硫酸铵结晶知识讲解

硫酸铵结晶知识讲解
硫酸铵结晶知识讲解

硫酸铵结晶

硫酸铵是一种易溶性的盐。0℃时,在100g水中溶解70g(NH4)2SO4,而100℃时,可溶解102g。可见,硫酸铵溶解度具有比较小的温度系数。所以用热法只能达到不大的过饱和度,硫酸铵结晶为无色晶体,斜方晶系。硫酸铵作为普通的肥料之一,引起了和正在引起研究者的注意。实际上,对它在生成沉淀时的性能进行了全面的研究。

硫酸铵不能生成很好的过饱和溶液。根据计算和实验数据,在75~95℃的温度范围内,其溶液绝对极限过饱和度应该是2~3g/100gH2O 【10】, (NH4)2SO4的极限过冷度也比较高,接近硝酸钾溶液所具有的的极限过冷度。在30~50℃的温度范围内的极限过冷度的值,按冷却速度的不同而处在3.0~4.5℃之间。有晶种存在时,他们可降低到1.75~2.5℃【13】.

硫酸铵结晶通常在过饱和度不大的情况下进行。这时,无论是一次晶核生成或是二次晶核生成,都是有可能的。一次晶核生成服从于一般的理论规律【12】.硫酸铵溶液中的二次晶核生成,已经作为专门的研究课题【20】.

试验是在装有搅拌器的结晶器内进行的。采用大小不同的硫酸铵晶体作为晶种。每经过10min选取悬浮液的式样,并测定粒子大小的分布情况。

〝硫酸铵-水〞是属于所谓的第二级系统,它的特点之一是在低过饱和度时结晶。如果加入晶种量不大,则出现新的晶核。生成增补的晶核使过饱和度降低下来并趋于稳定。

在晶种量充足时,就不会出现新的晶核,筛分数据可以证明这一点。曾指出,自发生成的晶核仅仅是溶液过冷度超过2.7℃时才开始。在硫

酸铵结晶时,二次晶核生成的机理,据推断【20】是与固体粒子的相互碰撞及它们与搅拌器或结晶器表面碰撞有关。

硫酸铵结晶的动力学,在具体条件下取决于形成过饱和的速度、结晶开始并生成沉淀的过饱和度以及其它的结晶过程所需的一般条件。

按照拉尔森和穆林的意见,晶核生成的速度取决于极限过饱和度。考虑到式(3-11),可以用下式表述这个关系:N0=K N(△c)lim,式中在N

N0与

下角的0

N0)T (14-2)

注意到△c lim=(dc eq/dT) △T lim及利用(14-1)式和(14-2)式的关系,得溶液的的冷却速度与极限过冷度的关系式:

lgT =k + n N lg△T lim (14-3)

利用得到的关系式,可以求得晶核生成过程的阶数(n N),对于含有晶种的(NH4)2SO4—H20系统来说,这个阶数等于2.62±0.92.

具有斜方晶形的硫酸铵晶体是在不同指数的晶面上成长不同而得出的。其中,有晶面{111}{110}{010}{100}.每一个晶面都具有自己的成长线速度。对于各个晶面,L与过饱和度的关系也各不相同。例如,对于晶面{100},成长过程的阶数n=1,而晶面{001},n=2.因此,这时所说的晶体成长线速度,基本上指的是结晶粒径增大的平均速速。这个速度可以用方程式(14—12)和(14—13)以及其它表示过饱和度的各种方法的关系式来描述。其中,硫酸铵结晶的成长线速度可以用下面的方程式计算:

L = k(△c)n(14-4) 按照成长线速度的数据计算N N/n比值,它的范围为1.5±0.2.利

用上面所说的n N数据,可以求得硫酸铵晶体成长过程的级数等于0.98.在表14-3中列举了晶核生成和(NH4)2SO4晶体成长的数据,这些数据是在18℃时连续运转的结晶器中的得到的。作为杂质(Cx)使用的是离子Cr3+(M-----悬浮液的稠度)。溶液在45℃时进入结晶器。这里时间t应理解为冷却到18℃的时间。

表14-3 关于硫酸铵晶核生成和晶体成长的数据

6

从表中可以看出,晶核生成的速度随冷却而增加,这个速度与最大过冷度相当。同时,成长线速度稍有减小。在时间t增加一倍的情况下,其晶体的平均直径实际上并没有变化。有杂质存在时,N减小,而L和L稍有增加。

还给出硫酸铵结晶的其它数据。按照这些数据,硫酸铵晶体在30℃、60℃和90℃时的成长线速度分别是15、24和18μm/min。在前两个温度条件下,过饱和系数s=1.05,而在90℃时s=1.01。

硫酸铵晶形的变体问题具有重大意义。这方面的研究发表了大量著作,例如【24】。首先应当指出介质PH值对硫酸铵晶形的影响。在强酸溶

液中生成碎小的针状晶体。在中性的、碱性的溶液中晶体的直径减小。在PH5~6时弱酸性介质中生成比较大的圆形晶体。

铁、铵、铬、锰、镁、锌、钴的离子和许多其它无机添加物,对晶形和结晶过程中的各方面都产生影响。阴离子杂质,像氯、氰、硫代氰酸盐离子,磷酸盐离子等也有影响。例如,三价铁离子会促使介稳区扩大,减慢结晶速度,在溶液中的含量达到0.1%时会促使硫酸铵晶体变长,而在较高的浓度时导致生成针状晶体。铅离子会促使大粒(NH4)2SO4晶体析出,并生成连生体。杂质锰离子会促进晶核生成。有他们存在时硫酸铵结晶为粗大的片状晶体。

有机杂质在硫酸铵结晶中占有特殊的地位。他们常常加速晶体的成长,促使生成较大的圆形晶体。例如,有尿素存在时,使介稳区缩小,长成圆形晶体并生成双生结晶的连生体。在一定浓度下,杂质酚也会使等轴晶形的硫酸铵晶体析出,粒径增大并出现聚合体。在有淀粉存在时,(NH4)2SO4晶体逐渐变成六面片状体,而杂质吡啶会引起很小的晶体出现。

制取〝米粒状〞的无机结晶产品有重大的工业意义。这样的叫法是指制得的晶粒是圆形的和按一轴向稍微延长的,它们就像米粒一样。米粒状的结晶产品中的一部分是硫酸铵。这样的外形是由于杂质铁、铝、镁、锰、铜离子存在以及在溶液中添加草酸和碳酰胺的情况下得到的。

