有效硬化层深度的规定

有效硬化层深度的规定

有效硬化层深度的规定

1.材料为20CrMnMo的圆柱齿轮有效硬化层深度为(0.15~

0.25)Mn。

2.材料为20CrNi2MoA等镍络合金的圆柱齿轮有效硬化层

深度按下表所给数据进行设计:

浅谈齿轮渗碳淬火有效硬化层及硬度梯度

浅谈齿轮渗碳淬火有效硬化层及硬度梯度 随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。 一、渗碳层深度的检测 1.1、金相法 1.1.1、取本体或与零件材料成分相同,预先热处理状态基本 相似的圆试样或齿形试样进行检测。 1.1.2、送检试样热处理状态为平衡状态,即退火状态。 1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。 1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。 1.2、硬度法 1.2.1、取样方法同金相法取样方法一致。 1.2.2、送检试样状态为淬火+回火状态。 1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要

求进行选择。 1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如 HV550)之间垂直距离。 1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面 用图形来描述。 从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550) DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。 DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。 DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。

钢的渗碳硬化深度的检测方法

钢的渗碳硬化深度的检测方法 1.适用范围此规格规定了钢的渗碳淬火或碳氮共渗淬火时的硬化层深度(以下,称硬化 层)的检测方法。 备注:1 此规格出自以下规格 JIS B 0601 表面粗糙度—定义及表示 JIS G 0201 钢铁用语(热处理) JIS G 0202 钢铁用语(试验) JIS Z 2244 维氏硬度检测方法 JIS Z 2244 洛氏硬度检测方法 2 与此规格相对应的国际规格如下所示。 ISO 2639: 1982 Steel-Determination and verification of the effective depth of carburized and hardness case 3 附表是有效硬化层深度的辅助检测方法。 2.用语的定义此规格使用的主要用语的定义,除出自JIS G 0201 及JIS G 0202 之外,还出 自以下几项 (1)有效硬化层深度淬火后,或用不超过200℃的温度进行挥霍的硬化层的表面开始,到 表1所示的界限硬度的位置的距离。但是,关于非硬化区域的硬度超 出维氏硬度450时,根据双方协议,也可以使用超出维氏硬度550(维 氏硬度25刻度的)界限硬度。 (2)全硬化层深度从硬化层的表面开始,到硬化层与素材的物理性质或是化学性质几乎没有 差异时的位置的距离。 备注:这里所说的物理性质用硬度,化学性质用宏观组织来判定。 (3)硬度推移曲线从硬化层表面开始的,表示垂直距离和硬度之间关系的曲线。 3.测定方法的种类 3.1硬度试验测定方法对试验块的断面通过硬度检测来测定硬化层深度的方法。 3.2宏观组织试验测定方法吧试验块的断面腐蚀后,在低倍率的放大镜下进行观察,测定 硬化层深度的检测方法。 备注:硬化层深度的检测方法,一般使用硬度试验的测定方法,要是简单一点的话,就 用宏观组织试验测定方法。 4.试验品试验品原则上使用产品本身。但是,不得已时也可以使用与产品同种条件下的同 一钢种的钢材。 5.硬度试验检测方法 5.1 把试验品沿与硬化层垂直的方向切开,把切开面研磨后作为被检测面。切割或是研磨时, 注意不要对被检测面的硬度造成影响,同时,不要使边部变圆。 5.2 关于被检测面,根据JIS Z 2244 的维氏硬度试验或由双方协定进行洛氏试验力 硬度试验,制作硬度推移曲线,根据此曲线测定有效硬化层或是全硬层 深度。这时,维氏硬度试验的试验荷重,原则上使用2.9N.但是,如 有必要,也可使用0.98~98.1N的荷重。 5.3 硬度推移曲线的制作,如下所示。 (1)在需要做测定的被检测面,沿与表面相垂直的直线,依次检测硬度,制作硬度推移曲

渗碳层深度

渗碳层深度 令狐采学 渗碳层深度(Carburized case depth)是由渗碳工件表面向内至碳含量为规定值处(一般为0.4%C)的垂直距离。渗碳层(Carburized case)是指渗碳工件含碳量高于原材料的表层。某渗碳层深度的测量有维氏硬度法、断口法和金相法。维氏硬度法直接反映了零件的力学性能(硬度),是国家标准指定的唯一仲裁方法,但因操作复杂效率低而较少被采用,生产中一般用断口法和金相法。断口法常用于零件炉前检查,便于控制零件出炉时间;金相法则是渗碳后对零件进行相应热处理,通过分析热处理后的组织来判定渗碳层的深度,是生产中常用的测试零件渗碳层深度的方法。 中文名 渗碳层深度 外文名 Carburized case depth 学科 冶金工程 领域 冶炼 释义 渗碳工件表面向内至碳含量的距离

