数值分析试题及答案

数值分析试题及答案
数值分析试题及答案

一、单项选择题(每小题3分,共15分)

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.

A .4和3

B .3和2

C .3和4

D .4和4

2. 已知求积公式

()()2

1

121

1()(2)636f x dx f Af f ≈

++?

,则A =( )

A . 16

B .13

C .12

D .2

3

3. 通过点

()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )

A .

()00l x =0,

()110l x = B .

()00l x =0,

()111l x =

C .()

00l x =1,()111

l x = D . ()

00l x =1,()111

l x =

4. 设求方程

()0

f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性

B .平方

C .线性

D .三次

5. 用列主元消元法解线性方程组

1231231

220223332

x x x x x x x x ++=??

++=??--=? 作第一次消元后得到的第3个方程( ).

A .

232

x x -+= B .232 1.5 3.5

x x -+=

C .

2323

x x -+= D .

230.5 1.5

x x -=-

单项选择题答案

1.A

2.D

3.D

4.C

5.B

分 评卷人

二、填空题(每小题3分,共15分)

1. 设T

X )4,3,2(-=, 则=1||||X ,2||||X = .

2. 一阶均差

()01,f x x =

3. 已知3n =时,科茨系数()()()

33301213,88C C C ===,那么

()

33C = 4. 因为方程()420

x f x x =-+=在区间

[]1,2上满足 ,所以()0f x =在区间

内有根。

5. 取步长0.1h =,用欧拉法解初值问题

()211y

y y

x y ?'=+??

?=?

的计算公式 .

填空题答案

1. 9和29

2.

()()

0101

f x f x x x --

3. 1

8 4. ()()120

f f < 5. ()12

00.1

1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+????

=??L

得 分 评卷人

三、计算题(每题15分,共60分)

1. 已知函数

21

1y x =

+的一组数据:

求分

段线性插值函数,并计算

()

1.5f 的近似值.

计算题1.答案

1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---%

[]1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

所以分段线性插值函数为

()[][]10.50,10.80.31,2x x L x x x ?-∈?=?-∈??%

()1.50.80.3 1.50.35

L =-?=%

2. 已知线性方程组123123123

1027.21028.35 4.2

x x x x x x x x x --=??

-+-=??--+=?

(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;

(2) 对于初始值

()()

00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公

式分别计算()

1X

(保留小数点后五位数字).

计算题2.答案

1.解 原方程组同解变形为 1232133

120.10.20.720.10.20.830.20.20.84

x x x x x x x x x =++??

=-+??=++?

雅可比迭代公式为

()()()()()()

()()()1123121313120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++?=++??=-+??=++??(0,1...)m = 高斯-塞德尔迭代法公式

()()()()()()

()()()11231121

31113120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++?=++??=-+??=++?? (0,1...)m =

用雅可比迭代公式得

()()

10.72000,0.83000,0.84000X =

用高斯-塞德尔迭代公式得

()()

10.72000,0.90200,1.16440X =

3. 用牛顿法求方程3310x x --=在

[]1,2之间的近似根 (1)请指出为什么初值应取2?

(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案

3. 解

()331

f x x x

=--

()130

f=-<

()210

f=>

()233

f x x

'=-

()12

f x x

''=

()2240

f=>

,故取2

x=作初始值迭代公式为

()

()

3

111

112

11

31

33

n n n

n n n

n n

f x x x

x x x

f x x

---

--

--

--

=-=-

'-()

3

1

2

1

21

()

31

n

n

x

x

-

-

+

-

,1,2,...

n= 0

2

x=,()

3

12

231

1.88889

321

x

?+

==

?-

()

3

22

2 1.888891

1.87945

3 1.888891

x

?+

==

?-21

0.009440.0001

x x

-=>

()

3

32

2 1.879451

1.87939

3 1.879451

x

?+

==

?-

,32

0.000060.0001

x x

-=<

方程的根 1.87939

x*≈

4. 写出梯形公式和辛卜生公式,并用来分别计算积分

1

1

1

dx

x

+

?

.

计算题4.答案

4 解梯形公式

()()()

2

b

a

b a

f x dx f a f b

-

≈?+?