勃罗乌尔研究了硫酸锰、硫酸铜、硫酸镁、硫酸锌、硫酸钴的影响。他也研究了像硼酸和钼酸铵这些添加物对硫酸铵结晶的作用。已经查明,硫酸铵与其它硫酸盐的阳离子生成(NH4)2SO4.MeSO4.6H2O形式的盐。研究的结果证实了关于锰、铜、镁对于生成米粒状结晶方面的文献数据。还表明,锌离子也能促使生成比较完善的硫酸铵晶体,颗粒较圆,尺寸增大,而介稳区的宽度变窄。硼酸的影响不大,而钼酸铵则有不良影响。后者存在时析出类似碎片的、不规则的晶体。

在工业条件下,硫酸铵可用不同方法制造,其中包括:硫酸与氨相互作用、用碳酸铵溶液处理硫酸钙、加工已内酰胺生产的废液以及其它方法。在用氨中和硫酸时按以下反应得到硫酸铵溶液:

2NH3+H2SO4 (NH4)2SO4

在此情况下,硫酸铵从过饱和溶液中结晶。因为制取硫酸铵所使用的硫酸中含有杂质,它们对产品结晶产生影响。杂质铁和铵因为生成胶态氢氧化物,并蒙在硫酸铵晶体上,使成长困难和结晶过程复杂化。为了避免这些影响,必须在酸性介质中进行结晶。但是,存在过剩硫酸时,(NH4)2SO4变为细粒晶体的固相,这会造成过滤和与母液分离的困难。为避免这种情况,建议在液相中含H2SO4为0.9~1.5g/100ml水的条件下进行结晶。

为了制止铁和铵离子的有害影响,也可以用磷酸、过磷酸钙和某些其它添加物预先沉淀的方法。为了增加晶体的粒径,结晶在连续过程中进行,同时延长粒子成长的时间。

在炼焦化学生产中制得硫酸铵时,也用氨中和硫酸的反应。在这种情况下,结晶既有在一般的结晶器中进行的,也有在真空下进行的。其中有采用英国一家公司研制的结晶型结晶器。在这种结晶器中,大、小晶体预先分离,并且小晶体和母液一起与一部分新的溶液混合,重新回到育晶设备中。

为了从硫酸钙制得硫酸铵,可以利用石膏、硬石膏、甚至磷石膏。其过程按以下反应来实现:

CaSO4 + (NH4)2CO3 (NH4)2SO4 + CaCO3 在这个过程中,既有碳酸钙结晶,也有主要产品的沉淀。在从系统中排除碳酸钙时,为确保很好的相分离,必须首先解决生成大结晶CaCO3的问题。CaCO3分离以后,蒸发含有40%~42%(NH4)2SO4和1.5%左右(NH4)2CO3的溶液。在蒸发时间内,硫酸铵开始结晶,然后,

在40~45℃下在真空结晶系统内继续进行结晶。

硫酸铵吸湿性小,它的吸湿点在15℃时为81.虽然如此,将其制成颗粒还是合适的。试验证明,添加25%左右磷钙石粉可制得相当坚实的颗粒。

从列举的数据看出,为了制得所需的物理化学特性和较大产量的硫酸铵,其基本的和必要的条件是考虑到在过饱和度不大的情况下结晶有关的所有特点。首要的问题是控制过饱和度,足够准确地测定过饱和度,一般来说这是很复杂的。因为在过饱和度不大的情况下,即使比较准确测定液相中硫酸铵的浓度也不容易。测定的误差可能比过饱和度本身的值还大。

硫酸铵在结晶阶段上比较有前途的生产控制方法是基于利用各种物理性质与浓度的关系。这些性质有:密度、电导率、折射率。这些性质能够准确地测得。加之,应用上述方法所得到的相液中硫酸铵浓度改变的信息,可以实现过程的地洞控制。

知道溶液的过饱和度,可查明一次和二次晶核生成的特点以及预先计算晶体成长到规定粒径所需的时间。在采用各种添加物时,必须估计到它们对硫酸铵溶解度影响的程度。后者应该是首先校正溶液过饱和度的数据。此外,应该经常考虑到由于杂质与液相中含有的组分相互作用而有可能生成补充的晶核,也要考虑在系统中不溶性杂质的作用。

硫酸铵废水MVR蒸发结晶

石家庄博特环保科技有限公司 含硫酸铵废水蒸发浓缩结晶分离 技术方案 编制: 校核: 审核: 批准: 二零一四年十一月

含硫酸铵废水蒸发浓缩结晶分离技术方案 一、蒸发器选型简述 本设计方案针对含硫酸铵废水,采用MVR蒸发装置。硫酸铵废水要求蒸发结晶,装置分两部分第一部分用降膜蒸发器进行蒸发浓缩,第二部分采用抗盐析、抗结疤堵管能力强的强制循环蒸发器。 由于硫酸铵具有强腐蚀性,长期运转考虑,与物料接触部分采用316L不锈钢,其余采用碳钢。 二、计算依据 含硫酸铵废水处理量及组分:含硫酸铵废水处理量1.5t/h,其中硫酸铵6%,其余成分为水。 三、主要工艺参数

四、工艺流程简介 4.1原液准备系统 工厂产生的含盐废水流入原液池,原液池起到储存、调节原液的作用,满足废水蒸发处理设备的连续稳定运行。原液池配备有原液提升泵,原液提升泵将含盐废水均匀输送至蒸发处理系统,调节原液泵后的控制阀门保持原液提升量与蒸发量的平衡。 4.2 二次蒸汽及压缩蒸汽系统 经开始生蒸汽在加热室经过加热直至产生足量的二次蒸汽后关闭生蒸汽阀门,降膜蒸发器与强制循环蒸发器加热室产生的二次蒸汽经过蒸汽压缩机压缩后产生温度及压力都提高的压缩蒸汽。压缩蒸汽分配到降膜蒸发器和强制循环蒸发器的加热室进行加热。加热后的压缩蒸汽形成的冷凝水进入预热器对原液进行预热。 4.3 料液系统 含盐废水经预热器加热后进入降膜蒸发器蒸发浓缩到45%后进入强制循环蒸发器蒸发结晶然后经出料泵抽出料液进入旋液分离器中浓缩分离,然后排入储料器中收集,最后排入离心机离心分离。 4.4事故及洗罐 系统工作出现事故及运转过程中洗罐时,首先停止进料,将蒸发设备中的母液排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排入原液池,排空蒸发罐后,首先将部分母液通过原液泵进入蒸发罐,然后通过原液泵补充加入原液,使蒸发罐中的液位满足工艺要求。