应用 18Cr2Ni4WA钢 目录 1. 1 简介 2. 2 渗碳后热处理工艺与组织 3. ?渗碳后淬火及组织 4. ?渗碳后退火及组织 5. ?渗碳后正火及组织 简介 编辑

低碳钢与合金钢渗碳时的主要区别在于低碳钢比合金钢渗层中的碳浓度要低,其组织和硬度略有不同,但对渗碳层深度测量无影响。由于渗碳层具有变化的碳浓度,其由表及里逐渐减小,退火状态的渗碳层由表及里由以下三个区域组成: ①过共析层组织为珠光体+二次渗碳体; ②共析层组织为珠光体; ③亚共析渗碳层过渡层,组织为珠光体+铁素体。珠光体逐渐减少,铁素体逐渐增加,直到心部原始组织(珠光体+铁素体),渗碳缓冷试样渗碳层界限为出现铁素体组织,较容易区分。 飞机防扭臂销棒材料为18Cr2Ni4WA钢,要求在外径φ38.5mm 的两端各40mm内渗碳,渗碳层深度为1.0~1.4mm。采用气体渗碳法对该零件进行渗碳,对渗碳后过程试样水淬打断,测定渗碳深度为1.2mm,深度符合要求,零件及随炉试样出炉。 随炉试样经正火后测定渗碳层深度为0.9mm,渗碳层深度不符合要求,零件判定为不合格。为此,针对炉前测定合格、随炉试样正火后检测为不合格,且两者测定深度相差0.3mm的情况,开展了渗碳后热处理工艺、组织与深度测试的分析与探讨[1] 。渗碳后热处理工艺与组织 编辑 渗碳后淬火及组织 渗碳过程试样φ8mm×100m m随零件经920±10℃渗碳约615min后出炉水淬打断,表面渗碳层组织为粗针状马氏体加较多

表面淬火材料的硬度及淬火深度检测方法

上海中研仪器制造厂 https://www.360docs.net/doc/fe1957557.html,/ 钢铁零件表面淬火硬度及淬火深度检测方法 A、首先熟悉以下两个名词: 1、有效硬化层深度(DS):是指从零件表面到维氏硬度等于极限硬度那一层之间的距离。 2、极限硬度:是指零件表面所要求的最低硬度乘以系数,通常HV1试验力系数可以选用 0.8,也可以选用0.9或者更高(如零件表面硬度320HV,那么极限硬度 =320X0.8=256HV)。 B、试验力的选择 通常选用显微维氏硬度计,试验力通常选用HV1(9.807N),也可选用4.9N-49N范围内。 C、检测 1、检测应在规定试样表面的一个或者多个区域内进行,并在图纸上注明。 2、检测试样的制备: 应在垂直淬硬面切取试样,切断面作为检测面。检测面应做好磨抛处理,使其达到光洁如镜。在切割、磨抛过程中要注意避免工件过热、变形、出现倒角等。详见上海中研仪器制造厂技术文章栏目内的《金相试样制备流程》,这里不做过多阐述。 3、硬度检测: 硬度压痕应当打在垂直于表面的一条或多条平行线上,而且宽度为1.5mm区域内,最靠近表面的压痕中心与表面的距离为0.15mm,从表面到各逐次压痕中心的距离应每次增加0.1mm。当表面硬化层深度大时,各压痕中心的距离可以大一些,但在接近极限硬度区域附近,仍应保持压痕中心之间的距离为0.1mm。 4、测量结果: 用垂直表面横截面上的硬度变化曲线来确定有效硬化层深度。由绘制的硬度变化曲线,确定从零件表面到硬度值等于极限硬度的距离,这个距离就是感应淬火或火焰淬火后有效硬化层深度。 备注:一个区域内有多条硬度变化曲线时,应取各曲线测得的硬化层深度平均值,作为有效硬化层深度。有效硬化层深度用字母DS表示,深度单位为mm,例如硬化层深度0.5mm 可以写成DS0.5。 技术支持邮箱:zhongyanyiqi@https://www.360docs.net/doc/fe1957557.html,

