第15章 时序逻辑电路的分析与设计

? Prof. Guo

如图所示电路的功能是()。

? Prof. Guo

时序逻辑电路的分析方法

7.2 时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 7.2.1同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。 把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

时序逻辑电路设计

引言 人类社会进步,各种仪器测试设备的以电子设备代替成为趋势,各类测试仪器都希望通过电子设备来实现。电子设备在实现相应参数的测量时,具有简单容易操作,而且数据便于计算机处理等优点。目前科技的飞速进展与集成电路的发展应用,有密不可分的关系。十九世纪工业革命主要以机器节省人力,二十世纪的工业的革命则主要以电脑为人脑分劳。而电脑的发展归于集成电路工业。 集成电路是将各种电路器件集成于半导体表面而形成的电路。近年来集成电路几乎成为所有电子产品的心脏。由于集成电路微小化的趋向,使电子产品得以“轻、薄、短、小”。故集成电路工业又称微电子工业。差不多在同时数字计算机的发展提供了应用晶体管的庞大潜在市场。 20世纪90年代以后,电子科学和技术取得了飞速的发展,其标志就是电子计算机的普及和大规模集成电路的广泛应用。在这种情况下,传统的关于数字电路的内容也随之起了很大的变化,在数字电路领域EDA工具已经相当成熟,无论是电路内容结构设计还是电路系统设计,以前的手工设计都被计算机辅助设计或自动设计所取代。 通过长期的学习微电子专业理论知识,我们应该多动手实践把理论知识与实践相结合,加强对理论知识的把握。本文是十进制同步计数器的设计,对十进制同步计数器的设计进行电路原理图设计以及仿真,版图设计,版图验证。 1 设计技术要求 (1)项目名称:十进制同步计数器的设计 (2)使用工艺:2.0um硅栅工艺(tanner)或者1.0um硅栅工艺(cadence) (3)供电电源:5V (4)输入要求:异步清除,CMOS电平 (5)进行原理图设计,并完成电路的仿真 (6)版图设计,完成LVS一致性检验,生成相应的GDSII文档 2 设计构思及理论 2.1 设计思路 十进制同步计数器的设计可以细化成下列步骤: ①建立最简原始状态图。 ②确定触发器级数,进行状态编码。 ③用状态装换卡诺图化简,求状态方程和输出方程。 ④查自启动特性。 ⑤确定触发类型,求驱动方程。 ⑥画逻辑图。

时序逻辑电路的组成及分析方法案例说明

时序逻辑电路的组成及分析方法案例说明 一、时序逻辑电路的组成 时序逻辑电路由组合逻辑电路和存储电路两部分组成,结构框图如图5-1所示。图中外部输入信号用X (x 1,x 2,… ,x n )表示;电路的输出信号用Y (y 1,y 2,… ,y m )表示;存储电路的输入信号用Z (z 1,z 2,… ,z k )表示;存储电路的输出信号和组合逻辑电路的内部输入信号用Q (q 1,q 2,… ,q j )表示。 x x y 1 y m 图8.38 时序逻辑电路的结构框图 可见,为了实现时序逻辑电路的逻辑功能,电路中必须包含存储电路,而且存储电路的输出还必须反馈到输入端,与外部输入信号一起决定电路的输出状态。存储电路通常由触发器组成。 2、时序逻辑电路逻辑功能的描述方法 用于描述触发器逻辑功能的各种方法,一般也适用于描述时序逻辑电路的逻辑功能,主要有以下几种。 (1)逻辑表达式 图8.3中的几种信号之间的逻辑关系可用下列逻辑表达式来描述: Y =F (X ,Q n ) Z =G (X ,Q n ) Q n +1=H (Z ,Q n ) 它们依次为输出方程、状态方程和存储电路的驱动方程。由逻辑表达式可见电路的输出Y 不仅与当时的输入X 有关,而且与存储电路的状态Q n 有关。 (2)状态转换真值表 状态转换真值表反映了时序逻辑电路的输出Y 、次态Q n +1与其输入X 、现态Q n 的对应关系,又称状态转换表。状态转换表可由逻辑表达式获得。 (3)状态转换图

