线性代数电子教案

线性代数电子教案

线性代数电子教案

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

校车安排问题答案 最新改良

校车安排中的最优化问题 摘要:本文以让教师和工作人员满意度最高为目标对校车安排中的问题进行了探究。 在求解建立n个乘车点时,先利用Floyd算法求出了最短路距离矩阵,然后以各区域到最近乘车点的距离和最小为目标函数对50个区域进行遍历分析,建立模型,求出n个最优乘车点。并利用模型求出了设立2个乘车点时,区号为18区和31区,其最短总距离为24492米;若设立3个乘车个点,则分别为15区、21区和31区,其最短总距离为19660米。 考虑到每个区的乘车人数,首先建立满意度函数表示满意度随距离的增大而减小,然后以所有区域人员平均满意度最大为目标函数建立模型,并依据模型求出当建立2个乘车点时最优解为区域24和32,总满意度为0.7239;当建立3个乘车点时的最优解为区域16、23和32,平均满意度为0.7811。 关于乘车点位置的确定,设立满意度最低标准,添加满意度的约束条件:H h ,建立车辆数模型,得出在满意度最大的情况下的3个乘车点车辆使用K 情况,确定车辆最少需要54辆,三个站点所在的区域分别为2、26、31,对应的车辆数分别为12、19、23。 我们结合本模型对校车的安排问题提供了建议。 关键词:Floyd算法最短距离满意度函数

一、问题的重述 许多学校都建有新校区,常常需要将老校区的教师和工作人员用校车送到新校区。由于每天到新校区的教师和工作人员很多,往往需要安排许多车辆。有效的安排车辆并让教师和工作人员尽量满意是个十分重要的问题。现有如下四个问题需要设计解决。 假设老校区的教室和工作人员分布在50个区,各区的距离见附录中表1。各区人员分布见附录中表2。 问题1:如果建立n个乘车点,为使各区人员到最近乘车点的距离最小,建立模n2,3时的结果。 型,并分别给出 问题2:考虑每个区的乘车人数,使工作人员和教室的满意度最大,建立模型,并分别建立两个和三个乘车点的校车安排方案。(假定车只在起始点载人) 问题3:若建立3个乘车点,为使教师和工作人员尽量满意,至少需要安排多少辆车。假设每辆车最多载客47人(假设车只在起始站点载人)。 问题4:关于校车安排问题,你还有什么好的建议和考虑。可以提高乘车人员的满意度,又可节省运行成本。 二、模型假设与符号说明 2.1、模型假设 1、假设每位教师及工作人员之间无相互影响。 2、每位教师及工作人员均选择最短路径乘车。 3、乘车点均建在各区内,不考虑区与区之间。 4、教师及工作人员到各站点乘车的满意度与到该站点的距离有关系,距离近则满意度高,距离远则满意度低。 5.、假设任意时刻任意站点均有车,不考虑教师及工作人员的等车时间。 6、在乘车点区内的人员乘车距离为零。 7、假设所设置的乘车点数不大于50。 8、假设所有人员均乘车。 2.2、符号说明

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

同济大学2010-11线性代数B期末考试试卷_A卷_

同济大学课程考核试卷(A 卷) 2010—2011学年第一学期 命题教师签名: 审核教师签名: 课号:122009 课名:线性代数B 考试考查:考试 此卷选为:期中考试( )、期终考试( √ )、重修( )试卷 年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 总分 得分 (注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟. 要求写出解题过程,否则不予计分) 一、填空与选择题(均为单选题)(27分) 1、 已知4阶方阵1234 567890 54 a b A c d ????? ? =?????? ,函数()||f x xE A =?,这里E 为4阶单位阵,则函数()f x 中3x 项的系数为_______a+b+c+d____________. 2、 设12312,,,,αααββ均为4维列向量,已知4阶行列式 1231,,,m αααβ=,又 1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=______n m ?_______________. 3、 已知3阶方阵A 满足320A E A E A E +=?=?=,其伴随矩阵为* A ,则行列式 *A =_____36_________. 4、 已知α是3维实列向量,且111111111T αα?????=????????? ,则α=5、设α是3 R 空间中的某一向量,它在基123,,εεε下的坐标为()123,,T x x x ,则α在基 1323,,k εεεε+下的坐标是_________1231(,,)T x x x kx ?________________. 6、 下列关于矩阵乘法的结论中错误的是____________B_________. 1(). ). (). ().n A A A A B C n cE c D ?若矩阵可逆,则与可交换 (可逆阵必与初等矩阵可交换任一个阶方阵均与可交换,这里为任意常数 初等矩阵与初等矩阵乘法未必可交换 7、 设A B 、均为n 阶方阵,且()2 AB E =,则下列式子中成立的是_____D_______. ()2 2 2 (). (). (). ().A AB E B AB E C A B E D BA E ==?== 8、 设Ax b =为n 元非齐次线性方程组,则下面说法中正确的是_____C____ (). 0 (). 0 (). 0 ().() A Ax Ax b B Ax Ax b C Ax b Ax D Ax b R A n =======?=若只有零解,则有唯一解若有无穷多个解,则有无穷多个解若有两个不同的解,则有无穷多个解 有唯一解 9、 下列向量组中线性无关的是_______C__________. ()()()()()()()()()()()()()() (). 1,1,0,20,1,1,10,0,0,0). ,,,,,,,,,,, (). ,1,,0,0,,0,,1,0,,0,,0,1().1,2,1,5,1,2,1,6,1,2,3,7,0,0,0,1A B a b c b c d c d a d a b C a b c d e f D ??,, ( 二、(10分) 已知n 阶行列式1 231 200 1 0301 00n n D n ="""###%#",求第一行各元素的代数余子式之和.