渗层厚度的测定

金相法渗层厚度的测定 一、实验目的 1)了解渗碳、渗氮工艺及渗碳后热处理的组织特征。 2)掌握金相法测定渗层深度的方法。 二、原理概述 渗碳是将钢件置于渗碳介质中,加热到单相奥氏体区,保温一定时间使碳原子渗入钢件表面层的热处理工艺。渗碳的目的是使钢件获得硬而耐磨的表面,同时又使心部保持一定的韧性和强度。对于进行渗碳的钢材是碳的质量分数一般都小于0.3%的低碳钢和低碳合金钢,渗碳后的工件主要用于受严重磨损和较大冲击载荷的零件,如齿轮、曲轴、凸轮轴等。渗碳温度一般取860~930℃,不仅使钢处于奥氏体状态,而又不使奥氏体晶粒显著长大。近年来,为了提高渗碳速度,也有将渗碳温度提高到1000℃左右的,渗碳层的深度根据钢件的性能要求决定,一般为l mm左右。按照渗碳介质的状态,可分为固体渗碳、液体渗碳和气体渗碳三种,常用固体和气体渗碳。 渗氮又称氮化,是指向钢的表面层渗入氮原子的过程。其目的是提高表面层的硬度与耐磨性以及提高疲劳强度、抗腐蚀性等。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内, 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。目前生产中多采用气体渗氮法。 1.渗碳工艺 将渗碳件置入具有活性碳气氛中加热到860~930℃,保温一定时间,再将渗碳后的钢件按照性能要求不同,进行不同的热处理工艺有直接淬火、一次淬火和二次淬火三种。2.渗碳及渗碳淬火后的金相组织 钢在渗碳后因冷却方式不同,可得到平衡状态的组织或非平衡状态的组织。 (1)平衡状态的渗碳组织、 钢渗碳缓冷后的显微组织符合铁一碳平衡相图,表面到中心依次是过共析区、共析区、亚共析区和原始组织(图1是20钢渗碳后的平衡组织)。渗碳的过程是碳原子在γ-Fe中 的扩散过程。

表面热处理零件有效硬化层、渗层等的有关说明

表面热处理零件有效硬化层、渗层等的有关说明 一、常用热处理零件硬化层深度、渗层深度有关术语、定义、代号和适用范围及检测方法

附注:①特殊情况下,经有关方协议,也可采用 4.903N~49.03N(0.5kgf~5kgf)内的某一试验力和其他值的极限硬度值,在特殊情况下要注明,如Dc49.03/515=0.6表示采用试验力49.03N(5kgf),极限硬度值为515HV时的有效硬化层深度等于0.6mm; ②特殊情况下,经有关方协议,也可采用4.903N~49.03N(0.5kgf~5kgf)内的某一试验力和其他值的极限硬度值,在特殊情况 下要注明,如Ds4.903/0.9=0.6表示采用试验力4.903N(0.5kgf),极限硬度值等于零件表面所要求的最低硬度的0.9倍时的有效硬化层深度等于0.6mm; ③测量方法有显微组织测量法和显微硬度测量法,选择的测量方法和它的精度取决于硬化层的性质和估计的深度。由于测量方 法也影响到测量结果,因此选择哪种方法测量及何种试样形式,必须在图纸和工艺上预先规定; ④当工艺/图纸没有规定测量方法时,优先采用显微硬度法。用显微硬度测量法检测时,一般试验力用1.96N(0.2kgf)的界线显 微硬度为基体硬度加30HV,除非工艺/图纸另有规定; ⑤试验力为0.9807N(0.1kgf)(HV0.1),极限硬度值HG一般规定为基体硬度加30HV。特殊情况下,经有关方协议,也可采用