状态转换图又称状态图,是状态转换表的图形表示,它反映了时序逻辑电路状态的转换与输入、输出取值的规律。 (4)波形图 波形图又称为时序图,是电路在时钟脉冲序列CP的作用下,电路的状态、输出随时间变化的波形。应用波形图,便于通过实验的方法检查时序逻辑电路的逻辑功能。 二、时序逻辑电路的分析方法 1.时序逻辑电路的分类 时序逻辑电路按存储电路中的触发器是否同时动作分为同步时序逻辑电路和异步时序逻辑电路两种。在同步时序逻辑电路中,所有的触发器都由同一个时钟脉冲CP控制,状态变化同时进行。而在异步时序逻辑电路中,各触发器没有统一的时钟脉冲信号,状态变化不是同时发生的,而是有先有后。 2.时序逻辑电路的分析步骤 分析时序逻辑电路就是找出给定时序逻辑电路的逻辑功能和工作特点。分析同步时序逻辑电路时可不考虑时钟,分析步骤如下: (1)根据给定电路写出其时钟方程、驱动方程、输出方程; (2)将各驱动方程代入相应触发器的特性方程,得出与电路相一致的状态方程。 (3)进行状态计算。把电路的输入和现态各种可能取值组合代入状态方程和输出方程进行计算,得到相应的次态和输出。 (4)列状态转换表。画状态图或时序图。 (5)用文字描述电路的逻辑功能。 3.案例分析 分析图8.39所示时序逻辑电路的逻辑功能。 图8.39 逻辑电路 解:该时序电路的存储电路由一个主从JK触发器和一个T触发器构成,受统一的时钟CP控制,为同步时序逻辑电路。T触发器T端悬空相当于置1。 (1)列逻辑表达式。 输出方程及触发器的驱动方程分别为

Moore型同步时序逻辑电路的设计与分析

实验九Moore型同步时序逻辑电路的分析与设计 22920132203686 薛清文周2下午实验 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.D,JK触发器的特性机器检测方法。 2.掌握时序逻辑电路的测试方法。 3.了解时序电路自启动设计方法。 4.了解同步时序电路状态编码对电路优化作用。 二.实验原理: 二、 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

第八章时序逻辑电路

第八章时序逻辑电路 第一节寄存器 一、单项选择题 1.N个触发器可以构成能寄存位二进制数码的寄存器。() A.N-1 B.N C.N+1 D.2N 2.存储8位二进制信息要个触发器。 A.2 B.3 C.4 D.8 3.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 A.1 B.2 C.4 D.8 4.有一个左移移位寄存器,当预先置入1011后,其串行输入固定接0,在4个移位脉冲CP作用下,四位数据的移位过程是() A.1011-0110-1100-1000-0000 B.1011-0101-0010-0001-0000 C.1011-1100-1101-1110-1111 D.1011-1010-1001-1000-0111 5.由三级触发器构成环形计数器的计数摸值为( ) A.8 B.6 C.3 D.16 6.如图8-7所示电路的功能为() A.并行输入寄存器 B.移位寄存器 C.计数器 D.序列信号发生器7.由四位移位寄存器构成的顺序脉冲发生器可产生个顺序脉冲。() A.2 B.4 C.8 D.16 8.现欲将一个数据串延时4个CP的时间,则最简单的办法采用() A.4位并行寄存器 B.4位移位寄存器 C.4进制计数器 D.4位加法器 二、判断题 1.时序电路中不含有记忆功能的器件。( ) 2.移位寄存器74LS194可串行输入并行输出,但不能串行输入串行输出。() 3.时序逻辑电路在某一时刻的输出状态与该时刻之前的输入信号无关。( ) 4.时序电路一定不要组合电路。() 三、多项选择题 1.寄存器按照功能不同可分为() A.数据寄存器 B.移位寄存器 C.暂存器 D.计数器 2.数码寄存器的特点是() A.存储时间短 B.速度快 C.可做高速缓冲器 D.一旦停电后存储数码全部消失 3.移位寄存器按移位方式可分为() A.左移移位寄存器 B.右移移位寄存器 C.双向移位寄存器 D.集成移位寄存器 第二节计数器 一、填空题 1.触发器有个稳定状态,它可以记录位二进制码,存储8位二进制信息需要个触发器。 2.按进位体制的不同,计数器可分为计数器和计数器等;按计数过程中数字增减趋势的不同,计数器可分为计数器、计数器和计数器。 3.要构成五进制计数器,至少需要个触发器。 4.设集成十进制(默认为8421码)加法计数器的初态为Q3Q2Q1Q0=1001,则经过5个CP脉冲以后计数器的状态为 . 5.在各种寄存器中,存放N位二进制数码需要个触发器。

第12章 时序逻辑电路

第12章时序逻辑电路

27逻 辑 电 路 图 及A ,B ,C 的 波 形 如 图 所 示 , 试 画 出Q 的 波 形 (设 Q 的 初 始 状 态 为“0”)。 Q Q J & A B C Q B A C K C 28逻 辑 电 路 图 及C 脉 冲 的 波 形 如 图 所 示 , 试 画 出 触 发 器 输 出Q 0,Q 1的 波 形 (设 Q 0,Q 1的 初 始 状 态 均 为“0”)。 Q 0 Q 0 Q 1 J Q 0 Q 1 Q 1 o ? C ? C t C K D C C Q Q O O t t O t 29已 知 逻 辑 电 路 畋 及A ,B ,D 和C 脉 冲 的 波 形 如 图 所 示 , 试 写 出 J ,K 的 逻 辑 式 , 并 列 出Q 的 状 态 表。 Q Q ≥1 & & 1 ? ? C D B A D C B A J C K

