大学物理-双臂电桥测金属丝电阻率

大学物理-双臂电桥测金属丝电阻率
大学物理-双臂电桥测金属丝电阻率

大学物理设计性实验

课程名称大学物理设计性试验

实验项目双臂电桥侧金属丝电阻率

辅导教师

专业班级

姓名

学号

电阻率是表征导体材料性质的一个重要物理量。测量导体的电阻率一般为间接测量,即通过测量一段导体的电阻,长度及其横截面积,在进行计算。而电阻的测量方法很多,电桥是其常用方法之一。

双臂电桥简称双电桥,又名开尔文电桥,它是惠斯登电桥的改进和发展,它可以消除(或减小)附加电阻对测量的影响,因此是测量1Ω以下低电阻的主要仪器。常用来测量金属材料的电阻率、电机、变电器绕组的电阻、低阻值线圈电阻、电缆电阻、开关接触电阻以及直流分流器电阻等。

【实验目的】

1.了解四端引线法的意义及双臂电桥的结构;

2.学习用双臂电桥测低值电阻的原理和方法。

3.掌握用双臂电桥测量几种金属棒的电阻,并计算其电阻率。

【实验原理】

测量电阻常用多用电表,但其测量误差较大。如果要对电阻进行精密测量,可用各种电桥。通常单臂惠斯登电桥的测量准确度可达0.5%(电阻值测量范围为10~106Ω)。但在测

丝,B 和C 接点间用较粗的U 形铜棒连接。P 和Q 是两个弹簧片,起固定R x 的作用。标尺用螺丝固定在铜棒的前面,这样可在尺上直接读出MN 的长度。铜棒AB 镀了防腐蚀材料。M 是一用胶木和接触弹簧片组成的滑块,且固定在粗的金属棒上。除BC 间的接线在板的上面,其他连接均在板下,均用粗铜线。电阻间的接线柱有板上部分和板下部分,板上是旋钮接线柱,板下是由螺丝固定的垫圈和焊片。左边电阻配法是按顺时针方向依次为100Ω、450Ω、450Ω、100Ω;右边相同。

配阻计算如下:

由于电阻对称的分布,可只设左边阻值依次为x 1、x 2、x 3、x 4按设计要求,列方程

10

/)(1)/()(1

.0)/(432143214321=++=++=++x x x x x x x x x x x x

用矩阵解线性方程组的方法解出通解,得到x 1:x 2:x 3:x 4=2:9:9:2

于是考虑现有电阻和对实验准确度的影响,精挑细选100Ω、20Ω和430Ω三种规格的电阻。

二.双臂电桥的工作原理

双电桥的原理电路图如图2所示。它有两大特点:(1)待测电阻R x 和比较臂电阻R 0都

别为r 1、r 2、r 3包括导线电阻、C 1和C 处的接触电阻、以及C '1间电阻的总和。r 2和r 3似情况。的附加电阻分别为r '

1r '3和r '

4阻和接触电阻。

(2R 4;两个电阻,适当调节电阻R 1时流过电阻R 1和R 2、双电桥平衡时,S 和T 33'2311'11R I r I IR R I r I x ++=+ (1)

0'3343'4121IR r I R I r I R I ++=+ (2)

为了使附加电阻r '

1、r '

2、r '

3和r '

4的影响可以忽略不计,在双电桥电路中要求桥臂电阻R 1、R 2、R 3和R 4足够大,即R 1〉〉r '

1、R 2〉〉r '

2、R 3〉〉r '3和R 4〉〉r '

4;同时C '

2和

M '

的联接采用一条粗导线,使得附加电阻r 2很小,以满足I 〉〉I 1和I 〉〉I 3的条件。于是,式(1)和(2)可简化为

3311R I R I IR x -= (3)

43210R I R I IR += (4)

以上两式相除得

)

()

(2

431213

3

110

R R I I R R R I I R R R x --=

(5) 在双电桥设计时,设法使四个桥臂电阻满足下面的关系式,即

4

2

31R R R R =

则式(5)可以简化,从而得到双电桥的平衡条件为

210//R R R R x = 或

04

3021

R R R R R R R x ?=?=

(6) 式中R 1/R 2(或R 3/R 4)称为电桥桥臂比(或称为倍率)。由式(6)可知,待测电阻R x 等于桥臂比与比较臂电阻R 0的乘积。

综上所述,双电桥能够消除或减小附加电阻对测量低电阻的影响,其主要原因是:

(1)R x 和 R 0都采用了四端钮接法,它转移了附加电阻(包括导线电阻与接触电阻)的相对位置,使得附加电阻不再与低电阻R x 和R 0相串联,将附加电阻 r 1和r 3转移到电源回路中去,消除了它们对测量的影响。

(2)桥臂电阻分别比相应的附加电阻大得多,从而可以将附加电阻忽略不计。

(3) R x 和R 0采用足够粗的导线联接,使得附加电阻 r 2(又称跨线电阻)很小;又由于四个桥臂电阻R 1、R 2、R 3、R 4比 R x 、R 0要大得多,于是,当双电桥平衡时,桥臂电流I 1

和I 3必然比流过R x 和R 0 的电流I 小得多,这样,附加电阻r '1、r '2、r '

3和r '4的电压

降与四个桥臂电阻以及 R x 、R 0上的电压降相比小得多,因而可以忽略不计。 三.双臂电桥测量电阻

1.四端引线法

测量中等阻值的电阻,伏安法是比较容易的方法,惠斯顿电桥法是一种精密的测量方法,但在测量低电阻时都发生了困难。这是因为引线本身的电阻和引线端点接触电阻的存在。图4为伏安法测电阻的线路图,待测电阻R X 两侧的接触电阻和导线电阻以等效电阻r 1 、r 2、 r 3 、 r 4表示,通常电压表内阻较大,r 1和r 4对测量的影响不大,而r 2和r 3与R X 串联在一