硫酸铵分级沉淀

一,基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 二,试剂及仪器 1 . 组织培养上清液、血清样品或腹水等 2. 硫酸铵(NH 4 )SO 4 3. 饱和硫酸铵溶液(SAS ) 4. 蒸馏水 5. PBS( 含0.2g /L 叠氮钠) 6. 透析袋 7. 超速离心机 8. pH 计 9. 磁力搅拌器 三,操作步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33% — 50% 。 (一)配制饱和硫酸铵溶液(SAS ) 1.将767g (NH 4 )2 SO 4 边搅拌边慢慢加到1 升蒸馏水中。用氨水或硫酸调到硫酸pH7.0 。此即饱和度为100% 的硫酸铵溶液(4.1 mol/L, 25 ° C ). 2.其它不同饱和度铵溶液的配制 (二)沉淀 1.样品(如腹水)20 000 ′ g 离心30 min ,除去细胞碎片; 2.保留上清液并测量体积; 3.边搅拌边慢慢加入等体积的SAS 到上清液中,终浓度为1 :1 (

4.将溶液放在磁力搅拌器上搅拌6 小时或搅拌过夜(4 ° C ),使蛋白质充分沉淀。(三)透析 1.蛋白质溶液10 000 ′ g 离心30 min (4 ° C )。弃上清保留沉淀; 2.将沉淀溶于少量(10-20ml )PBS -0.2g /L 叠氮钠中。沉淀溶解后放入透析袋对 PBS -0.2g /L 叠氮钠透析24-48 小时(4 ° C ),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3.透析液离心,测定上清液中蛋白质含量。 四,应用提示 (一)先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1.边搅拌边慢慢加SAS 到样品溶液中,使浓度为0.5:1 (v/v) ; 2.将溶液放在磁力搅拌器上搅拌6 小时或过夜(4 ° C ); 3.3000 ′ g 离心30 min (4 ° C ),保留上清液;上清液再加SAS 到0.5:1(v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 4.上清液再加SAS 到0.5:1 (v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 5.杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效(二)为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1 );硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。 今天作的实验是利用硫酸铵沉淀蛋白质,从之前作过的经验知道,这一个步骤是有名的烦,要慢慢用敲的把硫酸铵缓缓的加入蛋白质溶液中。 相关的原理可以在庄荣辉学习网站中找到,与盐溶刚好相反,在蛋白质溶液中加入硫酸铵,会使得蛋白质的溶解度下降,因而沉淀出来。因为硫酸铵所解离的离子容很大,所带的电子数也多(NH4+, SO42-),因此当其溶入水中时,会吸引大量水分子与这些离子水合。 蛋白质分子表面多少有一些较不具极性的区域,水分子会在这些非极性区的表面聚集,形成类似『水笼』的构造(请见下图),以便把蛋白质溶入水中。一旦蛋白质溶液加入硫酸铵,后者吸引了大量水分子,使水笼无法有效隔离蛋白质的非极性区,造成这些非极性区之间的吸引,因而沉淀下来。因此,分子表面上若有越多的非极性区域,就越容易用硫酸铵沉淀下来。 在计算所添加的硫酸铵的重量方面,找到了一个不错的网站——硫酸铵计算机 这个网页上可以靠着输入实验温度、溶液体积、想要到达的百分浓度以及初始的百分浓度这四个数值,就可以得到需要添加的硫酸铵克数,以及在加入固体硫酸铵后所增加的体积,算是一个很不错的网站。 此外另一个比较值得提的,是我有用两种方式加入硫酸铵,第一种是固体的硫酸铵模碎加入,另一种是将硫酸铵溶成饱和溶液再加入,各有各的优缺点,比较如下: 1.造成蛋白质变质的程度:固体的硫酸铵>硫酸铵饱和溶液 利用硫酸铵饱和溶液真的超棒,滴入的速度可以很快而不造成变质(没试过用倒入的)。不像固体的硫酸铵只能磨碎慢慢加入,速度一快蛋白质就坏了(溶液有致密的白色气泡产生)。 2.操作的容易度:硫酸铵饱和溶液>>固体的硫酸铵 固体硫酸铵最大的缺点就是操作不容易,要一直敲敲敲又不能太快,所以当你要溶解的蛋白质很多时,这是很累的步骤。然而硫酸铵饱和溶液比较麻烦只有在配制部分,要先加热让它饱合后,回到操作温度让它过饱和,最后用滤纸把硫酸铵结晶去掉。

硫酸铵结晶工艺和设备

一、硫酸铵的作用与用途 硫酸铵一种优良的氮肥,适用于一般土壤和作物,能使枝叶生长旺盛,提高果实品质和产量,增强作物对灾害的抵抗能力,可作基肥、追肥和种肥。能与食盐进行复分解反应制造氯化铵,与硫酸铝作用生成铵明矾,与硼酸等一起制造耐火材料。加入电镀液中能增加导电性。也是食品酱色的催化剂,鲜酵母生产中培养酵母菌的氮源,酸性染料染色助染剂,皮革脱灰剂。此外,还用于啤酒酿造,化学试剂和蓄电池生产等。还有一重要作用就是开采稀土,开采以硫酸铵作原料,采用离子交换形式把矿土中的稀土元素交换出来,再收集浸出液简单过滤分离后晒干成稀土原矿,每开采生产1吨稀土原矿约需5吨硫酸铵。 二、硫酸铵生成和制备 工业上采用氨与硫酸直接进行中和反应而得,目前用得不多,主要利用工业生产中副产物或排放的废气用硫酸或氨水吸收(如硫酸吸收焦炉气中的氨,氨水吸收冶炼厂烟气中二氧化硫,卡普纶生产中的氨或硫酸法钛白粉生产中的硫酸废液)在利用硫酸铵蒸发结晶器来结晶。也有采用石膏法制硫铵的(以天然石膏或磷石膏、氨、二氧化碳为原料)。由氢氧化铵和硫酸中和后,结晶、离心分离并干燥而得。中和法氨与硫酸约在100℃下进行中和反应,通过(硫酸铵蒸发结晶器)生成的硫酸铵晶浆液经离心分离、干燥,制得硫酸铵成品。其 2NH3+H2SO4→(NH4)2SO4回收法由炼焦炉气回收氨气,再与硫酸进行中和反应而得。 根据硫酸铵的物理性质硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器,若硫酸铵溶液含有氯离子,在设备选材上则需要加以注意。考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要根据硫酸铵的物理性质,硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器。 考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要考虑结晶器设备的使用期限,由于溶液含有氯离子,设备材质需要耐氯离子腐蚀,硫酸铵溶液为酸性大于5小于6.5,加热室可以用钛管,酸性小于5加热室就要用石墨,分离室用钛复合板或玻璃钢,硫酸铵溶液为酸性大于6.5可以用不锈钢316L材质。