30已 知 逻 辑 电 路 图 及 C 1和C o 的 波 形 , 试 画 出 输 出 Q 0,Q 1 的 波 形(设Q 0, Q 1的 初 始 状 态 均 为 “0”)。 C Q 0 Q 0 R D K J S D Q 1 Q 1 R D C J S D Q 0 Q 1 C O o C 1 C O C 1 Q 0Q 1 K C O C 1 Q 0 Q 1 31已 知 逻 辑 电 路 图 及C 脉 冲 的 波 形 ,试 写 出 各 触 发 器 J ,K 及D 的 逻 辑 式,并 列 出 Q 0,Q 1,Q 2,Q 3的 状 态 表 (设Q 0,Q 1,Q 2,Q 3初 始 状 态 均 为 “0”)。 Q 2 Q 2 J 2 K 2 D Q 0 Q 0 J 0 K 0 Q 1 Q 1 Q 0 Q 1 Q 2 Q 3 Q 3 J 3 K 3 Q 3 ? ? ? ? ? C C C 32已 知 逻 辑 电 路 图 和 C 脉 冲 的 波 形 , 试 画 出 输 出 Q 0 及Q 1的 波 形 图 (设Q 0,Q 1初 始 状 态 均 为“1”)。

实验十 Moore型同步时序逻辑电路的分析与设计

实验十Moore型同步时序逻辑电路的分析与设计 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.掌握时序逻辑电路的测试方法。 二.实验原理: 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

(7)利用卡诺图如图2,求状态方程、驱动方程。 (8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的 状态转换图,如图3所示,检查是否能自启动。

时序逻辑电路的设计方法

5.2 时序逻辑电路的设计方法 本次重点内容: 1、同步时序逻辑电路的设计方法。 2、异步时序逻辑电路的设计方法。 教学过程 5.2.1 同步时序逻辑电路的设计 一、同步时序逻辑电路的设计方法 设计关键:根据设计要求→确定状态转换的规律→求出各触发器的驱动方程。 设计步骤:(先简单介绍,通过以下的举例后,再进行总结,特别再点出设计关键)1.根据设计要求,设定状态,确定触发器数目和类型。画出状态转换图。 2.状态化简 前提:保证满足逻辑功能要求。 方法:将等价状态(多余的重复状态)合并为一个状态。 3.状态分配,列出状态转换编码表 通常采用自然二进制数进行编码。N为电路的状态数。 每个触发器表示一位二进制数,因此,触发器的数目n可按下式确定 2n≥N>2n–1 4.画状态转换卡诺图,求出状态方程、输出方程 选择触发器的类型(一般可选JKF/F或DF/F,由于JK触发器使用比较灵活,因此,在设计中多选用JK触发器。)将状态方程和触发器的特性方程进行比较→驱动方程。 5.根据驱动方程和输出方程画逻辑图。 6.检查电路有无自启动能力。 如设计的电路存在无效状态时,应检查电路进入无效状态后,能否在时钟脉冲作用下自动返回有效状态工作。如能回到有效状态,则电路有自启动能力;如不能,则需修改设计,使电路具有自启动能力。 二、同步时序逻辑电路的设计举例 [例1] 试设计一个同步七进制加法计数器。

解:设计步骤 (1)根据设计要求,设定状态,画状态转换图。 七进制→7个状态→用S0,S1,…,S6表示 状态转换图如下所示: (2)状态化简。 本例中7个状态都是有效状态。 (3)状态分配,列状态转换编码表。 根据式2n≥N>2n–1,→ N=7,n=3,即采用三个触发器。 选用三位自然二进制加法计数编码→列出状态转换编码表。 (4)选择触发器的类型,求出状态方程,驱动方程和输出方程。根据状态转换编码表→得到各触发器次态和输出函数的卡诺图。得 输出方程为: Y= Q2n Q1n