起,被测电阻实际应为r 2+R X +r 3, 若r 2和r 3数值与R X 为同一数量级,或超过R X ,显然不

图4 伏安法测电阻 图5 双臂电桥测低电阻

能用此电路来测量R X。

若在测量电路的设计上改为如图5 所示的电路,将待测低电阻R X两侧的接点分为两个电流接点C-C和两个电压接点P-P,C-C在P-P的外侧。显然电压表测量的是P-P之间一段低电阻两端的电压,消除了r2和r3对R X测量的影响。这种测量低电阻或低电阻两端电压的方法叫做四端引线法,广泛应用于各种测量领域中。例如为了研究高温超导体在发生正常超导转变时的零电阻现象和迈斯纳效应,必须测定临界温度Tc,正是用通常的四端引线法,通过测量超导样品电阻R随温度T的变化而确定的。低值标准电阻正是为了减小接触电阻和接线电阻而设有四个端钮。

2.双臂电桥测量低电阻

用惠斯登电桥测量电阻,测出的R X值中,实际上含有接线电阻和接触电阻(统称为R j)的成分(一般为10-3~10-4Ω数量级),通常可以不考虑R j的影响,而当被测电阻达到较小值(如几十欧姆以下)时,R j所占的比重就明显了。

因此,需要从测量电路的设计上来考虑。双臂电桥正是把四端引线法和电桥的平衡比较法结

图6 四端引线法测电阻

合起来精密测量低电阻的一种电桥。

如图6 中,R1、R2、R3、R4为桥臂电阻。R N为比较用的已知标准电阻,R x为被测电阻。R N和R x是采用四端引线的接线法,电流接点为C1、C2,位于外侧;电位接点是P1、P2位于内侧。

测量时,接上被测电阻R x ,然后调节各桥臂电阻值,使检流计指示逐步为零,则I G=0,这时I3=I4时,根据基尔霍夫定律可写出以下三个回路方程。

)

()(422234233122311R R I r I I R I R I R I R I R I R I X N +=-+?=+?=

式中r 为C N 2和Cx 1之间的线电阻。将上述三个方程联立求解,可得下式:

)(2

413232

13R R R R r R R rR R R R R N X -+++=

由此可见,用双臂电桥测电阻,R x 的结果由等式右边的两项来决定,其中第一项与单臂电桥相同,第二项称为更正项。为了更方便测量和计算,使双臂电桥求R x 的公式与单臂电桥相同,所以实验中可设法使更正项尽可能做到为零。在双臂电桥测量时,通常可采用同步调节法,令R 3/R 1= R 4/R 2,使得更正项能接近零。在实际的使用中,通常使R 1=R 2,R 3=R 4,则上式变为

31

R R R R N

x =

在这里必须指出,在实际的双臂电桥中,很难做到R 3/R 1与R 4/R 2完全相等,所以R x

和R N 电流接点间的导线应使用较粗的、导电性良好的导线,以使r 值尽可能小,这样,即使R 3/R 1与R 4/R 2两项不严格相等,但由于r 值很小,更正项仍能趋近于零。

为了更好的验证这个结论,可以人为地改变R 1、R 2、R 3和R 4的值,使R 1≠R 2,R 3≠R 4,并与R 1=R 2,R 3=R 4时的测量结果相比较。

双臂电桥所以能测量低电阻,总结为以下关键两点:

a 、单臂电桥测量小电阻之所以误差大,是因为用单臂电桥测出的值,包含有桥臂间的引线电阻和接触电阻,当接触电阻与R x 相比不能忽略时,测量结果就会有很大的误差。而双臂电桥电位接点的接线电阻与接触电阻位于R 1、R 3和R 2、R 4的支路中,实验中设法令R 1、R 2、R 3和R 4都不小于100Ω,那么接触电阻的影响就可以略去不计。

b 、双臂电桥电流接点的接线电阻与接触电阻,一端包含在电阻r 里面,而r 是存在于更正项中,对电桥平衡不发生影响;另一端则包含在电源电路中,对测量结果也不会产生影响。当满足R 3/R 1= R 4/R 2条件时,基本上消除了r 的影响。 【实验仪器及用具】

QJ —19型 单双臂电桥,待测电阻,电流,游标卡尺,千分尺,灵敏检流计,标准电阻,反向开关,导线等。

QJ —19型 单双臂电桥简介

QJ —19型电桥线路如图,板面布置

如图4所示。 它是一种单双臂两用电桥,当作单臂电桥时,把3、4短路,在5、6上接上待测电阻,9、10接上电源即可进行测量。它在结构上使R 和R ˊ为同轴调

节,保证两电阻值总是相等,在作双臂电桥使用时,调节R1=R2。这样就保证了测低电阻时所要求的条件。

现在介绍作双臂电桥使用的方图4 QJ-19型电桥原理图像

使用时,将检流计、标准电阻和待测电阻的电位接头P1、P2分别接到“电计”、“标准”和“未知”(双)接线柱上。待测电阻和标准电阻的电流接点(J1、J2)相串联后通过反向电键盘再通过可变电阻和电流表与电池两极相连,如图所示。

图5 QJ-19型电桥面板图

板面上的粗、细和短路按钮,分别是检流计支路开关S1、S2和S3。R和Rˊ是采取同轴调节(面板上只标出R)各由五个十进盘电阻组成,分别为×100,×10,×1,×0.1、×0.01Ω。R的数值决定待测电阻的有效位数。另一对比率臂R1和R2分别可调节成104、103、102、10四个阻值。作双臂电桥使用时必须使R1=R2 。R1和R2的取值根据R s和R x数量级而定,必须保证R的×100档取非零值。