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线代2005。12。A答案

2005-2006学年第1学期《线性代数Ⅱ》A 卷试题 答案及评分标准 一、填空题(每小题3分,共18分) 1.43512132a a a a a k i 是5阶行列式中带负号的项,则i = , k = . 2.设 i A A A A i 的第为设阶方阵为,4,3-=个列向量, ) ,,(321A A A A =,则行列式 =+12135,2,3A A A A . 3.设 A n A A 阶方阵分别为1,-*的伴随阵和逆矩阵,则=-*1A A . 4.矩阵????? ?? ?? ???---=30 3 00000301 2100 210A 对应的实二次型 =),,,(4321x x x x f . 5.设???? ? ?????---=53 3 4 2 111 a A ,且2,6321===λλλ的特征值为A , 如果 A 有三个线性无关的特征向量,则=a . 6、n 阶方阵 A 具有n 个不同的特征值是A 与对角阵相似的 条件. 1. i = 5 , k = 4 ; 2.40 ;3. 2 -n A ;4.2 442222136x x x x x x --+ ; 5. 2-; 6. 充分。 二、简答题(每小题4分,12分) 1.举出任何反例皆可(2分)。当BA AB =时,等式2 222)(B AB A B A ++=+成立 (2分)。 2.一定不为零(2分)。若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ 即方程0 =x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾(2分)。 3.不相似(2分)。否则有可逆阵C 使C -1AC=B,即A=B,矛盾(2分)。

线性代数 期末试题

一、填空(每小题2分,共10分) 5x 1 2 3 1.在多项式()f x = 1 x -2 1 2 中,4 x 的系数项为 ,3 x 的系数 1 2 x 3 -1 1 2 2x 项为 。 20x y z +-= 2.当k = 时,线性方程组 20x ky z +-= 有非零解。 350x z -= 3.设矩阵1 1112A --??= ??? ,则1 ()A *-= 。 1 2 3 0 4.设矩阵A = 0 -1 0 3 ,则A 中四个列向量构成的向量组是线性 , 1 - 2 2 1 0 0 0 5 且()R A = 。 5.设四阶矩阵A 与B 相似,矩阵A 的特征值为11112345,,,,则行列式1 B E --= 。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号 内。每小题2分,共20分) 1 3 1 λ 0 -1 1.设行列式1D = 2 2 3 ,2D = 0 λ 0 ,若1D =2D ,则λ的取值为 3 1 5 -1 0 λ ( )。 (A )0,1 (B )0,2 (C )1,-1 (D )2,-1 2.设A ,B 为n 阶方阵,A ≠0,且0AB =,则( ) (A ) 0BA = (B ) 222 ()A B A B -=+ (C ) 0B = (D ) 0B =或0A = 3,已知A 、B 、C 均为可逆方阵,则1 000 00 0C B A -?? ? ? ?? ? =( )。