其他试验力的显微硬度和极限硬度值; ⑥试验力为0.9807(0.1kgf)(HV0.1),特殊情况下,经有关方协议,也可采用其他试验力的显微硬度和极限硬度值; ⑦测量方法有硬度法和金相法两种,采用哪种测量方法应预先规定。硬度法规定采用试验力为2.94N(0.3kgf)的维氏硬度,从试 样表面测至比基体硬度高50HV处的垂直距离为渗氮层深度,对于渗氮层硬度变化很平缓的钢件(如碳钢、低碳低合金钢制件)可从试样表面沿垂直方向测至比基体维氏硬度值高30HV处。特殊情况下,可由有关方协议,也可采用其他试验力和其他维氏极限硬度值,但应在工艺/图纸文件中注明。 二、对实际应用中的几点说明 1、本文是为了统一理解,使其规范化和标准化而编制的,要求各部门有关人员认真执行; 2、从前面表中所列术语可知,凡是有效硬化层深度都有一个极限硬度(或称界线硬度)的要求,对不同零件、不同的热处理方法、 不同的材料、不同的热处理要求的零件其定义的有效硬化层深度的极限硬度可能是不同的,因此,在设计图纸和编制工艺时应同时确定合理的极限硬度,只有可采用标准中规定了的极限硬度,工艺/产品图纸才可不作规定。 3、从2004年5月1日起,设计、工艺人员新设计编制的产品图、工艺文件应统一采用本文的相关术语,对于有同义的术语,只选择 带※的术语。 4、对于2004年5月1日以前设计、编制的产品图纸和工艺文件有相关热处理深度的术语,统一按照本文相应的术语来理解或解释, 对有明显不符本文的术语的个别零件,由技术开发部填写更改单经批准后进行更改。上述时间以前的产品图纸有的有渗层深度要求又有有效硬化层深度要求的零件,在验收产品时,只检测有效硬化层深度,允许不检渗层深度,其图纸工艺再版时再作更改。 编制:审核:审定: 技术开发部 2004年4月12日

表1有效硬化层的界限硬度

1.适用范围 本标准规定钢的火焰淬火和高频淬火硬化层深度(以下称硬化层深度)的测定方法。 2.术语的意义 本标准所用主要术语的意义如下: (1)有效硬化成深度 从淬火状态或淬火回火状态的硬化层表面到表1中所规定的界限硬度位置的距离。 另外,根据用途也可以规定表1以外的界限硬度。 表1 有效硬化层的界限硬度 钢的含碳量% (1)维氏硬度HV洛氏硬度HR C ≥0.23—<0.3335036 ≥0.33—<0.4340041 ≥0.43—<0.5345045 ≥0.5350049 注:钢的含碳量为被测定钢的标准规定含碳量标准的中间值。 (2)全硬化深度 从硬化层表面到硬化层与基体在物理或化学性能的差异几乎无法区别的位置的距离。 注:这里所指的物理性能是以硬度来衡定,而化学性能则是用宏观组织来判断。 (3)硬度变化曲线 是指硬度与距硬化层表面的垂直距离之间的关系曲线。 3.测定方法的种类 (1) 硬度测定法 是在试样的切断面上用硬度测定其硬化侧深度的方法。 (2)宏观组织测定法 是将试样切断面进行腐蚀而用低倍放大镜观察、测定硬化层深度的方法。 注:测定硬化层深度通常采用硬度测定法:宏观组织测定方法是作为一种简便方法而采用。 4.试样 试样原则上应用制品本身,但是在不得已的情况下,可以用与零件的淬硬部位有相同形状、相同尺寸,同一钢种并与零件在同样条件处理的试样 5.硬度测定方法 5.1 将试样沿与淬硬表面垂直的方向切断,切断面经抛磨成检验面。在切断和抛光过程中,必须充分注意不要影响检验面的硬度,同时边缘不要磨成圆角。