在正确使用条件下,QJ-19型电桥测量的误差分布是

量程相对误差E

10-5~10-4 ±0.5%

10-4~10-3 ±0.1%

10-3~102 ±0.05%

灵敏检流计的使用方法参见说明书。

【实验内容与步骤】

1 用螺旋测微计测量铜棒的直径d ,在不同部位测量五次,求平均值。

2 测量铜棒的电阻

1将待测铜棒插入未知四端电阻盒中,滑动端移至200mm 处,测量200mm 长的铜棒电阻,注意四端旋钮都要旋紧。

2按图二连接好电路。首先把检流计旋钮打到调零端对检流计进行调零,合上开关S ,调定R 1=R 2的阻值,按下“粗”“电源”按钮进行粗调,合理选取R S ,保证R 的×100档取非零值,调节R 电阻的“×100”、“×10”、“×1”三位旋钮,使检流计指示为零后,改压“细”,“电源”按钮进行细调,调节R 电阻的“×1”、“×0.1”、“×0.01”三位旋钮,使检流计指示为零,双臂电桥调节平衡,记下R 1、R 2、R 和R S 阻值。

○3将开关S 合向另一方,使电路中电流反向,重新调节电桥平衡,记下R1、R2、R 、及R S 阻值。

3 根据公式L R d x 4/2πρ=,计算铜棒的电阻率。

4 改变未知四端电阻滑动端至400mm 处,重复2、3两步骤,测量400mm 长铜棒的电阻,计算电阻率,并比较两次测量结果。

5 按以上步骤分别测量铝棒的电阻,计算电阻率。 【实验数据处理】

1、 基本常数数据:△L=2mm

R(n)=0.001Ω

双臂电桥级别:0.02

双臂电桥最大量程:9999.99Ω

2、测量金属棒电阻率的数据表格

4计算铜的不确定

35.010(cm)

d S -=

=?

42.410(cm)Bd u -=

=? 3

5.010(cm)d u -==? 22.910(cm)l u -=

=? 11310()E u m ρ

ρ-==?Ω?

待测铜棒电阻R x 的电阻率

8(7.4620.003)10()u m ρρρ-=±=±?Ω?

注意

①R x 和R S 的电流和电压接头要保持表面清洁及良好的接触。 ②连接R x 和R S 电流端应选用短而粗的导线。

③由于测量低电阻时通过待测电阻的电流较大,在测量通电时应尽可能短暂。 【实验总结】 通过这次实验,了解了双臂电桥的结构及工作原理,掌握了利用双臂电桥测金属丝电阻率的方法,以及如何减少试验结果的误差。

电阻定律实验报告

探究电阻定律实验报告 一、实验名称:探究电阻定律 二、实验目的:探究导体的电阻和导体的长度、横截面积和材料之间的关系。 导体的电阻是导体本身的一种性质,那么,导体电阻的大小可能与哪些因素有关呢?比如,下列的因素是否对导体的电阻有影响?如果有,关系如何呢? 1.导体的材料;2导体的体积;3导体的长度; 4导体的粗细;5导体的质量;6环境的温度等。 三、实验器材: 电阻定律演示板(材料、长度相同横截面积的不同的铜线;材料、横截面积相同长度不同的铜线;横截面积、长度相同材料不同的铜线和铝线)、滑动变阻器,导线若干,开关,电流表,电压表,直流电源。 四、实验原理:(欧姆定律) 影响导线电阻的因素不是单一的,因此实验采用控制变量法来研究: 1、保持导线的材料和横截面积不变,测量长度比为1:2的两个导线的电阻大小。 2、保持导线的材料和长度不变,测量横截面积比为1:2的两个导线的电阻大小。 3、保持导线的长度和横截面积的不变,测量材料不同的两个导线的电阻大小。 五、画出伏安法测电阻的电路图: 六、实验设计与步骤:

1、按实验原理图连接好电路,在电路的A、B之间接入待研究的铜导线,通电前先使变阻器接入电路的电阻最大。 2、将材料和横截面积都相同、长度之比为1:2的两根铜导线①、②,分别接入电路。闭合开关,调节滑动变阻器,将电流表示数都调节为1A、电压表的读数记录在表1中,利用欧姆定律公式计算出导线电阻。 3、将材料和长度都相同、横截面积之比为1:2的两根导线②、③,分别接入电路,操作同步骤2,将结果填入表2中。 4、将长度和横截面积都相同、材料不同的两根导线③、④分别接入电路中,调节变阻器,使通过导线的电流相同,读出并记录电压表的读数,填入表3中。 5、断开开关,整理好器材。 6、数据处理,分析结果。 七、实验结果与分析 1、保持导线的材料和横截面积不变,探究电阻与导线长度间的定量关系。 表1 接入的导线长度电压U/V 电流I/A 计算 电阻R/Ω ①L01A ②2L 1A 实验结论: 同种材料,S一定,电阻R与L成正比即R ∝L 2、保持导线的材料和长度不变,探究电阻与导线横截面积间的定量关系。