???

应用梯形公式得

1

1111

[]0.75 121011

dx

x

≈+=

+++

?

辛卜生公式为

()()()

[4()]

62

b

a

b a a b

f x dx f a f f b

-+

≈++

?

应用辛卜生公式得

()() 1

11010

[04()1] 162

dx f f f

x

-+

≈++ +

?

1111

[4]

1

61011

1

2

=+?+

++

+

25 36 =

得 分 评卷人

四、证明题(本题10分)

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度

()()()()

1010h

h

f x dx A f h A f A f h --=-++?

证明题答案

证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,

并令其左右相等,得

1011123

112()02()3A A A h h A A h A A h ---?

?++=?

--=???+=?

得1113A A h -==,043h

A =

。所求公式至少有两次代数精确度。 又由于

()()()()3

3344433

33h

h

h h h h x dx h h h h x dx h h --=

-+≠-+??

()()()()40333h

h

h h

f x dx f h f f h -=

-++?

具有三次代数精确度。

一、 填空(共20分,每题2分)

1. 设

2.3149541...x *

=,取5位有效数字,则所得的近似值x= .

2.设一阶差商

()()()21122114

,321f x f x f x x x x --=

=

=---,

()()()322332

615

,422f x f x f x x x x --=

=

=--

则二阶差商

()123,,______

f x x x =

3. 设(2,3,1)T

X =--, 则2||||X = ,=∞||||X 。

4.求方程 2

1.250x x --= 的近似根,用迭代公式 1.25x x =

+,取初始值 01x =,

那么

1______x =。

5.解初始值问题 00'(,)

()y f x y y x y =??

=?近似解的梯形公式是 1______k y +≈。

6、

1151A ??

= ?

-??,则A 的谱半径

= 。

7、设

2()35, , 0,1,2,... ,

k f x x x kh k =+== ,则

[]12,,n n n f x x x ++=

[]123,,,n n n n f x x x x +++=

8、若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 。

9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 。

10、为了使计算

23123

101(1)(1)y x x x =+

+-

---的乘除法运算次数尽量的少,应将表达

式改写成 。

填空题答案

1、2.3150

2、

()()()()2312123315

3,,11

2,,416f x x f x x f x x x x x ---===

-- 3、6 和 14 4、1.5

5、()()11,,2k k k k k h

y f x y f x y +++?+???

6、()6A ρ=

7、[][]12123,,3,,,,0

n n n n n n n f x x x f x x x x +++++== 8、 收敛 9、()

h O

10、

11310121(1)(1)y x x x ??

??=++- ? ?---????

二、计算题 (共75 分,每题15分)

1.设

32

01219(), , 1, 44f x x x x x ====

(1)试求

()

f x 在

19,4

4??

???

?上的三次Hermite 插值多项式()x H 使满足 ''11()(), 0,1,2,... ()()j j H x f x j H x f x ===

()

x H 以升幂形式给出。

(2)写出余项 ()()()R x f x H x =-的表达式

计算题1.答案

1、(1)

()32142632331

22545045025x x x x H =-

++-

(2)

()522191919

()(1)(),()(,)

4!164444R x x x x x ξξξ-=---=∈

2.已知 的 满足

,试问如何利用 构造一个收敛的

简单迭代函数

,使

0,1…收敛?

计算题2.答案

2、由 ()x x ?=,可得 3()3x x x x ?-=-,1

(()3)()

2x x x x ?ψ=--=

1 ()(()3) 2x x ψψ=--’’因,故11

()1

22x x ψ?=<<’’()-3

[]11

()()3 , k=0,1,.... 2k k k k x x x x ψ?+==-

-故收敛。

3. 试确定常数A ,B ,C 和 a ,使得数值积分公式

有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

计算题3.答案

3、

101612,,995A C B a ====±,该数值

求积公式具有5次代数精确度,它是Gauss 型的

4. 推导常微分方程的初值问题 00

'(,)

()y f x y y x y =??