5.2在被检验面进行维氏硬度或洛氏硬度HRc测量,然后绘制成硬度变化曲线,从这些曲线测定有效硬化层深度或全硬化层深度。维氏硬度测量的负荷使用0.1—10Kgf(0.98—98.1牛顿)。 注:()内单位和数值是国际单位制(SI),供参考。 5.3 硬度变化曲线依下列方法绘制; (1)在被检面需要测定的位置,沿着与其表面相垂直的直线上顺次测定硬度,根据测定数据绘成硬度变化曲线;但有时也在被检面的1.5mm范围内取2—5点,分别从各点沿与表面相垂直的直线上测定硬度,然后绘成一条硬度变化曲线(参照下图) (2)采用维氏硬度测量绘制硬度变化曲线时,测定点的间隔原则上应不大于0.1mm;另外,若要洛氏硬度测量绘制硬度变化曲线则应有各方协商决定。 (3)维氏硬度试验时的相邻压痕的中心间隔应大于压痕对角线长度的2.5倍。 5.4除上述规定,按JIS Z 2244(维氏硬度试验方法)或JIS Z 2245(洛氏硬度试验方法)。 6 宏观组织测定法 6.1 沿淬硬面处置切断,切断面经抛磨即为检验面。在切断和研磨过程中,必须充分注意不要影响检验面的组织。检验面的光洁度应为6.3S。 检验面用5%左右的硝酸酒精溶液或5%的硝酸水溶液腐蚀适当的时间,直到腐蚀出清晰的硬化层为止,然后用水和酒精冲洗干净,吹干后在20倍以下的放大镜下观察。 6.2 圈硬化层深度是从表面测到与基本具有不同腐蚀颜色的地方的深度。 7 标记 7.1 硬化层深度以毫米表示,精确小数点以下一位。 7.2 硬化层深度的标记代号如表2所示: 表2 硬化层深度标记代号 测定方法硬化层硬度测量法宏观组织测定法 用维氏硬度时用洛氏硬度时 高频淬火有效硬化深度火焰淬火有效硬化深度高频淬火全硬化深度火焰淬火全硬化深度HD—HΔ—E ( ) FD—HΔ—E ( ) HD—HC—E( ) FD—HC—E( ) HD—HC—T FD—HC—T — — HD—M—T FD—M—T

钢铁零件表面淬火后的硬度及淬火深度检测方法

钢铁零件表面淬火后的硬度及淬火深度检测方法有效硬化层深度(DS):是指从零件表面到维氏硬度等于极限硬度那一层之间的距离。 极限硬度(HVHL):是指零件表面所要求的最低硬度(HVMS)乘以系数,通常HV1试验力系数可以选用0.8,也可以选用0.9或者更高(如零件表面硬度320HV,那么极限硬度=320X0.8=256HV)。 1、试验力的选择 ---通常选用显微维氏硬度计,试验力通常选用HV1(9.807N),也可选用4.9N-49N范围内。 2、检测 a、检测应在规定试样表面的一个或者多个区域内进行,并在图纸上注明。 b、检测试样的制备: --- 应在垂直淬硬面切取试样,切断面作为检测面。检测面应做好磨抛处理,使其达到光洁如镜。在切割、磨抛过程中要注意避免工件过热、变形、出现倒角等。详见技术文章栏目内的《金相试样制备流程》,这里不做过多阐述。 c、硬度检测: ---硬度压痕应当打在垂直于表面的一条或多条平行线上,而且宽度为 1.5mm区域内,最靠近表面的压痕中心与表面的距离为0.15mm,从表面到各逐次压痕中心的距离应每次增加0.1mm。当表面硬化层深度大时,各压痕中心的距离可以大一些,但在接近极限硬度

区域附近,仍应保持压痕中心之间的距离为0.1mm。 d、测量结果: ---用垂直表面横截面上的硬度变化曲线来确定有效硬化层深度。由绘制的硬度变化曲线,确定从零件表面到硬度值等于极限硬度的距离,这个距离就是感应淬火或火焰淬火后有效硬化层深度。 备注: --- 一个区域内有多条硬度变化曲线时,应取各曲线测得的硬化层深度平均值,作为有效硬化层深度。有效硬化层深度用字母DS表示,深度单位为mm,例如硬化层深度0.5mm可以写成DS0.5。

如何解决渗碳或碳氮共渗零件有效硬化深度的测试

如何解决渗碳或碳氮共渗零件有效硬化深度的测试 目前,在我国航空、航天、汽车、兵器等众多单位的零件加工和热处理工艺都涉及渗碳或碳氮共渗的问题,针对客户的需求,我司开发出半自动显微硬度测试系统,快速解决有效硬化层深度测量。 针对半自动显微硬度计测试系统FEM-7000的特点,介绍一下此系统在工厂中常用的功能,齿轮热处理方法使用碳氮共渗工艺的最多,,作到俗说的“表硬心软”,需要对渗碳的有效深度作检测。现在的标准采用硬度梯度法,大多数都采用1Kgf 载荷,看HV550时的深度值。具体做法如图示:以齿顶为基准,从表面向心部连续打多个点,分别测出各点之硬度,绘制硬度曲线 齿轮剖面示意图 硬度曲线示意图