高中物理测定金属的电阻率实验检测题

高中物理测定金属的电阻率实验检测题 1.(2019·天津高考)现测定长金属丝的电阻率。 (1)某次用螺旋测微器测量金属丝直径的结果如图所示,其读数是________mm 。 (2)利用下列器材设计一个电路,尽量准确地测量一段金属丝的电阻。这段金属丝的电阻R x 约为100 Ω,在方框中画出实验电路图,并标明器材代号。 电源E (电动势10 V ,内阻约为10 Ω) 电流表A 1(量程0~250 mA ,内阻R 1=5 Ω) 电流表A 2(量程0~300 mA ,内阻约为5 Ω) 滑动变阻器R (最大阻值10 Ω,额定电流2 A) 开关S 及导线若干 (3)11A 2的读数为I 2,则这段金属丝电阻的计算式R x =________。从设计原理看,其测量值与真实值相比 (填“偏大”“偏小”或“相等”)。 解析:(1)d =20.0×0.01 mm =0.200 mm 。 (2)本题中测量金属丝的电阻,无电压表,故用已知内阻的电流表A 1充当电压表;由于A 1的内阻已知,因此A 2应采用外接法;由于电流表A 1的额定电压U A1=I m R 1=1.25 V ,比电源电动势小得多(或滑动变阻器的总电阻比待测电阻的阻值小得多),故电路采用分压式接法,电路图如图所示。 (3)当电流表A 1、A 2读数分别为I 1、I 2时,通过R x 的电流为I =I 2-I 1,R x 两端电压U =I 1R 1,故R x =U I = I 1R 1 I 2-I 1 ,不考虑读数误差,从设计原理看测量值等于真实值。 答案:(1)0.200(0.196~0.204均可) (2)见解析图 (3) I 1R 1 I 2-I 1 相等 2.(2019·江苏高考)某同学测量一段长度已知的电阻丝的电阻率。实验操作如下: (1)螺旋测微器如图所示。在测量电阻丝直径时,先将电阻丝轻轻地夹在测砧与测微螺杆之间,再旋动________(选填“A ”“B ”或“C ”),直到听见“喀喀”的声音,以保证压力适当,同时防止螺旋测微器的损坏。

实验二:测金属丝的电阻率

实验二:测金属丝的电阻率 实验电路图:电阻的内外接法选取(由于待测电阻较小,一般选外接法) 电阻率的表达式 滑动变阻器可以选择限流法,也可以用分压法 电压表和电流表的选取和读数 螺旋测微器的读数、游标卡尺读数 实物图的连接 根据电压表和电流表读数计算待测电阻,或者根据U-I图像计算斜率求电阻,再计算电阻率或者长度 【典型例题剖析】 考点1:实验原理和仪器选择 ★★[例1]在探究决定导体电阻的因素的实验中,可供选用的器材如下: 待测金属丝:R x(阻值约4 Ω,额定电流约0.5 A); 电压表:V(量程3 V,内阻约3 kΩ); 电流表:A1(量程0.6 A,内阻约0.2 Ω); A2(量程3 A,内阻约0.05 Ω); 电源:E1(电源电压为3 V); E2(电源电压为12 V); 滑动变阻器:R(最大阻值约20 Ω); 螺旋测微器;毫米刻度尺;开关S;导线. (1)用螺旋测微器测量金属丝的直径,示数如图所示,读数为________mm.

(2)若滑动变阻器采用限流式接法,为使测量尽量精确,电流表应选________,电源应选________(均填器材代号),在虚线框中完成电路原理图. 电压表最大量程3V,因此电源得选择3V,电流表得选0.6A 解析(1)螺旋测微器的读数为: 1.5 mm+27.4×0.01 mm=1.774 mm. (2)在用伏安法测电阻的实验中,为使测量尽量精确,电流表、电压表指针需达到半偏以上,又因待测金属丝的额定电流为0.5 A,所以电流表选A1,电源选E1即可.电路原理图如图所示. 答案(1)1.774(1.772~1.776均正确)(2)A1E1见解析图 [1-1]★★★在“探究决定导体电阻的因素”的实验中,用螺旋测微器测量金属丝直径时的刻度位置如图所示,用米尺测出金属丝的长度l,金属丝的电阻大约为5 Ω,先用伏安法测出金属丝的电阻R,然后根据电阻定律计算出该金属材料的电阻率. (1)从图中读出金属丝的直径为________mm. (2)为此取来两节新的干电池、开关和若干导线及下列器材: A.电压表0~3 V,内阻10 kΩ B.电压表0~15 V,内阻50 kΩ C.电流表0~0.6 A,内阻0.05 Ω

高密度电阻率法实验报告

工程物探实验报告 实验一:高密度电阻率法勘探 班级: 姓名: 学号: 贵州理工学院资源与环境工程学院 2016年11月

1 实验目的 了解电阻率法(高密度电阻率法)的方法原理、野外工作布置及装置形式;掌握高密度电阻率法数据的采集、处理和解释,熟练操作高密度电阻率法软件。 2 高密度电阻率法原理 高密度电阻率法属于直流电阻率法的范畴,它是在常规电法勘探基础上发展起来的一种勘探方法,仍然是以岩土体的电性差异为基础,研究在施加电场的作用下,地下传导电流的变化分布规律。相对于传统电法而言,高密度电阻率法其特点是信息量大。利用程控电极转换器,由微机控制选择供电电极和测量电极,实现了高效率的数据采集,可以快速采集到大量原始数据。具有观测精度高、数据采集量大、地质信息丰富、生产效率高等特点。一次布极可以完成纵、横向二维勘探过程,既能反映地下某一深度沿水平方向岩土体的电性变化,同时又能提供地层岩性沿纵向的电性变化情况,具备电剖面法和电测深法两种方法的综合探测能力。 该观测系统包括数据的采集和资料处理两部分,现场测量时,只需将全部电极设置在一定间隔的测点上,测点密度远较常规电阻率法大,一般从1m~10m。然后用多芯电缆将其连接到程控式多路电极转换开关上,电极转换开关是一种由单片机控制的电极自动换接装置,它可以根据需要自动进行电极装置形式、极距及测点的转换。测量信号由电极转换开关送入微机工程电测仪, 并将测量结果依次存入随 机存储器。将数据回放送 入微机,便可按给定程序 对数据进行处理。高密度电 阻率法现场工作时是在 预先选定的测线和测点 上,同时布置几十乃至上 百个电极,然后用多芯电缆