=?的数值解公式:

'''1111(4)

3n n n n n h y y y y y +-+-=+++

(提示: 利用Simpson 求积公式。)

计算题4.答案

4、 数值积分方法构造该数值解公式:对方程 ()y f x =’

在区间 []11,n n x x -+上积分,

11

11()()(,())n n x n n x y x y x f x y x dx

+-+-=+

?

,记步长为h,

对积分

1

1

(,())n n x x f x y x dx

+-?

用Simpson 求积公式得

[]1

1

11112(,())()4()()(4)63

n n x n n n n n n x h h f x y x dx f x f x f x y y y +--++-≈

++≈++?

’’’

所以得数值解公式: 1111(4)

3n n n n n h y y y y y +-+-=+++’’’

5. 利用矩阵的LU 分解法解方程 组

12312312

32314

252183520

x x x x x x x x x ++=??

++=??++=?

计算题5.答案

5、解:

1123211435124A LU ????

????==-????

????--????

(14,10,72), (1,2,3) .T T Ly b y Ux y x ==--==令得得

三、证明题 (5分)

1.设

,证明解 的Newton 迭代公式是线性收敛的。

证明题答案

1、

32231321232323333 ()(), ()6(),:()

,0,1,... ()

()5,0,1,...

6()6655 (), (),6663551 , ()()636n n n n n n n n n n n

f x x a f x x x a Newton f x x x n f x x a x a

x x n x x a x a a

x x x x x a x a a a ???++--=-=-=-

=-=-=+--=

+=-==-=-’’’’’证明:因故由迭达公式得因迭达函数而又则1

0,

32

=≠故此迭达公式是线性收敛的。

一、填空题(20分)

(1).设*

2.40315x =是真值 2.40194x =的近似值,则*

x 有 位有

效数字。

(2). 对1)(3

++=x x x f , 差商=]3,2,1,0[f ( )。

(3). 设(2,3,7)T

X =-, 则||||X ∞= 。

(4).牛顿—柯特斯求积公式的系数和()

n

n k

k C

==

∑ 。

填空题答案

(1)3 (2)1 (3)7 (4)1

二、计算题

1).(15分)用二次拉格朗日插值多项式2()sin 0.34L x 计算的值。 插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。

计算题1.答案

1)020*******

010*********()()()()()()

()()()()()()()

=0.333336x x x x x x x x x x x x L x f f f x x x x x x x x x x x x ------=

++------

2).(15分)用二分法求方程3

()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限2

10ε-=。

计算题2.答案

2) 1234566

1.25 1.375 1.31251.34375 1.328125 1.3203125N x x x x x x =======

3).(15分)用高斯-塞德尔方法解方程组 ???

??=++=++=++22

5218241124321321321x x x x x x x x x ,取

T )0,0,0()0(=x ,迭代三次(要求按五位有效数字计算).。

计算题3.答案

3)迭代公式

???

???

???--=--=--=++++++)222(51)

218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x

4).(15分)求系数123,,A A A 和使求积公式

1

1231

11

()(1)()()233f x dx A f A f A f -≈-+-+≤?对于次数的一切多项式都精确成立。

计算题4.答案

4)12312312312311112

2033993

13022A A A A A A A A A A A A ++=--+=++=

===

5). (10分)对方程组 ???

??=-+=--=++8

4102541015

1023321321321x x x x x x x x x

试建立一种收敛的Seidel 迭代公式,说明理由

计算题5.答案

5) 解:调整方程组的位置,使系数矩阵严格对角占优

1231231

231045

21048321015

x x x x x x x x x --=??

+-=??++=?

故对应的高斯—塞德尔迭代法收敛.迭代格式为

(1)()()

123(1)(1)()

213(1)(1)(1)

3121( 4 5)101(2 48)

101(32 15)10k k k k k k k k k x x x x x x x x x ++++++?=++??

?=-++??

?=--+??

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

三、简答题

1)(5分)在你学过的线性方程组的解法中, 你最喜欢那一种方法,为什么?

2)(5分)先叙述Gauss 求积公式, 再阐述为什么要引入它。

一、填空题(20分)

1. 若a =

2.42315是2.42247的近似值,则a 有( )位有效数字.