第八章:组合与时序逻辑电路复习题

第八章:组合与时序逻辑电路复习题 一、单项选择题:在下列各题中,将唯一正确的答案代码填入括号内 1、由 开 关 组 成 的 逻 辑 电 路 如 图 所 示, 设 开 关 A 、B 分 别 有 如 图 所 示 为 “0”和 “1”两 个 状 态,则 电 灯HL 亮 的 逻 辑 式 为( )。 (a) F = AB +AB (b) F =A B +AB (c) F = AB +A B "0""0" "1" "1" HL B A U 2、 逻 辑 电 路 如 图 所 示, 当A=“0”,B=“1” 时,C 脉 冲 来 到 后 JK 触 发 器( )。 (a) 具 有 计 数 功 能 (b) 保 持 原 状 态 (c) 置“0” (d) 置“1” & A 1 B Q J C Q Q R D K S D ≥1 "" 1"" 1 3、逻 辑 电 路 如 图 所 示, 分 析 C ,S ,R 的 波 形,当 初 始 状 态 为“0”时, t 1 瞬 间 输 出 Q 为 ( )。 (a) “0” (b) “1” (c) Q n C S R t 1 S C R D R S D Q Q 5、半 加 器 逻 辑 符 号 如 图 所 示, 当 A =“1”,B =“1” 时,C 和 S 分 别 为( )。 (a) C =0 S =0 (b) C =0 S =1 (c) C =1 S =0 ∑CO A B C S 6、555 集 成 定 时 器 电 路 如 图 所 示, 为 使 输 出 电 压 u O3 由 低 电 压 变

为 高 电 压, 则 输 入 端 6 和 2 的 电 压 应 满 足 ( )。 (a)u U I6CC <23 ,u U I2CC <13 (b)u U I6CC >23,u U I2CC >13 (c)u U I6CC < 23 ,u U I2CC > 13 D S D Q Q ∞ + + - ∞ + + - 1 7 2 6 58 4 3 +U CC u O 3 u I2 u I6 A 1 A 2 T 5k Ω 5k Ω 5k Ω 7、 逻 辑 电 路 如 图 所 示, 当 A=“0”,B=“1” 时,C 脉 冲 来 到 后 D 触 发 器 ( )。 (a) 具 有 计 数 功 能 (b) 保 持 原 状 态 (c) 置“0” (d) 置“1” C Q Q =1 A 1 B C ≥1 8、 时 序 逻 辑 电 路 如 图 所 示, 原 状 态 为“0 0”, 当 发 出 寄 存 和 取 出 指 令 后 的 新 状 态 为 ( )。 (a) 1 1 (b) 1 0 (c) 0 1

第9章 时序逻辑电路部分习题解答

第9章时序逻辑电路习题解答 9.1 d R端和d S端的输入信号如题9.1图所示,设基本RS触发器的初始状态分别为1和0两种情况,试画出Q端的输出波形。 题9.1图 9.2 同步RS触发器的CP、R、S端的状态波形如题9.2图所示。设初始状态为0和1两种情况,试画出Q端的状态波形。 题9.2图 9.3 设主从型JK触发器的初始状态为0,J、K、CP端的输入波形如题9.3图所示。试画出Q端的输出波形(下降沿触发翻转)。 解: 9.4 设主从型JK触发器的初始状态为0,J、K、CP端输入波形如题9.4图所示。试画出Q端的输出波形(下降沿触发翻转)。如初始状态为1态,Q端的波形又如何? 解:

第9章时序逻辑电路225 9.5 设维持阻塞型D触发器的初始状态为0,D端和CP端的输入波形如题9.5图所示,试画出Q端的输出波形(上升沿触发翻转)。如初始状态为1态,Q端的波形又如何? 题9.3图 题9.4图题9.5图 9.6 根据CP时钟脉冲,画出题9.6图所示各触发器Q端的波形。(1)设初始状态为0;(2)设初始状态为1。(各输入端悬空时相当于“1”) 题9.6图

第9章时序逻辑电路 226 9.7 题9.7图所示的逻辑电路中,有J和K两个输入端,试分析其逻辑功能,并说明它是何种触发器。 题9.7图 9.8 根据题9.8图所示的逻辑图和相应的CP、d R、D的波形,试画出Q1和Q2端的输出波形。设初始状态Q1=Q2=0。 题9.8图

第9章 时序逻辑电路 227 9.9 试用4个D 触发器组成一个四位右移移位寄存器。设原存数码为“1101”,待存数码为“1001”。试列出移位寄存器的状态变化表。 9.10 在题9.10图所示的逻辑电路中,试画出Q 1和Q 2端的输出波形,时钟脉冲是一连续的方波脉冲。如果时钟脉冲频率是4000Hz ,那么 Q 1和Q 2波形的频率各为多少?设初始状态Q 1=Q 2=0。 9.11 题9.11图是用主从JK 触发器组成的8421码异步十进制计数器,试分析其计数功能。 题9.11图 题9.10图

实验二 时序逻辑电路的设计[1]