测定金属的电阻率(高三、教案)

实验七测定金属的电阻率(练习使用螺旋测微器) 一、螺旋测微器的构造原理及读数 1.螺旋测微器的构造 如图1所示是常用的螺旋测微器.它的测砧A和固定刻度B固定在尺架C上.旋钮 D、微调旋钮D′和可动刻度 E、测微螺杆F连在一起,通过精密螺纹套在B上. 图1 2.螺旋测微器的原理 测微螺杆F与固定刻度B之间的精密螺纹的螺距为0.5 mm,即旋钮D每旋转一周,F前进或后退0.5 mm,而可动刻度E上的刻度为50等份,每转动一小格,F前进或后退0.01 mm.即螺旋测微器的精确度为0.01 mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺. 3.读数:测量时被测物体长度的整数毫米数由固定刻度读出,小数部分由可动刻度读出.测量值(毫米)=固定刻度数(毫米)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(毫米) 二、游标卡尺 1.构造:主尺、游标尺(主尺和游标尺上各有一个内外测量爪)、游标尺上还有一个深度尺,尺身上还有一个紧固螺钉.(如图2所示) 图2 2.用途:测量厚度、长度、深度、内径、外径. 3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成. 不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其读数见下表:

游标尺 精度 1 n (mm) 测量长度L=N +k 1 n (mm)(游 标尺上第k格 与主尺上的 刻度线对齐时) 总刻度格数n 刻度总长 度(mm) 每小格 与主尺 1格 (1 mm) 相差 1090.10.1 N(主尺上读的整毫米数)+ 1 10 k 20190.050.05 N(主尺上读的整毫米数)+ 1 20 k 50490.020.02 N(主尺上读的整毫米数)+ 1 50 k 三、伏安法测电阻 1.电流表、电压表的应用 电流表内接法电流表外接法电路图 误差原因 电流表分压 U测=U x+U A 电压表分流 I测=I x+I V 电阻测量值R测= U测 I测 =R x+R A>R x 测量值大于真实值 R测= U测 I测 = R x R V R x+R V R V R A时,用电流表内接法.

物理实验报告(测定金属的电阻率)

实验名称:测定金属的电阻率 [实验目的] 1. 练习使用螺旋测微器. 2. 学会用伏安法测量电阻的阻值. 3. 测定金属的电阻率. [实验原理] 由电阻定律lI U d l S R 42πρ==可知,只要测出金属导线的长度l ,横截面积S 和对应导线长度的电压 U 和电流I ,便可以求出制成导线的金属材料的电阻率ρ。长度l 用刻度尺测量.横截面积S 由导线的直径 d 算出,导线的直径d 需要由螺旋测微器(千分尺)来测量,电压U 和电流I 分别用电压表和电流表测出。 [实验器材] 某种金属材料制成的电阻丝,螺旋测微器,毫米刻度尺,电池组,电流表,电压表,滑动变阻器,开关,导线若干. [实验步骤] 1. 用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记在表 格内,求出其平均值d 。 2. 按原理电路图连接好用伏安法测电阻的实验电路。 3. 用刻度尺准确测量接入电路中的金属导线的有效长度l ,结果记入表格内。 4. 用伏安法测金属导线对应长度的电压U 和电流I 。 5. 重复上述实验三次,并将数据记入表格。 6. 拆去实验电路,整理好实验器材. [实验数据记录] [数据处理] 求对应长度的电阻率计算表达式推导:根据金属导线的横截面积22 41)2 (d d S ππ= =和电阻I U R = 得:金属的电阻率m lI U d l S R ?Ω==?=________42πρ [结论]金属的电阻率是__________m ?Ω. [误差分析]

[实验要点] 1.本实验中被测金属导线的电阻较小,因此,实验电路必须采用电流表的外接法. 2.测量导线的直径时,应将导线拉直平放在螺旋测微器的测砧上,使螺旋杆的顶部和测砧上的导线成线 接触,而不是点接触;应在不同的部位,不同的方向测量几次,取平均值. 3.测量导线的长度时,应将导线拉直,测量待测导线接入电路的两个端点之间的长度,亦即电压表两极 并入点间的部分待测导线的长度,长度测量应准确到毫米. 4.用伏安法测电阻时,电流不宜太大,通电时间不宜太长.当我们要测量时才合上开关,测量后即断开开 关. 5.闭合电键S之前,一定要使滑动变阻器的滑片处在有效电阻最大的位置. 6.为准确求出R平均值,可采用I-U图象法求电阻.