(A )1 1 1000 000C B A ---?? ? ? ??? (B )1 1 1000 000A B C ---?? ? ? ?? ? (C )11 1000 000 A B C ---?? ? ? ?? ? (D )1 1 100000 0B C A ---?? ? ? ?? ? 4.若A 为n 阶对称矩阵,且A 可逆,则有( )。 (A )1T A A E -= (B )1T A A -= (C )T A A =- (D )0A = 5.设有4维向量组16,,αα ,则( )。 (A )16(,,)4R αα= (B )16(,,)2R αα= (C )1234,,,αααα必然线性无关 (D )16,,αα 中至少有2个向量能由其余向量线性表示 6.当( )时,0a A b c ?? = ??? 是正交阵。 (A )1,2,3,a b c === (B )1a b c === (C )1,0,1a b c ===- (D )1,0a b c === 7.若线性方程组A X B =中,方程的个数少于未知数的个数,则( )。 (A )0AX =必有非零解 (B )0AX =仅有零解 (C )0AX =一定无解 (D )A X B =必有无穷多解 8.设123,,,ηηη 为非齐次线性方程组A X B =的k 个线性无关的解()k n <,且 1122 k k X c c c ηηη=+++ (12,,k c c c 为任意常数且121k c c c ++= )是A X B =的通解。则()R A =( )。 (A )k (B )n k - (C )1n k -+ (D )1n k -- 9.对于n 阶实对称矩阵A ,结论( )正确。 (A )A 一定有n 个不同的特征值 (B )A 一定有n 个相同的特征值 (C )必存在正交矩阵P ,使1 P AP -成为对角矩阵

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

重庆大学线性代数答案

习题一解答 1、 填空 (3)设有行列式 2 31118700123456 4021103152----=D 含因子453112a a a 的项 为 答:144038625) 1(54453123123 -=????-=-a a a a a 或018605)1(53453124124=????=-a a a a a (5)设 3 2 8814 4 1 2211111)(x x x x f --= ,0)(=x f 的根为 解:根据课本第23页例8得到)2)(2)(1)(22)(12)(12()(+-------=x x x x f 0)(=x f 的根为2,2,1- (6)设321,,x x x 是方程03 =++q px x 的三个根,则行列式1 3 2 213321x x x x x x x x x = 解:根据条件) )()((3213x x x x x x q px x ---=++,比较系数得到 0321=++x x x , q x x x -=321;再根据条件q px x --=131,q px x --=232,q px x --=333; 原行列式=-++33323 1 x x x =3213x x x 033)(321=+-++-q q x x x p (7)设 )(32142 1 4 3 1 4324321iJ a D ?== ,则44342414432A A A A +++= 解:44342414432A A A A +++相当于)(iJ a ?中第一列四个元素分别乘以第四列的代数余子式,其值为0. (8)设)(iJ a c d b a a c b d a d b c d c b a D ?== ,则44342414A A A A +++= 解 将D 按第四列展开得到44342414cA aA aA dA +++=c d b a a c b d a d b c d c b a ,第四列的元素全变成1,此时第四列与第二列对应成比例,所以44342414A A A A +++=0.

同济大学线性代数第六版答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

重庆大学 线性代数 A201506 试卷答案

重庆大学《线性代数II 》课程试卷 第1页 共4页 重庆大学《线性代数II 》课程试卷 2014 — 2015 学年 第 2 学期 开课学院:数学与统计课程号: MATH10032 考试日期: 201506 考试方式: 考试时间: 120 分钟 一、填空题(每小题3分,共18分) 1.已知123,,,,αααβγ均为4维列向量,且123123,,,,,,,n m γααααβγαα=+=, 则123,,,3αααβ= 3()m n + 2.设123(1,1,),(1,,1),(,1,1)T T T k k k ααα===是3 R 的基, 则k 满足的关系式 1,2k ≠- 3.设,A B 为三阶相似矩阵,且1220,1,1E A λλ+===-为B 的两个特征值,则行列式2A AB += 18 4.已知,A B 均是三阶矩阵,将A 的第三行的2-倍加到第二行得矩阵1A ,将 B 中第一列和第二列对换得到1B ,又11111102213A B ????=??????,则AB = 111258123?? ???????? 5.设123,,ααα为四元非齐次线性方程组Ax β=的三个解,()3R A =,其中 123(1,2,3,4),(0,1,2,3)T T ααα=+=,则Ax β=的通解是 (2,3,4,5)(1,2,3,4)T T x k =+ 6.在线性空间2P (次数不超过2的全体多项式)中,2 ()23f x x x =++在基 21,(1),(1)x x --下的坐标为 (6,4,1) 二、单项选择题(每小题3分,共18分) 1.设A 为(1)n n >阶方阵,且A 的行列式0A a =≠,而A * 是A 的伴随矩阵,则 2A * =【B 】 (A)2a (B)1 2(2)n a - (C)1 (2) n a - (D)2n a 2.设 112321233123(,,),(,,),(,,)T T T a a a b b b c c c ααα===,则三条直线 (1,2,3)i i i a x b y c i +==(其中220,1,2,3)i i a b i +≠=交于一点的充分必要条件是【A 】 (A) 123,,ααα线性相关,12,αα 线性无关 (B) 123,,ααα线性无关 (C) 12312(,,)(,)R R ααααα= (D) 123,,ααα线性相关 3.任意两个n 维向量组1, ,m αα和1,,m ββ,若存在两组不全为零的数1, ,m λλ和 1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=, 则【D 】 (A) 1,,m αα和1,,m ββ都线性相关 命 题人: 组 题人: 审题人: 命题时间: 教务处制 学院 专业、班 年级 学号 姓名 考试教室 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