以往通过此方法作测试时,大家普遍困难的是此工作较繁杂。一是要打多个点测硬度,二是要不断移动和记录载物台移动量,三是手工绘制曲线图。这几个环节易出的问题分别是:一测量时人为误差,二移动物台的精度,三绘图的准确性。往往做一个样品用很长时间,一天若需大量做此工作,人会很疲劳影响测试精度。而现在利用半自动测试系统(FEM-7000) 可以大大提高效率与精度。首先硬度计主机具有自动打压痕功能,第二由于采用自动载物台,可以在测试前将要测点的坐标值一次输入,仪器会自动找到设置点,位移回复精度在2 m以内,第三仪器测试后,由打印机打印一份标准报告,包括数据与曲线图,也可以利用Windows 中的Word软件自己编辑,在报告中任意插入文字、数字及图片,另外打印机还可以打印金相组织的图谱。 重点介绍半自动显微硬度测试系统的功能:FEM-7000半自动显微硬度测试系统是一台以日本F-T公司(FUTURE-TECH CORP.)生产的FM-700型显微硬度计为主机,由电脑控制的自动载物台及高分辨率的CCD图象采集游标测量装置组成的显微硬度测量系统。 该系统由三部分组成: 1. FM-700显微硬度计 2. 自动载物台及PC电脑控制器 3. 高分辨CCD图象采集装置及电脑游标测量装置和数据处理激光打印系统。 其特点分别为: 1.FM-700显微硬度计特点 FM-700显微硬度计是2000年由日本F-T公司推出的最新型显微硬度计。它是当前世界上最完善的显微硬度计,它是在原日本松泽公司MXT-α7的基础上作了重要改进的显微镜型显微硬度计。具有以下特点: 1) AUTO TURRET 物镜压头物镜自动转换。在目镜的视域里选好所要测 试的点后,按START,压头会自动旋至已选好点的位置, 自动打压痕后, 物镜再自 动旋回到原位,这时在目镜中便可观察到清晰的压痕, 再进行测量。 2) 触摸式照明LCD菜单式显示屏取代原有繁多的操作按键,操作十分方便并有HV对其 它12种标尺的自动对照转换值, 如 (HK.HRA.HRB.HRC.HB.HS) 3)有内装微处理器存贮多达999个测量数据,并具有对测量数据的数理统计(最大 值、最小值、均方差、平均值、偏差)等。 4) 配接打印机可将测量结果全部打印输出。 5) 配接电脑控制的自动载物台及高分辨CCD图像采集游标测量装置可组成半自动测量 系统(参阅FEM-7000)。 6) FM-700显微硬度计可在原有2个物镜(10倍、40倍)外,另任选配装一个物镜 (5 倍、20倍、50倍、100倍)。这样FM-700同时也成为一台高品质的明场显微 镜。

渗碳淬火齿轮有效硬化层深

工厂标准 Q/DZ 渗碳淬火齿轮有效硬化层深度 共2页第1页 1、定义:渗碳齿轮齿面有效硬化层深度是指终加工齿面至心部硬度 为Hv550处的厚度a,国际上用Eht表示。 2、渗碳齿轮有效硬化层最小深度a min按下式计算。可从表1中直 接查取。 a min= log(1.2m n)+ 0.018m n 表1 有效硬化层深度的 最大值a max按表2确定 共2页第2页 表2 3、本规定适用于轧钢机械、连铸机械、炼焦机械、冶炼机械、装卸

机械的传动齿轮。 4、特殊工况用渗碳齿轮的有效硬化层深度,可根据接触剪应力的大 小另行确定。 6.、本表对于Mn≤8的齿轮而言,其推荐的渗碳深度是合理的,但对于Mn>8的齿轮而言,其数据缺乏合理性。 7. 对于合理的渗碳层深度各国、各公司的标准不同,而且差距还比较大。各国及各行业推荐的渗碳层深度见表3 表3 各国及各行业推荐的渗碳层深度

注:根据JB/T 8853-2001《圆柱齿轮减速机》渗碳层的深度根据模数选择,当Mn=1.5~6时,渗碳层深度ht=(0.2~0.3)Mn; 当Mn=7~18时,渗碳层的深度ht=(0.15~0.25)Mn(小模数取大值,大模数取小值)