2. )(,),(),(10x l x l x l n 是以n ,,1,0 为插值节点的Lagrange 插值基函数,则

=

∑=n

i i x il 0

)(( ).

3. 设f (x )可微,则求方程)(x f x =的牛顿迭代格式是( ).

4. 迭代公式

f BX X k k +=+)

()1(收敛的充要条件是 。 5. 解线性方程组A x =b (其中A 非奇异,b 不为0) 的迭代格式f

x x

+=+)()

1(k k B 中的B 称为( ). 给定方程组??

?-=-=-458

92121x x x x ,解此方程组的雅可比迭代格式为(

)。

填空题答案

1.3 2.x

3.

1()1()

n n n n n x f x x x f x +-=--’

4. ()1B ρ<

5.迭代矩阵, 1()121()21

1(8)91(4)5k k k k x x x x ++?=+???

?=+??

分 评卷人

二、判断题(共10分)

1. 若0)()(

2. 区间[a,b ]上的三次样条函数是一个次数不超过三次的多项式。 ( )

3. 若方阵A 的谱半径1)(

4. 若f (x )与g (x ) 都是n 次多项式,且在n +1个互异点

n i i x 0}{=上)()(i i x g x f =,则 )()(x g x f ≡。 ( )

5. 用

2

211x

x +

+近似表示x e 产生舍入误差。 ( )

判断题答案

1.×

2.×

3.×

4.√

5.×

得 分 评卷人

三、计算题(70分)

1. (10分)已知f (0)=1,f (3)=

2.4,f (4)=5.2,求过这三点的

二次插值基函数l 1(x )=( ),]4,3,0[f =( ), 插值多项式P 2(x )=( ), 用三点式求得=')4(f ( ).

计算题1.答案

1.1777203(4),,1(3),3

1215126x x x x x --++-由插值公式可求得它们分别为:

2. (15分) 已知一元方程02.133

=--x x 。

1)求方程的一个含正根的区间;

2)给出在有根区间收敛的简单迭代法公式(判断收敛性); 3)给出在有根区间的Newton 迭代法公式。

计算题2.答案

2.(1)(0) 1.20 , (2) 1.80 ()(0,2)f f f x =-<=>又连续故在内有一个正根, (2)

收敛

313

2)

2,0(3

23

2.13,12

.11)(max ,)2.13()(,2.13+=∴<≤

''+=''+=+∈-

n n x x x x x x x x φφ

(3)

32

12

3 1.2

'()33,33

n n n n x x f x x x x x +--=-=--

3. (15分)确定求积公式 )

5.0()()5.0()(11

1Cf x Bf Af dx x f ++-≈?- 的待定参数,使其代数精度尽量高,并确定其代数精度.

计算题3.答案

2312

1311

41()1,,,20.50.50

20.250.2530.1250.1250

42

,33

1

()[4(0.5)2(0)4(0.5)],(),

321

56f x x x x A B C A Bx C A Bx C A Bx C A C B f x dx f f f f x x -=++=?

?-++=??

?++=??-++=??===-

≈--+==

=?3.假设公式对精确成立则有解此方程组得 求积公式为

当时 左边 右边 左3≠∴边右边 代数精度为。

4. (15分)设初值问题 1

01

)0(23<

?=+='x y y

x y .

(1) 写出用Euler 方法、步长h =0.1解上述初值问题数值解的公式; (2) 写出用改进的Euler 法(梯形法)、步长h =0.2解上述初值问题数值解

的公式,并求解21,y y ,保留两位小数。

计算题4.答案

4.1(1) 0.1(32)0.3 1.2n n n n n n y y x y x y +=++=+ 1111120.20.2

(2) (32)3(0.2)22

=0.1(6220.6)

3332440

3336333

1.575,

2.585

240240440n n n n n n n n n n n n n y y x y x y y x y y y y x y y ++++??+=+

++++++++∴=

++=+==+=迭达得

5. (15分)取节点1,5.0,0210===x x x ,求函数x

e y -=在区间]1,0[上的二次插

值多项式)(2x P ,并估计误差。

计算题5.答案

5.