硫酸铵结晶

硫酸铵结晶 硫酸铵是一种易溶性的盐。0℃时,在100g水中溶解70g(NH4)2SO4,而100℃时,可溶解102g。可见,硫酸铵溶解度具有比较小的温度系数。所以用热法只能达到不大的过饱和度,硫酸铵结晶为无色晶体,斜方晶系。硫酸铵作为普通的肥料之一,引起了和正在引起研究者的注意。实际上,对它在生成沉淀时的性能进行了全面的研究。 硫酸铵不能生成很好的过饱和溶液。根据计算和实验数据,在75~95℃的温度范围内,其溶液绝对极限过饱和度应该是2~3g/100gH2O【10】, (NH4)2SO4的极限过冷度也比较高,接近硝酸钾溶液所具有的的极限过冷度。在30~50℃的温度范围内的极限过冷度的值,按冷却速度的不同而处在~℃之间。有晶种存在时,他们可降低到~℃【13】. 硫酸铵结晶通常在过饱和度不大的情况下进行。这时,无论是一次晶核生成或是二次晶核生成,都是有可能的。一次晶核生成服从于一般的理论规律【12】.硫酸铵溶液中的二次晶核生成,已经作为专门的研究课题【20】. 试验是在装有搅拌器的结晶器内进行的。采用大小不同的硫酸铵晶体作为晶种。每经过10min选取悬浮液的式样,并测定粒子大小的分布情况。 〝硫酸铵-水〞是属于所谓的第二级系统,它的特点之一是在低过饱和度时结晶。如果加入晶种量不大,则出现新的晶核。生成增补的晶核使过饱和度降低下来并趋于稳定。 在晶种量充足时,就不会出现新的晶核,筛分数据可以证明这一点。曾指出,自发生成的晶核仅仅是溶液过冷度超过℃时才开始。在硫酸铵结晶时,二次晶核生成的机理,据推断【20】是与固体粒子的相互碰撞及它们与搅拌器或结晶器表面碰撞有关。 硫酸铵结晶的动力学,在具体条件下取决于形成过饱和的速度、结晶开始并生成沉淀的过饱和度以及其它的结晶过程所需的一般条件。 按照拉尔森和穆林的意见,晶核生成的速度取决于极限过饱和度。考虑到式(3-11),可以用下式表述这个关系:N0=K N(△c)lim,式中在N 下角的0表示达到极限过饱和度时生成晶核的速度。另一方面,N0与溶液的冷却速度有关: N0

硫酸铵沉淀

硫酸铵沉淀: 有生物活性的蛋白一般在做硫胺沉淀的时候要小心一点。最保险的做法是,把硫酸铵配成饱和溶液,把蛋白溶液置于冰浴上,再把饱和硫胺溶液一滴一滴的加到你的蛋白溶液中,最好边加边搅拌,避免局部硫胺浓度过高,但搅拌的时候注意不要搅出气泡。按照你的比例加完之后,最好放冰箱静置至少2h,充分沉淀后离心即可。 4M的硫酸铵pH值为,在这个酸度下可能会有一些蛋白质变性,要小心。硫酸铵会破坏蛋白质水化层,最好是缓和地加入。边加入边搅拌,如果在磁力搅拌器上搅拌,小漩涡中心有很多泡沫就表示蛋白质变性,使得溶液粘度增加,泡沫难破,那就很难保证你的蛋白质有没有变性了。 溶解度,在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。固体的溶解度是指在一定的温度下,某物质在100克里达到饱和状态时所的克数,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。 溶液饱和度(化学) 某种溶液的饱和度是指在100g该溶液中溶质在溶液中所占质量分数.一般情况下,一种溶液的饱和度在同一温度下不会变.要想使不饱和溶液饱和度增加可以选择增加溶质.在刚好有晶体析出的时候就是溶液刚好饱和的时候.溶液饱和度不会出现100%

加固体比较好,加得越慢越好。如果加快了,会造成局部浓度过大,造成意想不到的沉淀。 硫酸铵沉淀的时候应该要注意pH值的变化,就我的实验来说,一株产淀粉酶曲霉固态发酵之后用超纯水浸泡离心,得到含有酶的上清液的pH值为,但是淀粉酶能耐受,为了去除更多杂质蛋白质,我把硫酸铵浓度调节到2摩尔每升的同时会控制pH值为,4度过夜之后离心取上清液再调节到pH值,4度放置,离心,又去除一部分杂质蛋白质,上清液直接用的疏水层析系统来纯化。 一个纤维素酶的纯化我也用类似的方法,只不过第一步是用。 硫酸铵是酸式盐,2M时pH值约为5,4M时更低,用来沉淀蛋白质的时候情况就更复杂了,所以最好知道自己需要的蛋白质的耐受情况,不要搞死了。 透析之前要选用一个不影响自己想要的蛋白质的pH值,硫酸铵沉淀和透析都要保持一致,才能使损失减少。透析时候产生的沉淀不知道是不是你想要的蛋白质,不过下次做最好谨慎一点,做我说过的预备实验。 分段盐析的方法