《测量金属丝的电阻率》的实验报告

《测量金属丝的电阻率》实验报告 徐闻一中:麦昌壮 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。 二、实验原理 设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由S l ρ R =,得: l R d l RS 42?==πρ。 三、实验器材 已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 四、实验电路 五、实验步骤 1.用螺旋测微器测三次导线的直径d ,取其平均值。

2.按照实验电路连接好电器元件。 3.移动滑动变阻器的滑片,改变电阻值。 4.观察电流表和电压表,记下三组不同的电压U和电流I的值。 5.根据公式计算出电阻率ρ的值。 六、实验数据 d/m U/V I/A R/Ωρ/Ω·m 第一次测量 2.80×10-4 5.00×10-17.8×10-2 6.41 1.97×10-7第二次测量 2.78×10-48.00×10-1 1.18×10-1 6.78 2.06×10-7第三次测量 2.82×10-4 1.00 1.46×10-1 6.84 2.18×10-7 七、实验结果 ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m 八、实验结论 金属丝的电阻率是2.07×10-7Ω·m。

九、【注意事项】 1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法 2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端 3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直. 4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置 5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大. 6.求R的平均值可用两种方法:第一种是用R=U/I算出各次的测量值,再取平均值;第二种是用图像(U-I图线)的斜率来求出.若采用图像法,在描点时,要尽量使各点间的距离拉大一些,连线时要让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑. 十、误差分析 1.测金属丝直径时会出现误差,通过变换不同的位置和角度测量,然后再求平均值方法,达到减小误差的目的; 2.测金属丝长度时出现的误差,一定要注意到测量的是连入电路中的电阻丝的长度; 3.电压表、电流表读数时会出现偶然误差; 4.不论是内接法还是外接法,电压表、电流表内阻对测量结果都会产生影响;本实验中,由于金属丝的电阻不太大,应采用电流表外接法测电阻; 5.电流过大,通电时间过长,会使电阻丝发热导致电阻发生变化,产生误差

《测定金属的电阻率》物理实验报告

罗定邦中学物理实验报告 年月日班级学号姓名 实验标题:实验七测定金属的电阻率 实验目的: 1、 2、 3、 实验器 材: 实验电路图:实验实物图:

实验原理: 1、用_________________________测一段金属丝导线的长度L ,测 _____次。 2、用_________________________测导线的直径d,测_____次。 S=___________。 3、用_________________________法测导线的电阻R。 4、由___________定律:_________________(写公式)得 ρ=__________=______________。 实验步骤: 1. 用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记录在表格内,求出其平均值d,计算出导线的横截面积S. 2. 按原理电路图连接好用伏安法测电阻的实验电路. 3. 用毫米刻度尺测量接入电路中的金属导线的有效长度,反复测量3次,结果记录表格内,求出其平均值l. 4. 用伏安法测金属导线的电阻R。用平均值法或图像法处理获得的电压U、电流I,求电阻R。 5. 将测得的R、l、d,代入电阻率的计算公式ρ=___________中,计算出金属导线的电阻率. 6. 拆去实验电路,整理好实验器材.

实验数据: 表1 表2 数据处理: 金属导线的横截面积 金属的电阻率 误差分析:

1、 _____________________________________________________________________ 2、 _____________________________________________________________________ 3、 ______________________________________________________________________ 实验要点: 1. 本实验中被测金属导线的电阻较小,因此,实验电路必须采用电流表的 _______________法. 2. 测量导线的直径时,应将导线拉直平放在螺旋测微器的测砧上,应在不同的部位,不同的方向测量几次,取平均值. 3. 测量导线的长度时,应将导线拉直,测量待测导线接入电路的两个端点之间的长度,亦即电压表两极并入点间的部分待测导线的长度,长度测量应准确到毫米. 4. 用伏安法测电阻时,电流不宜太大,通电时间不宜太长.当我们要测量时才合上开关,测量后即断开开关. 5. 闭合电键S之前,一定要使滑动变阻器的滑片处在有效电阻最大的位置. 6. 为准确求出R平均值,可采用U-I(或I-U)图象法求电阻.

测定金属的电阻率练习及答案

实验(7) 测定金属的电阻率 知识梳理 一、实验目的 (1)学会用伏安法测电阻,测定金属丝的电阻率. (2)练习使用螺旋测微器,会使用常用的电学仪器. 二、实验器材 被测金属丝、米尺、螺旋测微器、电压表、电流表、直流电源、电键、滑动变阻器、导线等. 三、实验原理 欧姆定律和电阻定律,用毫米刻度尺测一段金属丝的长度l ,用螺旋测微器测导线的直 径d ,用伏安法测导线的电阻R ,由S l R ρ=,所以金属丝的电阻率.4π2 R l d =ρ 四、实验步骤 (1)用螺旋测微器在被测金属导线上的三个不同位置各测一次直径,求出其平均值d . (2)依照电路图(图7-3-1)用导线将器材连好,将滑动变阻器的阻值调至最大. 图7-3-1 (3)用毫米刻度尺测量接入电路中的被测金属导线的长度,即有效长度,反复测量3次,求出其平均值l . (4)电路经检查确认无误后,闭合电键S ,改变滑动变阻器滑动片的位置,读出几组相应的电流值和电压值,记入记录表格内;断开电键S ,求出导线电阻R 的平均值. (5)将测得的R 、l 、d 值代入电阻率计算公式l R d l RS 42πρ==,计算出金属导线的电阻率. (6)拆去实验线路,整理好实验器材. 五、注意事项 1.本实验中被测金属导线的电阻值较小,因此实验电路必须用电流表外接法. 2.实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待测金属导线的两端. 3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两端点间的部分待测导线长度,测量时应将导线拉直. 4.测金属丝直径一定要选三个不同部位进行测量. 5.闭合开关S 之前,一定要使滑动变阻器的滑片处在有效电阻值最大的位置. 6.在用伏安法测电阻时,通过待测导线的电流I 不宜过大(电流表用0~0.6 A 量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大. 7.求R 的平均值可用两种方法:第一种是用R =U /I 算出各次的测量值,再取平均值;第二种方法是用图象法(U-I 图线)来求出.若采用图象法,在描点时,要尽量使各点间的距离拉大一些,连线时要尽可能地让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑.