)

5.0)(0(0

10

5.01

5.01)0(0

5.01)(5.05

.015.002------

--+

---+

=----x x e e e x e e x p

=1+2()5.0()12(2)15.015

.0-+-+----x x e e x e

[]

)1)(5.0(!3)

()(,1max ,21,0''3''--'''=

-==-=∈-x x x f x p e y M e y x x x ξ

时10≤≤∴x ,

)1)(5.0(!

31

)(2--≤

-x x x x p e x

一、填空题( 每题4分,共20分)

1、数值计算中主要研究的误差有 和 。

2、设

()(0,1,2

)

j l x j n =是n 次拉格朗日插值多项式的插值基函数,则

()j i l x =

(,0,1,2

)i j n =;

()n

j j l x ==

∑ 。

3、设

()(0,1,2

)

j l x j n =是区间[,]a b 上的一组n 次插值基函数。则插值型求积公

式的代数精度为 ;插值型求积公式中求积系数j A =

;且

n

j

j A

==

∑ 。

4、辛普生求积公式具有 次代数精度,其余项表达式为 。

5、

2

()1,f x x =+则[1,2,3]_________,[1,2,3,4]_________f f ==。 填空题答案

1.相对误差 绝对误差

2.1,,0,i j i j =??

≠? 1

3. 至少是n

()b

k

a l x dx

?

b-a

4. 3

4(4)

()(),(,)1802b a b a f a b ζζ---

5. 1 0

二、计算题

1、已知函数()y f x =的相关数据

由牛顿插值公式求三次插值多项式3()P x ,并计算1

3()2P =的近似值。

计算题1.答案

解:差商表

由牛顿插值公式:

323332348

()()21,33141181

3()()2()()12

232232p x N x x x x p ==

-++≈=-++=

2、(10分)利用尤拉公式求解初值问题,其中步长0.1h =,

1,

(0,0.6)

(0) 1.

y y x x y '=-++?∈?

=?。

计算题2.答案

解:010(,)1,1,0.1,0.1(1),(0,1,2,3,)1,

1.000000;1.000000;1.010000;1.029000;

1.056100;1.090490;1.131441.

n n n n k f x y y x y h y y x y n y y η+=-++====++-===

3、(15分)确定求积公式

012()()(0)()

h

h

f x dx A f h A f A f h -≈-++?

中待定参数

i

A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积

公式的代数精度。

计算题3.答案

解:分别将2

()1,,f x x

x =,代入求积公式,可得

02114

,33A A h A h

===。 令3()f x x =时求积公式成立,而4

()f x x =时公式不成立,从而精度为3。

4、(15分)已知一组试验数据如下 :

求它的拟合曲线(直线)。

计算题4.答案

解:设y a bx =+则可得

515311555105.5

a b a b +=??

+=?

于是 2.45, 1.25a b ==,即 2.45 1.25y x =+。

5、(15分)用二分法求方程

3

()1f x x x =--在区间[1,1.5]内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。

计算题5.答案

解:6次;*

1.32x ≈。

6、(15分)用列主元消去法解线性方程组

123

123

123 2346, 3525, 433032.

x x x

x x x

x x x

++=

?

?

++=

?

?++=

?

计算题6.答案

解:

2346433032433032

352535253525

43303223462346 433032433032

011/441/219011/441/219

03/21110002/114/11 433032

0118238

0012

?????? ? ? ?

→→

? ? ? ? ? ???????

???? ? ?→--→-- ? ? ? ?

--

????

??

?

→--

?

?

??

1231

232

3

3

433032,13, 118238,8,

2.

2.

x x x x

x x x

x

x

++==

??

??

-=-?=??

??=

=?

?