实验二 时序逻辑电路的设计 一、实验目的: 1、 掌握时序逻辑电路的分析方法。 2、 掌握VHDL 设计常用时序逻辑电路的方法。 3、 掌握时序逻辑电路的测试方法。 4、 掌握层次电路设计方法。 5、 理解时序逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、时序逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 2、同步时序逻辑电路的设计方法 同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。同步时序电路的设计过程: (1)根据给定的逻辑功能建立原始状态图和原始状态表。 ①明确电路的输入条件和相应的输出要求,分别确定输入变量和输出变量的数目和符号; ②找出所有可能的状态和状态转换之间的关系; ③根据原始状态图建立原始状态表; (2)状态化简---求出最简状态图。 合并等价状态,消去多余状态的过程称为状态化简。 等价状态:在相同的输入下有相同的输出,并转换到同一个次态去的两个状态称为等价状态。 (3)状态编码(状态分配)。 给每个状态赋以二进制代码的过程。 根据状态数确定触发器的个数,n n M 221-≤∠(M 为状态数;n 为触发器的个数)。 (4)选择触发器的类型。 (5)求出电路的激励方程和输出方程。 (6)画出逻辑图并检查自启动能力。 3、时序逻辑电路的特点及设计时的注意事项 ①时序逻辑电路与组合逻辑电路相比,输出会延时一个时钟周期。 ②时序逻辑电路一般容易消除“毛刺”。 ③用VHDL 描述时序逻辑电路时,一般只需将时钟信号和异步控制(如异步复位)信号作为敏感信号。

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

第八章时序逻辑电路学习资料

第八章时序逻辑电路

第八章时序逻辑电路 第一节寄存器 一、单项选择题 1.N个触发器可以构成能寄存位二进制数码的寄存器。() A.N-1 B.N C.N+1 D.2N 2.存储8位二进制信息要个触发器。 A.2 B.3 C.4 D.8 3.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 A.1 B.2 C.4 D.8 4.有一个左移移位寄存器,当预先置入1011后,其串行输入固定接0,在4个移位脉冲CP作用下,四位数据的移位过程是() A.1011-0110-1100-1000-0000 B.1011-0101-0010-0001-0000 C.1011-1100-1101-1110-1111 D.1011-1010-1001-1000-0111 5.由三级触发器构成环形计数器的计数摸值为( ) A.8 B.6 C.3 D.16 6.如图8-7所示电路的功能为()A.并行输入寄存器 B.移位寄存器 C.计数器 D.序列信号发生器 7.由四位移位寄存器构成的顺序脉冲发生器可产生个顺序脉冲。() A.2 B.4 C.8 D.16 8.现欲将一个数据串延时4个CP的时间,则最简单的办法采用() A.4位并行寄存器 B.4位移位寄存器 C.4进制计数器 D.4位加法器 二、判断题 1.时序电路中不含有记忆功能的器件。( ) 2.移位寄存器74LS194可串行输入并行输出,但不能串行输入串行输出。() 仅供学习与交流,如有侵权请联系网站删除谢谢2

3.时序逻辑电路在某一时刻的输出状态与该时刻之前的输入信号无关。( ) 4.时序电路一定不要组合电路。() 三、多项选择题 1.寄存器按照功能不同可分为() A.数据寄存器 B.移位寄存器 C.暂存器 D.计数器 2.数码寄存器的特点是() A.存储时间短 B.速度快 C.可做高速缓冲器 D.一旦停电后存储数码全部消失 3.移位寄存器按移位方式可分为() A.左移移位寄存器 B.右移移位寄存器 C.双向移位寄存器 D.集成移位寄存器 第二节计数器 一、填空题1.触发器有个稳定状态,它可以记录位二进制码,存储8位二进制信息需要个触发器。 2.按进位体制的不同,计数器可分为计数器和计数器等;按计数过程中数字增减趋势的不同,计数器可分为计数器、计数器和计数器。 3.要构成五进制计数器,至少需要个触发器。 4.设集成十进制(默认为8421码)加法计数器的初态为Q3Q2Q1Q0=1001,则经过5个CP 脉冲以后计数器的状态为 . 5.在各种寄存器中,存放N位二进制数码需要个触发器。 二、单项选择题 1.按各触发器的CP所决定的状态转换区分,计数器可分为计数器。() A.加法、减法和可逆 B.同步和异步 C.二、十和N进制 D.以上均不正确 2.将一个D触发器处于技术状态时,下列做法正确的是() A.D端接固定高电平 B.D端悬空 C.D端与Q端相联 D.D与Q非端相联 仅供学习与交流,如有侵权请联系网站删除谢谢3