Word 是学生和职场人士最常用的一款办公软件之一,99.99%的人知道它,但其实,这个软件背后,还有一大批隐藏技能你不知道。掌握他们,你将开启新世界的大门。 Tab+Enter,在编过号以后,会自动编号段落 Ctrl + D调出字体栏,配合Tab+Enter全键盘操作吧 Ctrl + L 左对齐,Ctrl + R 右对齐,Ctrl + E 居中 Ctrl + F查找,Ctrl + H 替换。然后关于替换,里面又大有学问! 有时候Word文档中有许多多余的空行需要删除,这个时候我们可以完全可以用“查找替换”来轻松解决。打开“编辑”菜单中的“替换”对话框,把光标定位在“查找内容”输入框中,单击“高级”按钮,选择“特殊字符”中的“段落标记”两次,在输入框中会显示“^P^P”,然后在“替换为”输入框中用上面的方法插入一个“段落标记”(一个“^P”),再按下“全部替换”按钮。这样多余的空行就会被删除。 Ctrl + Z是撤销,那还原呢?就是Ctrl + Y,撤销上一步撤销! 比如我输入abc, 按一下F4, 就会自动再输入一遍abc

AS1982硬化层深度测量方法

AS 1982-1993 澳大利亚标准 钢材表面硬化层深度测量方法

目录 1.范围 2.参考文件 3.定义 4.方法原理 5.试块制备 6.试验方法 7.试验报告 附件 A 对打磨和抛光的建议 B 蚀刻试剂

1.范围 该标准规定了钢材制品通过渗碳、渗氮、碳氮共渗或氰化热处理工艺表面硬化达到3mm 的硬化深度的测量方法。 2.参考文件 该标准参考了如下文件: AS 1050 铁和钢的分析方法 1050.2 第二部分:碳含量的确定(比重测定法) 1050.32 第32部分:碳含量的测定(红外线测定法) 1817 金属材料-维氏硬度测量 2243 实验室安全 2243.2 第二部分:化学方面 ASTM E384 材料的微观硬度实验法 E415 碳钢和低合金钢的光学发射真空光谱分析法 3.定义 针对该标准,定义如下: 3.1.硬化层:从钢材外部扩散到钢材中的碳、氮或碳和氮的作用导致的不同化学成分的表层。 3.2.核心:由硬化层整体或部分包围的并且在硬化过程中化学元素保持不变的钢材部分。 3.3.有效硬化层深度:沿着原始表面的一普通条线测得的到首次等同于规定硬度的点的距 离。 3.4.试块:通过机械加工手段从从试样上取得的经过制备用于试验的料块。 3.5.样件:通过选样工序从一个批次或委托中选取的材料的一部分或是多个项目的组群。 3.6.试样:用于特定试验的从样件中选取的材料的一部分或单个项目。 3.7.总硬化层深度:沿着硬化或非硬化层的原始表面的一条普通线测得的到硬化层和核心 的化学或无理性能不再有区别的点的距离。 注:硬化层深度通常取有效硬化层深度。 4.方法原理: 钢材表层碳或氮或者是二者都有增加的情况改变了表层的化学成分、微观结构和机械性

渗氮(氮化)后的硬度及厚度检测方法

渗氮(氮化)后的硬度及厚度检测方法 发布时间:11-08-03 来源:点击量:1528 字段选择:大中小 一、钢铁零件渗氮(氮化)后的硬度及厚度检测方法: 随着工业的发展,渗氮处理被更多的应用到各行各业,对渗氮处理的检测要求也日益提高。下面北京时代山峰科技有限公司为您简单阐述钢铁零件渗氮处理后的硬度及厚度检测。 渗氮(气体渗氮、离子渗氮、碳氮共渗、辉光离子氮化)零件的主要技术要求是有效渗氮层深度,表面硬度和局部硬度。某些零件还有渗氮层脆性等级评定要求,完成以上要求,都需显微维氏硬度检测进行测定。 渗氮层从金相组织划分,包括从最外层化合物层(白亮层)到扩散层与基体组织明显分界处为止的深度。显微维氏硬度检测,依据从工件表面测至与基体有明显界定硬度值处的垂直距离。 渗氮层深度以字母DN表示。 渗氮层深度硬度检测方法: 1、试样的准备 a、试样应从渗氮零件上切取,如工件不能破坏,也可用与零件相同材料和相同处理工艺的小试样切取后检测。 b、试样切取时要注意,应垂直渗氮层表面取样(详见金相试样取样方法),取样后进行必要的磨抛处理,在磨抛过程中应注意冷却,不能使工件过热,边缘不要出现倒角等。 c、检查渗氮层脆性的试样,表面粗糙度要求>Ra0.25-0.63um,但不允许把表面化合物层磨掉。 2、检测 a、根据国标规定,一般选用显微硬度计,检测力通常选用0.3--1KG,从试样表面测至比基体维氏硬度值高50HV处的垂直距离为渗氮层厚度。(通常采用梯式硬度测法,即从试样表面开始,每间隔一定距离打一点) b、基体硬度的取点与测定,一般在3倍左右渗氮层深度的距离处测得的硬度值(至少取3点,平均值)做为基体硬度值。 c、对于渗氮层硬度变化很平缓的钢种,(如碳钢、低碳合金钢制件),其渗氮层深度可以从试样表面沿垂直方向测至比基体维氏硬度高30HV处。 d、当渗氮层深度有的特别浅,有的则较深时,检测力可以在0.2KG范围内选择(并注明,如HV0.2) e、结果的表示,渗氮层深度用字母DN表示,深度以毫米计,取小数点