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析参考答案(第二章)doc资料

数值分析参考答案(第 二章)

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算ln0.54的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.93147(0.6) 5.10826(0.5)x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5) x x x x x x =-?--+---?--2(0.54)0.615319840.615320L ∴=-≈- 3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,( )606018010800 x h ππ ===?=

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

昆明理工大学—数值分析各年考试题及答案

昆明理工大学数值分析考试题 (07) 一.填空(每空3分,共30分) 1. 设A 0.231x =是真值0.229T x =的近似值,则A x 有 位有效数字。 2. 若74()631f x x x x =+++,则017[2,2,...2]f = ,018[2,2,...2]f = 。 3. A=1031?? ? ?-?? ,则1 A = ; A ∞ = ; 2 A = 2()cond A = 。 4. 求方程()x f x =根的牛顿迭代格式是 。 5.设105%x =± ,则求函数()f x =的相对误差限为 。 6.A=2101202a a ?? ? ? ??? ,为使其可分解为T L L (L 为下三角阵,主对角线元素>0),a 的取值范 围应为 。 7.用最小二乘法拟合三点A(0,1),B(1,3),C(2,2)的直线是 。 (注意:以上填空题答案标明题号答在答题纸上,答在试卷上的不给予评分。) 二.推导与计算 (一)对下表构造f(x)的不超过3次的插值多项式,并建立插值误差公式。(12分) (二)已知()x x =Φ和()x 'Φ满足∣()x 'Φ-3∣<1。请利用()x Φ构造一个收敛的简单迭代函数()x ψ,使1(),0,1,......k k x x k +=ψ=收敛。(8分)

(三)利用复化梯形公式计算2 1 x I e dx -=?,使其误差限为60.510-?,应将区间[0,1] 等份。(8分) (四)设A= 1001005a b b a ?????????? ,detA ≠0,推导用a ,b 表示解方程组AX=f 的Seidel(G-S) 迭代法收敛的充分必要条件。(10分) (五)确定节点及系数,建立如下 GAUSS 型求积公式 1 11220 ()()dx A f x A f x ≈+? 。(10分) (六)对微分方程初值问题'00(,) ()y f x y y x y ?=?=? (1) 用数值积分法推导如下数值算法: 1111(4)3 n n n n n h y y f f f +-+-=+ ++,其中(,)i i i f f x y =,(1,,1)i n n n =-+。(8分) (2) 试构造形如 1011011(),n n n n n y a y a y h b f b f +--=+++ 的线形二步显格式差分格式,其中111(,),(,)n n n n n n f f x y f f x y ---==。试确定系数0101,,,a a b b ,使 差分格式的阶尽可能高,写出其局部截断误差主项,并指明方法是多少阶。(14分) (考试时间2小时30分钟)

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析期末试卷

数值分析2006 — 2007学年第学期考试 课程名称:计算方法 A 卷 考试方式:开卷[] 闭卷[V ] 半开卷[] IV 类 充要条件是a 满足 二、(18分)已知函数表如下 1?设 f(0) = 0, f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二 2 ?设 AJ <2 -3 -1 ,则X ,A := A 1 1 j — 3 ?计算积分 xdx ,取4位有效数字。用梯形公式求得的近似值为 "0.5 (辛普森)公式求得的近似值为 ,用 Spsn 4?设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收 敛阶是 5 ?要使求积公式 1 1 [f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ , 0 4 6 ?求解线性方程组 x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的 10 11 12 13 In x 2.3026 2.3979 2.4849 2.5649

三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。 2 f (x)dx : A o f (0) A f (1) A2f(2) o

X 2 4 6 8 y 2 11 28 40 五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式: 试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。 (1)X =1 ?丄,迭代公式 X 1 X k 1 = 1 - X k (2) X 2二1 ,迭代公式 X —1 2 (X k ); X k 1

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析历年考题

数值分析A 试题 2007.1 第一部分:填空题10?5 1.设3112A ?? = ??? ,则A ∞=___________ 2()cond A =___________ 2.将4111A ??= ??? 分解成T A LL =,则对角元为正的下三角阵L =___________ ,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________ 4.方程13 cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法 113 cos 244 k k x x π+=-的收敛阶是 5.解方程2 210x x -+=的Newton 迭代方法为___________,其收敛阶为___________ 6.设()s x = 323 2 323,[0,1]31,[1,2] ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7.要想求积公式: 1 121 ()(()f x dx A f f x -≈+? 的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________ 8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设 ,0,f y μμ=?其绝对稳定性空间是___________ 9.用线性多步法 2121()n n n n n y ay by h f f ++++-+=-来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

相关文档
最新文档