第6章 时序逻辑电路课后答案

第六章时序逻辑电路 【题6.3】 分析图P6.3时序电路的逻辑功能,写出电路的驱动方程、状态方程 和输出方程,画出电路的状态转换图,说明电路能否自启动。 图 P6.3 【解】驱动方程 J-] =K 1=Q 3 *」2=心二 Q i 输出方程:Y -Q 3 将驱动方程带入 JK 触发器的特性方程后得到 状态方程为: Q 1 = Q 3Q*I + Q 3Q 〔 = Q D 'Q 2 = Q 〔Q 2 + Q 〔Q 2 = Q 2 一 n+1 — Q 3 - Q 3Q 2 Q i 电路能自启动。状态转换图如图 A6.3 和输出方程,画出电路的状态转换图。 A 为输入逻辑变量。 【题6.5】 分析图P6.5时序电路的逻辑功能, 写出电路的驱动方 程、 状态方程 J 3 = Q 1Q 2 ;K 3 = Q

图P6.5 【解】 口=AQ2 驱动方程: D2=AQQ =AQ +Q2) 输出方程:Y 将驱动方程带入JK触发器的特性方程后得到状态方程为 Q n+1=A&2 n+1 Q;=A(Q i Q2) 电路的状态转换图如图A6.5 图A6.5 【题6.6】分析图P6.6时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。说明电路实现的功能。A为输入变量。

【解】驱动方程 输出方程:丫二AQQ2-A QQ2 将驱动方程带入JK触发器的特性方程后得到状态方程为: Q n+1 = Q r n+1 - - Q2二A 二Q r二Q2 电路状态转换图如图A6.6。A = 0时作二进制加法计数,A = 1时作二进制减法计数。 图A6.6 【题6.7】分析图P6.7时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。

第十二章 时序逻辑电路

第十二章时序逻辑电路 一、填空题 1.计数器工作时,对出现的个数进行计数。 2.构成一个2n进制计数器,共需要个触发器。 3.用以存放的电路称为寄存器。 4.数码寄存器一般分为、和三种,其功能是用来存放二进制数码。 5.寄存器存放数码的方式有和两种,从寄存器取出数码的方式有 和两种。 6.寄存器中,一个触发器可以存放二进制代码,要存放N位二进制代码,就要有 个触发器。 7.8位移位寄存器,串行输入时经个CP脉冲后,8位数码全部移入寄存器中。 8.计数器按CP控制方式的不同可以分为计数器和计数器,按进制的不同,可以分为计数器、计数器和计数器,按计数过程中数字的增减可以分为计数器、计数器和计数器。 9.6位二进制加法计数器所累计的输入脉冲数最大为。 10.在异步二进制计数器中,要求从0开始计数,计到十进制数12,需要个触发器。 11.8421BCD码的二-十进制计数器当计数状态是时,再输入一个计数脉冲,计数状态为0000,然后向高位发出信号。 12.利用各种不同的集成计数器构成N进制计数器的方法有多种,通常采用

法,如果要得到计数容量较大的计数器,就必须采用法。 13.某计数器的状态变化为000-001-010-011-000,则该计数器的功能是进制 法计数器。 14.74LS160是一块同步十进制加法计数器集成电路,它采用清0,置数。当CTt、CTp均为0时,实现功能。 15.如图所示电路的状态方程Q n+1=___________。 16. 某计数器的输出波形如图所示,该计数器是___________进制计数器。 二、选择题 1.时序逻辑电路在结构上()。 A.必须有组合逻辑电路 B.必须有存储电路 C.必有存储电路和组合逻辑电路 D.以上均正确 2.时序逻辑电路的输出是()。 A.只与输入有关 B.只与电路当前状态有关 C.与输入和电路当前状态均有关 D.与输入和电路当前状态均无关 3.同步时序逻辑电路和异步时序逻辑电路的区别在于异步时序逻辑电路()。A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关

时序逻辑电路设计题

第1题: 设计一个串行数据检测器,对它的要求是:连续输入3个或3个以上的1时输出为1,其他输入情况下输出为0。 答案 输入数据作为输入变量,用X 表示;检测结果为输出变量,用Y 表示。 设电路没有输入1以前的状态为0S ,输入一个1状态为1S ,连续输入两个1后的状态为2S ,连续输入3个1以后的状态为3S 。状态转换图为: 求得触发器的输入方程为:X K XQ J ==101; 1;010==K Q X J 输出方程:1XQ Y = 画出逻辑图 第2题: 试用JK 触发器和门电路设计一个同步七进制计数器。 答案 因为七进制计数器需要有7个不同的状态,所以需要用三个触发器组成。根据题目要求画出状态转换图: 卡诺图为:

从卡诺图得到的状态方程为: 驱动方程为: 设计得到的逻辑电路图为: 第3题:设计一“011”序列检测器,每当输入011码时,对应最后一个1,电路输出为1。答案 画出原始状态图(或称转移图) 输入端X:输入一串行随机信号 输出端Z:当X出现011序列时,Z=1;否则Z=0

选用T 触发器 表达式为: T 触发器的驱动方程为: 第4题: 用JK 触发器设计时序逻辑电路,状态表如下所示: n n Q Q 01 Y Q Q n n /1 11++ A=0 A=1 00 01/0 11/0 01 10/0 00/0 10 11/0 01/0 11 00/1 10/1 答案 所要设计的电路由4个状态,需要用两个JK 触发器实现,求得JK 触发器的激励方程为:100==K J 011Q A K J ⊕== 输出方程:01Q Q Y = 由输出方程和激励方程画电路 A B C D 1/0 0/0 0/0 1/1 0/0 0/0 1/0 1/0 011XQ Q T +=000XQ Q X T +=0 1Q XQ Z =011XQ Q T +=0 00XQ Q X T +=0 1Q XQ Z =

《时序逻辑电路》练习题及答案

《时序逻辑电路》练习题及答案 []分析图P6-1 时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图P6-1 [解] 驱动方程:3 1 1 Q K J= =,状态方程:n n n n n n n Q Q Q Q Q Q Q 1 3 1 3 1 3 1 1 ⊕ = + = + ; 1 2 2 Q K J= =,n n n n n n n Q Q Q Q Q Q Q 1 2 2 1 2 1 1 2 ⊕ = + = + ; # 3 3 2 1 3 Q K Q Q J= =,,n n n n Q Q Q Q 1 2 3 1 3 = + ; 输出方程:3 Q Y= 由状态方程可得状态转换表,如表6-1所示;由状态转换表可得状态转换图,如图A6-1所示。电路可以自启动。 表6-1 n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + +n n n Q Q Q 1 2 3 , Y Q Q Q n n n1 1 1 2 1 3 + + + 000 001 010 011 0010 0100 0110 — 1000 100 101 110 111 0001 0111 0101 ; 0011 图A6-1 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。 []试分析图P6-2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A为输入逻辑变量。 #

图P6-2 [解] 驱动方程:2 1 Q A D=, 2 1 2 Q Q A D= 状态方程: n n Q A Q 2 1 1 = + , ) ( 1 2 2 1 1 2 n n n n n Q Q A Q Q A Q+ = = + 输出方程:2 1 Q Q A Y=表6-2 @ 由状态方程可得状态转换表,如表6-2所示;由状态转换表 可得状态转换图,如图A6-2所示。 电路的逻辑功能是:判断A是否连续输入四个和四个以上 “1”信号,是则Y=1,否则Y=0。 图A6-2 []试分析图P6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 、 图P6-3 [解] 3 2 1 Q Q J=,1 1 = K; 1 2 Q J=, 3 1 2 Q Q K=; 2 3 2 1 3 Q K Q Q J= =, = +1 1 n Q 3 2 Q Q· 1 Q; 2 1 1 2 Q Q Q n= + +2 3 1 Q Q Q; 3 2 3 2 1 1 3 Q Q Q Q Q Q n+ = + Y = 3 2 Q Q 电路的状态转换图如图A6-3所示,电路能够自启动。 ' 图A6-3 n n Q AQ 1 2 Y Q Q n n1 1 1 2 + + 000 < 001 010 011 100 111 110 101 010 $ 100 110 001 111 100 010 000

电子技术习题解答.第8章.触发器和时序逻辑电路和其应用习题解答

第8章 触发器和时序逻辑电路及其使用习题解答 8.1 已知基本RS 触发器的两输入端D S 和D R 的波形如图8-33所示,试画出当基本RS 触发器初始状态分别为0和1两种情况下,输出端Q的波形图。 图8-33 习题8.1图 解:根据基本RS 触发器的真值表可得:初始状态为0和1两种情况下,Q的输出波形分别如下图所示: 习题8.1输出端Q的波形图 8.2 已知同步RS 触发器的初态为0,当S 、R 和CP 的波形如图8-34所示时,试画出输出端Q的波形图。 图8-34 题8.2图 解:根据同步RS 触发器的真值表可得:初始状态为0时,Q的输出波形分别如下图所示:

习题8.2输出端Q的波形图 8.3 已知主从JK触发器的输入端CP、J和K的波形如图8-35所示,试画出触发器初始状态分别为0时,输出端Q的波形图。 图8-35 习题8.3图 解:根据主从JK触发器的真值表可得:初始状态为0情况下,Q的输出波形分别如下图所示: 习题8.3输出端Q的波形图 8.4 已知各触发器和它的输入脉冲CP的波形如图8-36所示,当各触发器初始状态均为1时,试画出各触发器输出Q端和Q端的波形。