高三电学实验复习—测金属丝的电阻率(复习题库)含答案

实验:测金属丝的电阻率(复习题库) 1、现有一合金制成的圆柱体,为测量该合金的电阻率,现用伏安法测量圆柱体两端之间的电阻,用螺旋测微器和游标卡尺的示数如图(a)和图(b)所示。 (1)由上图读得圆柱体的直径为_________mm,长度为__________cm。 (2)若流经圆柱体的电流为I,圆柱体两端之间的电压为U,圆柱体的直径和长度分别用D、L表示,则用D、L、I、U表示的电阻率的关系式为ρ=____________。 【答案】1.844 4.240 2 4 D U IL π 2、在某学习小组的实验活动中,要测量一个圆柱形金属材料的电阻率。 (1)用螺旋测微器测量金属材料的直径D,用游标卡尺测量金属材料的长度L,刻度位置如图甲所示,则L 为cm。 (2)选择合适的器材按照图乙所示的电路图连接电路,调节滑动变阻器到合适位置,记下电压表读数U、电流表读数I,计算出材料的电阻,根据电阻定律求出材料电阻率。则该材料电阻率ρ为。(用 D、L、U、I表示) (3)实际上使用的电压表和电流表有一定的内阻,测量的电阻率结果比真实的值(填“偏大”、“偏小”或“相同” ) 【答案】5.675 2 4 D U IL π 偏小 3、(1)在“测定金属的电阻率”的实验中,由于金属丝直径很小,不能使用普通刻度尺,应使用螺旋测微器.螺旋测微器的精确度为_________mm,用螺旋测微器测量某金属丝直径时的刻度位置如图所示,从图中读出金属丝的直径为_________mm。

(2)如果测出金属丝接入电路的长度l、直径d和金属丝接入电路时的电流I和其两端的电压U,就可求出金属丝的电阻率.用以上实验中直接测出的物理量来表示电阻率,其表达式为ρ=___________。 (3)在此实验中,金属丝的电阻大约为4Ω,在用伏安法测定金属丝的电阻时,除被测电阻丝外,选用了如下实验器材: A.直流电源:电动势约4.5 V,内阻不计; B.电流表A:量程0~0.6 A,内阻约0.125Ω; C.电压表V:量程0~3 V,内阻约3 kΩ; D.滑动变阻器R:最大阻值10Ω; E.开关、导线等。 在以下可供选择的实验电路中,应该选图____(填“甲”或“乙”),选择的接法为____接法(填“内”或“外”),此接法测得的电阻值将___________(填“大于”、“小于”或“等于”)被测电阻的实际阻值。 (4)根据所选实验电路图,在实物图中完成其余的连线___________.在闭合开关S前,滑动变阻器的滑片应置在_________(填“最左”或“最右”)端. (5)根据所选量程,某次实验两电表的示数如图,则读数分别为_________V和_________A。 (6)若某次实验测得接入电路金属丝的长度为0.810m,算出金属丝的横截面积为0.81×10-6m2,根据伏安法测出电阻丝的电阻为4.1Ω,则这种金属材料的电阻率为__________(保留二位有效数字)。

测量金属丝的电阻率的实验报告

测量金属丝的电阻率的 实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

《测量金属丝的电阻率》实验报告 徐闻一中:麦昌壮 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。 二、实验原理 设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由S l ρR =,得: l R d l RS 42?==πρ。 三、实验器材 已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 四、实验电路 五、实验步骤 1.用螺旋测微器测三次导线的直径d ,取其平均值。 2.按照实验电路连接好电器元件。 3.移动滑动变阻器的滑片,改变电阻值。 4.观察电流表和电压表,记下三组不同的电压U 和电流I 的值。 5.根据公式计算出电阻率ρ的值。 六、实验数据

七、实验结果 ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m 八、实验结论 金属丝的电阻率是2.07×10-7Ω·m。 九、【注意事项】 1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法 2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端 3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直. 4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置 5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大.

双臂电桥测低电阻-实验报告

双臂电桥测低电阻实验报告 实验题目 双臂电桥测低电阻 实验目的 熟悉双臂电桥的原理、特点和接线方法。 掌握测量低电阻的特殊性和采用四端接法的必要性。 了解金属电阻率测量方法的要点。 实验原理 为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx 以四端接法方式连接,等效电路如图 4 。此时毫伏表上测得电眼为Rx 的电压降,由Rx = V/I 即可准测计算出Rx 。接于电流测量回路 中成为电流头的两端(A 、D),与接于电压测量回路中称电压接头的两端(B 、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。 根据这个结论,就发展成双臂电桥,线路图和等效电路图5和图6所示。 标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx 的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx 电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R 1、R 2、R 3、R 相串连,故其影响可忽略。 由图5和图6,当电桥平衡时,通过检流计G 的电流I G = 0, C 和D 两点电位相等,根据基尔霍夫定律,可得方程组(1) ()() ? ?? ??+=-+=+=232123223123113R R I R I I R I R I I I R I R I n R R X (1) 解方程组得 ???? ??-+++= R R R R R R R RR R R R R X 3121231 11 (2) 通过联动转换开关,同时调节R 1、R 2、R 3、R ,使得R R R R 3 1 2= 成立,则(2)式

测量金属丝的电阻率实验报告单

"测量金属丝的电阻率"实验报告单 班级________________姓名________________实验时间______________ 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的使用方法和螺旋测微器的正确读数。 二、实验器材 长度为cm的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 三、实验电路图 四、实验步骤 1.用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记 录在表格内,求出其平均值d. 2.按原理电路图连接好用伏安法测电阻的实验电路. 3.用毫米刻度尺测量接入电路中的金属导线的有效长度,反复测量3次,结果记录表格内,求出其 平均值l. 4.用伏安法测金属导线的电阻R。用平均值法或图像法处理获得的电压U、电流I,求电阻R。 5.将测得的电压U、电流I、有效长度l、直径d,代入电阻定律公式中,推导出金属导线的电阻率 ρ= 6.拆去实验电路,整理好实验器材. "测量金属丝的电阻率"数据记录表

