寸和形状;各种尺寸的析出物;位错密度;织构演变;非金属夹杂物的尺寸和形状。对微合金钢来说主要是晶粒细化和析出强化。 晶粒细化是不同强化机制中唯一的既能提高强度又能降低脆性韧性温度的方法。微合金元素通过析出质点在从冶炼凝固过程到焊接加热、冷却过程中影响晶粒成核和晶界迁移来影响晶粒尺寸。对在加热过程中抑制奥氏体晶粒长大最为强烈的是Ti,依次为Nb、Al和V。但是从加入量来说,在控轧和正火钢中Nb用比较低的含量,即现在常用的0.03%左右即能起显著的作用。Nb对晶粒细化的独特影响表现在它对奥氏体再结晶有强烈的延迟作用。用0.03%Nb即可将完全再结晶所需的最低温度提高到950℃左右,从而显著降低控轧对轧机负荷的要求。由于Ti在连铸冷却条件下生成弥散的TiN,对阻止奥氏体晶粒细化有很强的效果,80年代初,开发了一种V-Ti-N微合金钢,适合在高温区细化晶粒的再结晶控轧工艺,为不能进行低温轧制的老式低轧制力的轧机进行控轧开辟了途径。最近的研究表明Nb-Mo 系钢也适合此种工艺。近年来,在钢板,特别是厚板的焊接中,为了提高效率,广泛使用大线能量。这种措施对焊接热影响区韧性极为不利。由于TiN熔点很高,在焊接热影响区都能抑制晶粒长大,所以加微量Ti0.03%能显著改善热影响区韧性。

相关文档
最新文档