图8-36 习题8.4图 解:根据逻辑图及触发器的真值表或特性方程,且将驱动方程代入特性方程可得状态方程。即:(a )J =K =1;Qn + 1=n Q,上升沿触发 (b)J =K =1;Qn + 1=n Q, 下降沿触发 (c)K =0,J =1;Qn + 1=J n Q+K Qn =1,上升沿触发 (d)K =1,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0·Qn =n Q,上升沿触发 (e)K =Qn ,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0=n Q,上升沿触发 (f)K =Qn ,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0=n Q,下降沿触发, 再根据边沿触发器的触发翻转时刻,可得当初始状态为1时,各个电路输出端Q的波形分别如图(a )、(b )、(c )、(d )、(e )和(f )所示,其中具有计数功能的是:(a )、(b )、(d )、(e )和(f )。各个电路输出端Q的波形和相应的输出端Q的波形相反。 习题8.4各个电路输出端Q的波形图

第5章时序逻辑电路习题解答

CLK Z 图 题 5-1图 解:从给定的电路图写出驱动方程为: 0012 10 21()n n n n n D Q Q Q D Q D Q ?=??=??=?? e 将驱动方程代入D 触发器的特征方程D Q n =+1 ,得到状态方程为: 10012110 121()n n n n n n n n Q Q Q Q Q Q Q Q +++?=??=??=?? e 由电路图可知,输出方程为 2 n Z Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。 题解5-1(a )状态转换图

1 Q 2/Q Z Q 题解5-1(b )时序图 综上分析可知,该电路是一个四进制计数器。 5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入变量。 Y A 图 题 5-2图 解:首先从电路图写出驱动方程为: () 0110101()n n n n n D AQ D A Q Q A Q Q ?=? ?==+?? 将上式代入触发器的特征方程后得到状态方程 () 1011 10101()n n n n n n n Q AQ Q A Q Q A Q Q ++?=? ?==+?? 电路的输出方程为:

01n n Y AQ Q 根据状态方程和输出方程,画出的状态转换图如图题解5-2所示 Y A 题解5-2 状态转换图 综上分析可知该电路的逻辑功能为: 当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位; 当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。 5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。 X (a) 电路图 1234CLK 5678 X (b)输入波形 图 题 5-3图 解:电路的驱动方程、状态方程和输出方程分别为:

第8章 时序逻辑电路8章9章习题答案)

第8章 时序逻辑电路 本章讨论了数字电路的另一类单元电路——时序逻辑电路。首先介绍具有存储记忆功能的单元电路触发器,它是构成各种计数器和寄存器等时序电路的单元。然后介绍数字系统中常用的一些时序电路的组成和工作原理以及555定时器的应用。 本章基本要求 了解时序逻辑电路的共同特点; 熟练掌握R-S 、J-K 、D 、T 触发器的逻辑功能; 熟练掌握时序电路分析方法,基本的设计方法; 掌握计数器的分类及特点; 了解常用的时序逻辑电路的功能及应用; 了解555定时器的典型应用。 8-5 作用下Q 解: (a) 1 1 n Q +(b) 1 2 =n Q (c) 13 n Q ==(d) 1 4 =+Q n (e) n n Q D Q ==+15 (f) 图中:n n n n Q Q K Q J Q =+==16 各触发器的波形图如下图8-7所示: 8-6 电路如图8-8所示,设初始状态为021==Q Q ,,试画出在CP 作用下1Q 、 2Q 的波形。 1Q 6 Q 5Q 4Q 3Q 2 Q 图8-7

解:n n n n n n n n n Q Q Q Q Q Q Q K Q J Q 2 11212111 1=?+=+=+ n n Q D Q 1 1 2 ==+ 波形图如图8-9所示: 8-7电路如图8-10所示,设初始状态为021==Q Q ,,试画出在CP 作用下1Q 、 2Q 的波形。 解:n n Q 1 1+ n Q 12+ 8-8 图解: D R S ①0=CP 时,触发器状态不变。此时D Q =5, D Q =6 ②CP 由0变1时触发器翻转,D Q = ③1=CP 时输入信号被封馈,触发器保持,其中反馈线①使触发器维持在0 状态和阻止触发器为1状态称为置0维持线,置1阻塞线。 反馈线②使0 =CP ,D Q =5 时,D Q =6 反馈线③使1=CP 时,触发器维持1状态即置1维持线。 图8-9 C P 2 Q 1 Q 图8-8 C P 图8-12

相关文档
最新文档