重庆大学线性代数Ⅱ本科模拟试题(A卷)

重庆大学线性代数Ⅱ本科模拟试题(A 卷) 一、填空题(每小题3分,共18分) 1.43512132a a a a a k i 是5阶行列式中带负号的项,则i = , k = . 2.设i A A A A i 的第为设阶方阵为,4,3-=个列向量,),,(321A A A A =,则行列式=+12135,2,3A A A A . 3.设A n A A 阶方阵分别为1,-*的伴随阵和逆矩阵,则=-*1A A . 4.矩阵 ????????????---=303000003012100210A 对应的实二次型 =),,,(4321x x x x f . 5.设 ??????????---=53342 111 a A ,且2,6321===λλλ的特征值为A , 如果A 有三个线性无关的特征向量,则=a . n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的 条件. 二、简答题(每小题4分,共12分) 1.举反例说明等式2222)(B AB A B A ++=+是错误的,并指出B A ,满足什么条件时此式成立. 2.若方阵 A 可逆,A 的特征值是否一定不为零?为什么? 3. 方阵相似吗?为什么? 和方阵??????=??????=01110110B A 三、计算题(一)(每小题8分,共32分) 1.计算行列式的值:5678 90 1201140 010300 02000 1000. 2.设矩阵. ,,101020 101 2X X A E AX X A 求矩阵满足矩阵+=+??????????= 3.设有向量组),14,7,0,3(),2,1,3,0(),4,2,1,1(:321==-=ααα A )0,2,1,1(4-=α ,)6,5,1,2(5=α ,求A 组的一个最大线性无关组。 4.设矩阵 .,00113002320010182000310001-????????????????=A A 求 四、计算题(二)(每小题12分,共24分) 1.讨论λ取何值时,方程组

大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

重庆大学线性代数期末A201501试卷答案

一、 填空题(每小题3分,共18分) 1. 设A 为n 阶矩阵,且2=A ,*A 是A 的伴随矩阵,则=* A A 212n - 2. 若10022312A x -?? ?= ? ? ?? 与 03B y ?? ? = ? ??? 相似,则(),x y = (1,-1) . 3. 设3阶矩阵A 的特征值为1,2,3,矩阵* B E A =-,其中,*A 是A 的伴随矩阵,则B 的行列式B = -10 . 4设向量集合S 为n 维向量空间n R 的一个子集,则集合S 构成向量空间的充要条件为该集合对向量的加法运算和数乘运算封闭 5. 二次型222 1231231213(,,)222f x x x x x x tx x x x =++-+正定时,t 应满足的条件 是 ||1t < 6. . 实对称阵A 的秩等于r ,又它有m 个负的特征值,则它的符号差为 r — 2m . 二、单项选择题(每小题3分,共18分) 1.设A 是三阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C =的可逆矩阵Q 为( D ) A. 010100101?? ? ? ???. B. 010101001?? ? ? ??? . C. 010100011?? ? ? ???. D. 011100001?? ? ? ??? . 2.若向量组,,αβγ 线性无关; ,,αβδ 线性相关,则(C ) A . α必可由,,βγδ线性表示. B.β必不可由,,αγδ线性表示 C.δ必可由,,αβγ线性表示. D. δ 必不可由,,αβγ线性表示. 3.设A 是任一(3)n n ≥阶方阵,* A 是其伴随矩阵,又k 为常数,且0,1k ≠±,则必有 *()kA =( B ) A.*kA . B.1* n k A -. C.*n k A . D.1*k A -. 4. 若 4 321ηηηη,,,是线性方程组 0=Ax 的基础解系,则 4321ηηηη+++是0=Ax 的( A ) A. 解向量 B. 基础解系 C.通解 D. A 的行向量 5. . 3 R 空间中的3维向量(1,2,3)在一组基(3,0,0),(0,2,0),(0,0,1)下的坐标为( C ) A. )3,2,1( B. )1,2,3( C. )3,1,31( D. )3 1,21, 1( 6. . 设A 是4阶方阵, 则下列条件中( D )与“秩(A ) = 3”等价. A. A 的列向量组线性无关, B. 行列式 0=A , C. A 的3阶子式都不为零, D. 齐次线性方程组0=X A 的基础解系中仅含有1个解向量. 三、判断题(每小题2分,共10分)(请在括号内填写“√”或者“×”)

相关文档
最新文档