生产过程中的硫酸铵蒸发结晶以及中和结晶的主要对比分析

生产过程中的硫酸铵蒸发结晶以及中和结晶的主要对比分析 我国化工企业在生产过程中,会由于生产过程以及生产工艺的不同会出现不同的化学反应,文章主要针对生产过程中的硫酸铵的蒸发结晶以及中和结晶之间的内容进行对比和分析,希望通过文章的阐述以及分析能够让我国的化工行业在硫酸铵的生产过程中更好的选择生产工艺,同时也为我国的化工领域的发展以及创新贡献力量。 标签:硫酸铵;蒸发结晶;中和结晶;结晶器;真空;循环泵;浆料 在我国的化工领域,化学纤维以及工程用塑料的生产原料最主要还是己内酰胺。化学纤维的产品以及工程塑料的相关产品在发展以及创新过程中和我国的人民生活水平的提升有着非常重要的连带关系。近些年我国的人民生活水平在逐渐的提升,因此对于化工产品的需求也在不断的增多,这样就要求我们将己内酰胺的相关化学产品变成种类更加丰富,数量不断提升。现阶段在世界范围内生产己内酰胺最主要的生产工艺也是现阶段应用最为广泛的生产工艺为环己酮——羟胺生产路线工艺。这一生产工艺主要的技术基础就是环己酮贝克曼重排。我们在化工生产过程中的液相贝克曼重排能够在发烟硫酸的有关催化下,进行贝克曼重排化学反应,如果反应进一步和氨进行中和反应,就会得到我们化工生产中需要的已内酰胺,同时还能够得到硫酸铵。 在化工生产过程中,贝克曼重排反应之后,我们为了有效的中和重排反应产生的发烟硫酸,在生产过程中主要应用了两种生产工艺方法。第一种是进行硫酸铵的蒸发结晶;第二种是进行硫酸铵的中和结晶。蒸发结晶主要是在重排液体中导入总量20%的氨水,让两者在反应器中充分的进行中和反应,在中和反应结束后,我们进行分层处理。我们对上层的己内酰胺进行一系列的萃取以及精制得到了我们需要的成品己内酰胺;反应溶液下层的液体是含量在40%的硫酸铵,我们将一定浓度的硫酸铵经过硫酸铵泵进行输送,将其送到硫酸铵的储罐之中,之后我们经由相关的泵送至蒸发结晶器中进行蒸发结晶处理,然后经过相应的离心干燥得到我们需要的硫酸铵成品。中和结晶主要是在重排液体中适当的加入气态的氨,这样重排液体就会和气态的氨经由化学喷头进入中和晶体专用号器皿中,需要注意的是在进行中和结晶的过程中我们需要在结晶器中放置适当的水分,这样能够在中和反应过程中将水蒸发掉。让中和反应后的硫酸铵在专业的结晶器中形成晶浆,晶浆通过相应的稠厚处理;离心处理以及干燥处理得到我们需要的成品硫酸铵。这时候己内酰胺会在结晶器中的折流区域进行积聚,我们通过泵来进行抽取,然后萃取处理,精制处理得到化工生产需要的己内酰胺。 1 在化工生产过程中硫酸铵蒸发结晶的主要流程 整个硫酸铵液体的蒸发结晶需要从硫酸铵母液罐中开始。我们在化工生产过程中将40%浓度的硫酸铵液体经由硫酸铵泵进入硫酸铵的母液罐中,这样能够有效的和离心泵内流出的硫酸铵母液进行混合处理,然后,两种途径而来的硫酸铵溶液会由母液罐中的泵体进入结晶器中。由于有真空泵的帮助,结晶器内的压力

某化厂硫酸铵浓缩结晶分离干燥技术方案设计

某化厂硫酸铵浓缩结晶分离干燥技术案 一,技术要求: EF项目废水经中和,脱色,硫酸铵浓缩,结晶,干燥得到副产品硫酸铵。 硫酸铵溶液蒸发浓缩,硫酸铵浓度为18.21﹪,每小时处理量为12吨,每小时需蒸发的水量为9.6吨水,并对硫酸铵进行回收。 二,案选择: 1,采用三效蒸发浓缩设备,工艺流程见附图。 2,硫酸铵溶液通过进料泵经流量计进入预热器后,再进入一效加热器,在一效蒸发器进行蒸发,蒸发出的二次蒸汽供二效加热器使用,由于真空作用,一效蒸发器蒸发过的溶液进入二效加热器再次加热并进入二效蒸发器进行蒸发,在二效蒸发过程中,考虑到有部分晶体析出,因此在二效蒸发器下部加装一台强制循环泵,避免结晶的物料粘附到加热管的壁上。达到一定浓度后的溶液进入三效蒸发器再次蒸发,同样原因三效蒸发器也加装了一台循环泵。过饱和的物料在三效蒸发器的下部完成结晶。结晶完成后进入离心机分离出硫酸铵晶体,分离出的溶液回到蒸发器继续蒸发浓缩,将硫酸铵晶体通过气流干燥达到含水要求后,再用包装机组进行包装,得到每袋50公斤的成品硫酸铵。蒸发出的水和汽通过预热器、冷凝器后进入液封槽,再通过水泵排走。 三,设备材料的选择: 根据以往我们生产过的设备,设备材料选用1Cr18Ni9Ti不锈钢材料。 四,设备说明及价格

A:三效浓缩设备设备说明: 1)、加热器: 一、二、三效蒸发器为列管式加热,加热管规格为φ38,加热器管程及管板材质采用选用1Cr18Ni9Ti不锈钢,壳程材质:Q235B/8mm的碳钢材料。 2)、蒸发器:蒸发器采用1Cr18Ni9Ti不锈钢材料。设有人、视、温度计、真空表等装置。 3)、预热器:预热器为列管式加热,,加热管规格为φ38,预热器管程及管板材质为1Cr18Ni9Ti不锈钢材料,壳程材质:Q235B/6mm的碳钢材料。 4)、进料泵:采用材质为1Cr18Ni9Ti的泵为进料泵。 5)、循环泵、循环出料泵: 循环泵、循环出料泵,要求密封良好,耐温,保证在负压状态下,能使高浓度物料或结晶物料连续出料工作,材质为1Cr18Ni9Ti不锈钢材料。 6)、冷凝器:采用Q235B碳钢材料,冷却面积有100㎡。 7)、液封槽:采用碳钢材料,容积为2000L。 8)、真空机组:采用的水喷射真空机组。 9)、工艺配件:工艺管道采用1Cr18Ni9Ti/Q235材质。 10)、仪表:所有压力、温度、真空用传感器检测,数字集中显示。 B:分离设备说明: 采用双级活塞推料型离心机,实行连续进出料操作。同时也减轻工人劳动强度。 C:气流干燥机设备: 一)、基本条件: 2,物料: 1〉物料名称:硫酸铵 2〉物料含水量:ω1<10~12% 3〉物料温度:Tm1=15 ℃ 4〉物料粘性:松散 2、成品:

硫酸铵蒸发结晶

硫酸铵蒸发结晶 一、物料组成及处理量: 溶质名称:硫酸铵 溶剂:水 进料浓度:20% 进料总量:3吨/小时 进料温度:30℃ 蒸发总量:2.4吨/小时 进料液:PH6~7 二、处理要求: 将物料蒸发浓缩、把硫酸铵结晶出来 运行方式:连续给料 三、工艺说明: 1、工艺流程说明: (1)物料加热、蒸发: 物料通过进料泵经过进料流量计计量后进预热器预热,利用蒸发器二次蒸汽冷凝下来的凝结水,将物料预热到80度以上,然后进强制循环泵的入口和结晶器出来的液体混合。经强制循环泵的输送,进入加热蒸发器,物料经过蒸发器壳程蒸汽的间接加热,吸收热量后温度升到108°C,然后进入DTB结晶器的闪蒸室,由于闪蒸室内为负压,物料进来后瞬间进行蒸发,大部分水变成温度为90°C的二次蒸汽,由二次蒸汽出口进入MVR蒸汽压缩机,蒸汽经压缩后蒸汽的压力提高,同时温度也升高到110°C,满足物料闪蒸脱水加热温度的要求。水蒸气经冷凝后成冷凝水排出,进入下道工序的处理。 (2)结晶 进入结晶器中的物料在螺旋桨的推动下,通过导流筒快速上升至液体表层,由于设备内为负压,部分水瞬间产生蒸发成为蒸汽后有顶部出口排出再利用,没有蒸发的物料沿导流筒与挡板之间的环形通道流至器底,重又被吸入导流筒的下端,形成了内循环通道,以较高速率反复循环,使料液充分混合,保证了器内各处的过饱和度比较均匀,极大地强化了结晶器的生产能力。 圆筒形挡板将结晶器分隔为晶体生长区和澄清区。澄清区的物料溢流后和母液混合后经循环泵输送加热器循环加热。 结晶器内的物料经设备内混合区、养晶区后晶体颗粒很快的长大,颗粒大晶体由于沉降速度大于悬浮速度,在结晶器的底部会形成一个悬浮密度稳定的晶浆区,通过密度的自动控制,利用晶浆泵的输送,将含晶体30%~40%的晶浆送往离心机进行分离。得到颗粒较大的硫酸铵晶体。 母液经处理将剩余的产品提出后返回系统重新蒸发提纯。 2、设备情况介绍: (1)加热蒸发器 换热面积为200m2,管程介质为饱和硫酸铵溶液,壳程介质为水蒸气,管程介质为:316L,壳程介质为碳钢。设备形式为卧式双回程。外形尺寸为:¢ 1100*~5500. 该设备是将物料进行加热,提供物料的温度,为物料蒸发提供热能。

硫酸铵生产工艺

找了两个 (1)工业制硫酸铵的方式,包括化学方程式 1.饱和器法硫酸铵生产工艺流程 (1) 鼓泡式饱和器法 由鼓风机来的焦炉煤气,经电捕焦油器后进入煤气预热器。在预热器内用间接蒸汽加热煤气到60~70℃或更高的温度,目的是为了使煤气进入鼓泡式饱和器蒸发饱和器内多余的水分,保持饱和器内的水平衡。预热后的煤气沿饱和器中央煤气管进入饱和器,经泡沸伞从酸性母液中鼓泡而出,同时煤气中的氨被硫酸所吸收。煤气出饱和器后进入除酸器,捕集其夹带的酸雾后,被送往粗苯工段。鼓泡式饱和器后煤气含氨一般小于0.03g/m3 冷凝工段的剩余氨水经蒸氨后得到的氨气,在不生产吡啶时,直接进入饱和器;当生产吡啶时将此氨气通入吡啶中和器。氨在中和器内与母液中的游离酸及硫酸吡啶作用,生成硫酸铵,又随中和器回流母液返回饱和器。 饱和器母液中不断有硫酸铵生成,在硫酸铵含量高于其溶解度时,就析出结晶,并沉淀于饱和器底部。其底部结晶被抽送到结晶槽,在结晶槽内使结晶长大并沉淀于底部。结晶槽底部硫酸铵结晶放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶,以减少硫酸铵表面上的游离酸和杂质。离心分离的母液与结晶槽满流出的母液一同自流回饱和器中。从离心机分离出的硫酸铵结晶经螺旋输送机,送入沸腾干燥器内,用热空气干燥后送入硫酸氨储斗,经称量包装入成品库。为了使饱和器内煤气与母液接触充分,必须使煤气泡沸伞在母液中有一定的液封高度,并保证饱和器内液面稳定,为此在饱和器上还设有满流口,从满流口溢出的母液经插入液封内的满流管流入满流槽,以防止煤气逸出。满流槽下部与循环泵链接,将母液不断地抽送到饱和器底部的喷射器。因而一定的喷射速度,故饱和器内母液被不断循环搅动,以改善结晶过程。 煤气带入饱和器的煤焦油雾,在饱和器内与硫酸作用生成所谓的酸煤焦油,泡沫状酸煤焦油漂浮在母液面上,并与母液一起流入满流槽。漂浮于满流槽液面上的酸煤焦油应及时捞出,或引入一分离处理装置与母液分离,以回收母液。 饱和器内所需补充的硫酸,由硫酸仓库送至高置槽,再自流入饱和器,正常生产时,应保持母液酸度为4%~6%,硫酸加入量为中氨的需要量;当不生产粗轻吡啶时,硫酸加入量要大一些,还要中和随氨气进入饱和器的氨。 饱和器在操作一定时间后,由于结晶的沉积将使其阻力增加,严重时会造成饱和器的堵塞。所以操作中必须定期进行酸洗和水洗。当定期大加酸、补水、用水冲洗饱和器及除酸器时,所形成的大量母液有漫流槽满流至母液储槽。在正常生产时又将这些母液抽回饱和器以作补充。饱和器是周期性连续操作设备,为了防止结晶堵塞,定期大加酸和水洗,从而破坏了结晶生成的正常条件,加之结晶在饱和器底部停留时间短,因而结晶颗粒较小,平均直径在0.5mm。这些都是鼓泡式饱和器存在的缺点。 (2) 喷淋式饱和器法 喷淋式饱和器法生产硫酸铵工艺流程