金相法测定渗层深度

金相法测量渗碳(碳氮共渗齿轮的有效硬化层深度金相法测量渗碳碳氮共渗)齿轮的有效硬化层深度碳氮共渗常州齿轮厂(213001) 陈秋明张永年汽车、拖拉机齿轮大多采用渗碳或碳氮共渗淬火的表面热处理,以提高齿轮的耐磨、抗疲劳强度等性能。国内汽车、拖拉机齿轮制造行业对此类齿轮的检验,过去一直采用金相法测量渗层深度。随着与国际标准的接轨,我国新制订的国家标准ZBT04001-88及QCn29018-91中明确规定应采用显微硬度法测量渗层的有效硬化层深度。勿用置疑有效硬化层深度更能代表齿轮渗碳(碳氮共渗)淬火处理后的综合机械性能,但国内大多数齿轮生产厂家由于老标准应用的时间较长,已形成了习惯,对新的标准还不完全适应;另有少数工厂不具备检测有效硬化层深度的条件。在生产过程中的炉前试块检验,用金相法测量渗层深度与有效硬化层深度有明显的差异,用有效硬化层测量深度对试样的要求高,且检验周期长,不适合炉前快速检验,那么我们是否可找出一种既简便、又与有效硬化层深度有对应关系的金相测量方法呢?针对此问题,我厂进行了大量对比实验,实验证明可采用测量50%铁素体处距表面的距离来确定有效硬化层深度。1 测量方法的制订有效硬化层深度的定义是从零件表面到维氏硬度值为550HV处的垂直距离。从定义中我们知道,有效硬化层深度取决于渗层中的硬度分布,而硬度分布是与渗层中各处的含碳量密切相关的。我们从齿轮渗碳(碳氮共渗)热处理工艺特点考虑,在正常淬火的条件下渗层淬火组织应为马氏体,渗层中各处的硬度取决于原材料的淬透性和碳浓度分布。当材料一定时,对应于550HV处的含碳量也应该是一定的。我厂渗碳(碳氮共渗)齿轮所用材料为20CrMo 或20CrMnTi,经渗碳(碳氮共渗)之后,对应于550HV处的碳浓度约为0.35%~0.40%,从理论上讲,相对应的平衡组织中铁素体与珠光体的比例是一定的,铁素体大约占50%~56%,在金相检验中,50%铁素体比较容易区分,故我们试用金相法,测量50%~56%铁素体处至表面的距离定为有效硬化层深度。在渗碳(碳氮共渗)工艺控制中,出炉前的试块渗层深度略高于技术要求的下限,这样能确保成品的渗层深度,实践证明,这种方法是可行的。 2 实际应用在试行前,我们做了大量实验,选取渗层深度在0.5~1.2mm之间的各种不同类型的随炉试块或齿轮解剖试样,先采用显微硬度法测量有效硬化层深度。同一试块退火后,再用金相法测量渗层深度及50%铁素体处渗层深度,具体实验数据见表1:(单位:mm)。从表1我们可以看到,50%铁素体处渗层深度与有效硬化层深度具有对应关系。一般来说有效硬化层深度比50%铁素体处渗层深度深0.03~0.05mm,这一误差在工艺控制及检验中是允许的。而原金相法测得的渗层深度与有效硬化层深度差距较大,特别是对低碳势渗碳(碳氮共渗)齿轮,由于表层碳浓度在0.7%~0.8%,若按原金相法测量会出现无表面层或表面层小于总渗层

相关文档
最新文档