(完整版)硫酸铵废水MVR蒸发结晶

石家庄博特环保科技有限公司 含硫酸鞍废水蒸发浓缩结晶分离 技术方案 编制: 校核: 审核: 批准: 二零一四年十一月

含硫酸铵废水蒸发浓缩结晶分离技术方案 一、蒸发器选型简述 本设计方案针对含硫酸铵废水,采用MVR蒸发装置。硫酸铵废水要求蒸发结晶,装置分两部分第一部分用降膜蒸发器进行蒸发浓缩,第二部分采用抗盐析、抗结疤堵管能力强的强制循环蒸发器。 由于硫酸铵具有强腐蚀性,长期运转考虑,与物料接触部分采用316L 不锈钢,其余采用碳钢。 含硫酸铵废水处理量及组分:含硫酸铵废水处理量 1.5t/h ,其中硫酸铵6%, 其余成分为水 计算条件参数 进料流量㎏/h1500 进料浓度﹪6 出料浓度﹪100 原料温度℃20 二次蒸汽压力Mpa(表)-0.03(绝压70KPa) 二次蒸汽温度℃90 总蒸发量Kg/h1410 三、主要工艺参数 强制循环蒸发器 二次蒸汽压强Mpa(表)-0.03(绝压0.07MPa)二次蒸汽温度℃90 二次蒸汽汽化热kJ / ㎏2283.1 蒸汽压缩机压缩比 2.5 压缩机出口压强Mpa (表)0.857 (绝压0.143MPa) 压缩机出口温度℃110 压缩机出口蒸汽 汽化热kJ / ㎏2232 溶液沸点℃102 有效温差℃8进料溶液浓度%6 出料溶液液%100 蒸发量㎏/h1410加热室换热面积㎡80预热器换热面积㎡2 四、工艺流程简介 、计算依据

4.1 原液准备系统工厂产生的含盐废水流入原液池,原液池起到储存、调节原液的作用,满足废水蒸发处理设备的连续稳定运行。原液池配备有原液提升泵,原液提升泵将含盐废水均匀输送至蒸发处理系统,调节原液泵后的控制阀门保持原液提升量与蒸发量的平衡。 4.2 二次蒸汽及压缩蒸汽系统经开始生蒸汽在加热室经过加热直至产生足量的二次蒸汽后关闭生蒸汽阀门,降膜蒸发器与强制循环蒸发器加热室产生的二次蒸汽经过蒸汽压缩机压缩后产生温度及压力都提高的压缩蒸汽。压缩蒸汽分配到降膜蒸发器和强制循环蒸发器的加热室进行加热。加热后的压缩蒸汽形成的冷凝水进入预热器对原液进行预热。 4.3 料液系统 含盐废水经预热器加热后进入降膜蒸发器蒸发浓缩到45%后进入强制循环 蒸发器蒸发结晶然后经出料泵抽出料液进入旋液分离器中浓缩分离,然后排入储料器中收集,最后排入离心机离心分离。 4.4 事故及洗罐 系统工作出现事故及运转过程中洗罐时,首先停止进料,将蒸发设备中的母液排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排入原液池,排空蒸发罐后,首先将部分母液通过原液泵进入蒸发罐,然后通过原液泵补充加入原液,使蒸发罐中的液位满足工艺要求。

第二章 硫酸铵生产

第二章硫酸铵生产 第一节硫铵生产的原料及产品 一、硫铵的性质及质量要求 硫酸吸收煤气中的氨制取硫酸铵。反应式: 2NH3+H2SO4→(NH4)2SO4+Q 纯态的硫酸铵为无色长菱形晶体,比重1.766;含一定水分的硫铵的堆积密度随结晶颗粒的大小而波动于780~830Kg/m3的范围内。硫铵的分子量为132.15,。化学纯的硫铵含氮量为21.2﹪或含氨为25.78﹪。 焦化厂用饱和器法生产的硫铵,由于杂志的影响往往带有颜色(蓝色或黄色),结晶多为针状、片状或粉末状,成型的颗粒很小。一般其线性平均尺寸不超过0.5毫米。 用适量的硫酸和氨进行反应时生成的是中式盐(NH4)2SO4。当硫酸过量时则生成酸式盐NH4HSO4。反应式: NH3+H2S O4→NH4HSO4。随溶液被氨饱和的程度,酸式盐又转变为中式盐:NH4HSO4+NH3→(NH4)2SO4。 饱和器里的硫铵母液就是被硫酸铵和硫酸氢铵饱和了的硫酸母液。在正常生产情况下,母液的规格大致为: 比重 1.275~1.30 游离酸含量 4~8 含氨量:NH3 150~180克/升 (NH4)2SO4 40~46﹪

NH4HSO4 10~15﹪ 硫铵结晶能吸收空气中的水分而胶结成块,在空气湿度大、结晶颗粒小和含水量高时尤甚。硫铵的结块给运输、储存和使用都带来困难。且潮湿的硫铵对钢铁、水泥和麻袋等均有侵蚀性。 硫铵施用于农田后很快溶于土壤水分中,大部分铵离子 (NH4)+能与土壤结合,且易于被植物吸收。失去铵离子的硫酸根将残留在土壤中,会使土质渐渐酸化,甚至会破坏土壤的结构。故硫铵适用于碱性或中性土壤,或者在连续使用数年后,施用石灰以改变土壤的酸性。 第二节饱和器法生产硫铵的原理及流程 一、饱和器内硫铵结晶的原理 浓度 D B 不稳区 G F E C 介稳区F′ H E′稳定区 A 温度 图3—2 液体的浓度、温度和结晶过程的关系 1.结晶原理 图3—2表明了晶核在溶液中自发地形成与溶液的浓度和温度的关系。图中AB为溶解度曲线,CD为超溶解度曲线,后者位于过饱和

硫酸铵结晶工艺和设备

F o r p e s n a u s e o n y s u d y a n d r e s a c h n o f r c m me r c a u s e 一、硫酸铵的作用与用途 硫酸铵一种优良的氮肥,适用于一般土壤和作物,能使枝叶生长旺盛,提高果实品质和产量,增强作物对灾害的抵抗能力,可作基肥、追肥和种肥。能与食盐进行复分解反应制造氯化铵,与硫酸铝作用生成铵明矾,与硼酸等一起制造耐火材料。加入电镀液中能增加导电性。也是食品酱色的催化剂,鲜酵母生产中培养酵母菌的氮源,酸性染料染色助染剂,皮革脱灰剂。此外,还用于啤酒酿造,化学试剂和蓄电池生产等。还有一重要作用就是开采稀土,开采以硫酸铵作原料,采用离子交换形式把矿土中的稀土元素交换出来,再收集浸出液简单过滤分离后晒干成稀土原矿,每开采生产1吨稀土原矿约需5吨硫酸铵。 二、硫酸铵生成和制备 工业上采用氨与硫酸直接进行中和反应而得,目前用得不多,主要利用工业生产中副产物或排放的废气用硫酸或氨水吸收(如硫酸吸收焦炉气中的氨,氨水吸收冶炼厂烟气中二氧化硫,卡普纶生产中的氨或硫酸法钛白粉生产中的硫酸废液)在利用硫酸铵蒸发结晶器来结晶。也有采用石膏法制硫铵的(以天然石膏或磷石膏、氨、二氧化碳为原料)。由氢氧化铵和硫酸中和后,结晶、离心分离并干燥而得。中和法氨与硫酸约在100℃下进行中和反应,通过(硫酸铵蒸发结晶器)生成的硫酸铵晶浆液经离心分离、干燥,制得硫酸铵成品。其 2NH3+H2SO4→(NH4)2SO4回收法由炼焦炉气回收氨气,再与硫酸进行中和反应而得。 根据硫酸铵的物理性质硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器,若硫酸铵溶液含有氯离子,在设备选材上则需要加以注意。考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要根据硫酸铵的物理性质,硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器。 考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要考虑结晶器设备的使用期限,由于溶液含有氯离子,设备材质需要耐氯离子腐蚀,硫酸铵溶液为酸性大于5小于6.5,加热室可以用钛管,酸性小于5加热室就要用石墨,分离室用

硫酸铵

硫酸铵 求助编辑百科名片 硫酸铵粉末 无色结晶或白色颗粒。无气味。280℃以上分解。水中溶解度:0℃时,100℃时。不溶于乙醇和丙酮。L水溶液的pH为。相对密度。折光率。低毒,半数致死量(大鼠,经口)3000mG/kG。有刺激性。硫酸铵主要用作肥料,适用于各种土壤和作物。还可用于纺织、皮革、医药等方面。 中文名:硫酸铵 外文名: Ammonium sulfate 别名:硫铵 化学式:(NH4)2SO4 相对分子质量: 化学品类别: 无机物--硫酸盐--铵 盐 管制类型:不管制 储存:密封保存 目录 理化性质 物理性质 化学性质 作用与用途使用注意事项危险性概述急救措施

消防措施 泄漏应急处理 操作处置与储存 制备 生成方法 展开 理化性质 物理性质 化学性质 作用与用途 使用注意事项 危险性概述 急救措施 消防措施 泄漏应急处理 操作处置与储存 制备 生成方法 展开 编辑本段理化性质 物理性质 英文名称:Ammonium sulphate CAS号:7783-20-2

硫酸铵分子结构式 EINECS号 231-984-1 InChI=1/2H3N.阿斯顿-5(2,3)4/h2*1H3;(H2,1,2,3,4)[1] 分子式:(NH4)2·SO4 分子量: 分子结构:[2] 主要成分:纯品 外观与性状:纯品为无色斜方晶体,工业品为白色至淡黄色结晶体。 氮(N)含量:%min 水分: 游离酸: 熔点(℃): 513℃±2℃ 沸点(℃):无资料 折射率:n20/D 相对密度(水=1): 相对蒸气密度(空气=1): 饱和蒸气压(kPa):无资料 燃烧热(kJ/mol):无意义 临界温度(℃):无资料 临界压力(MPa):无资料 辛醇/水分配系数的对数值:无资料

硫酸铵生产工艺

找了两个 (1) 工业制硫酸铵的方式,包括化学方程式 1 .饱和器法硫酸铵生产工艺流程 (1) 鼓泡式饱和器法由鼓风机来的焦炉煤气,经电捕焦油器后进入煤气预热器。在预热器内用间接蒸汽加热煤气到60?70 C或更高的温度,目的是为了使煤气进入鼓泡式饱和器蒸发饱和器内多余的水分,保持饱和器内的水平衡。预热后的煤气沿饱和器中央煤气管进入饱和器,经泡沸伞从酸性母液中鼓泡而出,同时煤气中的氨被硫酸所吸收。煤气出饱和器后进入除酸器,捕集其夹带的酸雾后,被送往粗苯工段。鼓泡式饱和器后煤气含氨一般小于0.03g/m3冷凝工段的剩余氨水经蒸氨后得到的氨气,在不生产吡啶时,直接进入饱和器;当生产吡啶时将此氨气通入吡啶中和器。氨在中和器内与母液中的游离酸及硫酸吡啶作用,生成硫酸铵,又随中和器回流母液返回饱和器。饱和器母液中不断有硫酸铵生成,在硫酸铵含量高于其溶解度时,就析出结晶,并沉淀于饱和器底部。其底部结晶被抽送到结晶槽,在结晶槽内使结晶长大并沉淀于底部。结晶槽底部硫酸铵结晶放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶,以减少硫酸铵表面上的游离酸和杂质。离心分离的母液与结晶槽满流出的母液一同自流回饱和器中。从离心机分离出的硫酸铵结晶经螺旋输送机,送入沸腾干燥器内,用热空气干燥后送入硫酸氨储斗,经称量包装入成品库。为了使饱和器内煤气与母液接触充分,必须使煤气泡沸伞在母液中有一定的液封高度,并保证饱和器内液面稳定,为此在饱和器上还设有满流口,从满流口溢出的母液经插入液封内的满流管流入满流槽,以防止煤气逸出。满流槽下部与循环泵链接,将母液不断地抽送到饱和器底部的喷射器。因而一定的喷射速度,故饱和器内母液被不断循环搅动,以改善结晶过程。煤气带入饱和器的煤焦油雾,在饱和器内与硫酸作用生成所谓的酸煤焦油,泡沫状酸煤焦油漂浮在母液面上,并与母液一起流入满流槽。漂浮于满流槽液面上的酸煤焦油应及时捞出,或引入一分离处理装置与母液分离,以回收母液。饱和器内所需补充的硫酸,由硫酸仓库送至高置槽,再自流入饱和器,正常生产时,应保持母液酸度为4%?6%,硫酸加入量为中氨的需要量;当不生产粗轻吡啶时,硫酸加入量要大一些,还要中和随氨气进入饱和器的氨。饱和器在操作一定时间后,由于结晶的沉积将使其阻力增加,严重时会造成饱和器的堵塞。所以操作中必须定期进行酸洗和水洗。当定期大加酸、补水、用水冲洗饱和器及除酸器时,所形成的大量母液有漫流槽满流至母液储槽。在正常生产时又将这些母液抽回饱和器以作补充。饱和器是周期性连续操作设备,为了防止结晶堵

相关文档
最新文档