1. 在“测定金属丝的电阻率”的实验中,待测电阻丝阻值约为4Ω。 (1)用螺旋测微器测量电阻丝的直径d 。其中一次测量结果如右 图所示,图中读数为d =mm 。 (2)为了测量电阻丝的电阻R ,除了导线和开关外, 还有以下一些器材可供选择: 电压表V ,量程3V ,内阻约3k Ω 电流表A 1,量程0.6A ,内阻约0.2Ω 电流表A 2,量程100μA ,内阻约2000Ω 滑动变阻器R 1,0~1750Ω,额定电流0.3A 滑动变阻器R 2,0~50Ω,额定电流1A 电源E 1(电动势为1.5 V ,内阻约为0.5Ω) 电源E 2(电动势为3V ,内阻约为1.2Ω) 为了调节方便,测量准确,实验中应选用 电流表________,滑动变阻器_________, 电源___________。(填器材的符号) (3)请在右边的方框图中画出测量电阻丝的电阻应采 用的电路图,并在图中标明所选器材的符号。 (4)请根据电路图,在右图所给的实物图中画出连线。 (5)用测量量表示计算材料电阻率的公式 是ρ =(已用刻度尺测量出接入电路中的金属导线的有效长度为l )。 补充练习1: 补充练习2: ⑴_________mm ⑵ _________mm (3) _________mm (4) _________mm 35 40 45 30 25 S V + - + - A

实验测定金属的电阻率

实验八 测定金属的电阻率 1.实验原理(如图1所示) 由R =ρl S 得ρ=RS l ,因此,只要测出金属丝的长度l 、横截面积S 和金属丝的电阻R ,即可求 出金属丝的电阻率ρ. 图1 2.实验器材 被测金属丝,直流电源(4 V),电流表(0~0.6 A),电压表(0~3 V),滑动变阻器(0~50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺. 3.实验步骤 (1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d . (2)连接好用伏安法测电阻的实验电路. (3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l . (4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置. (5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内. (6)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 2 4 中,计算出金属丝的电阻率. 1.数据处理 (1)在求R x 的平均值时可用两种方法 ①用R x =U I 分别算出各次的数值,再取平均值.

②用U -I 图线的斜率求出. (2)计算电阻率 将记录的数据R x 、l 、d 的值代入电阻率计算公式ρ=R x S l =πd 2U 4lI . 2.误差分析 (1)金属丝的横截面积是利用直径计算而得,直径的测量是产生误差的主要来源之一. (2)采用伏安法测量金属丝的电阻时,由于采用的是电流表外接法,测量值小于真实值,使电阻率的测量值偏小. (3)金属丝的长度测量、电流表和电压表的读数等会带来偶然误差. (4)由于金属丝通电后发热升温,会使金属丝的电阻率变大,造成测量误差. 3.注意事项 (1)本实验中被测金属丝的电阻值较小,因此实验电路一般采用电流表外接法. (2)实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、被测金属丝、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在被测金属丝的两端. (3)测量被测金属丝的有效长度,是指测量被测金属丝接入电路的两个端点之间的长度,亦即电压表两端点间的被测金属丝长度,测量时应将金属丝拉直,反复测量三次,求其平均值. (4)测金属丝直径一定要选三个不同部位进行测量,求其平均值. (5)闭合开关S 之前,一定要使滑动变阻器的滑片处在有效电阻值最大的位置. (6)在用伏安法测电阻时,通过被测金属丝的电流强度I 不宜过大(电流表用0~0.6 A 量程),通电时间不宜过长,以免金属丝的温度明显升高,造成其电阻率在实验过程中逐渐增大. (7)若采用图象法求R 的平均值,在描点时,要尽量使各点间的距离拉大一些,连线时要尽可能地让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑. 命题点一 教材原型实验 例1 在“测定金属的电阻率”实验中,所用测量仪器均已校准.待测金属丝接入电路部分的长度约为50 cm. (1)用螺旋测微器测量金属丝的直径,其中某一次测量结果如图2所示,其读数应为 mm(该值接近多次测量的平均值). 图2

直流平衡电桥测电阻 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 12 月 10 日,第16周,星期 三 第 5-6 节 实验名称 直流平衡电桥测电阻 教师评语 实验目的与要求: 1) 掌握用单臂电桥测电阻的原理, 学会测量方法。 2) 掌握用双臂电桥测电阻的原理, 学会测量方法。 主要仪器设备: 1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制惠更斯通电桥接线板,检流计,阻尼开关、四位 标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源; 2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。 实验原理和内容: 1 直流单臂电桥(惠斯通电桥) 1.1 电桥原理 单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s x R M R R R R ?== 2 1 成立, 其中M=R1/R2称为倍率, Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。 1.2 关于附加电阻的问题: 附加电阻指附加在带测电阻两端的导线电阻与接触

电阻, 如上图中的r1, r2, 认为它们与Rx 串联。如果R x 远大于r ,则r 1+r 2可以忽略不计,但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。 2 双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理 双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。 2.2 双臂电桥的平衡条件 双臂电桥的电路如右图所示。 在电桥达到平衡时,有1234\\R R R R =,由基尔霍夫第二定律及欧姆定律可得并推导得: 31123 314131224234243132342433 112424()0 x S x x x x x x I R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R R R R R ?=-? ??? ?=-?=+-? ??++?????= ==?=++??? ?=?-=?? 可见测量式与单臂电桥是相同的, R1/R2=R3/R4=M 称为倍率(此等式即消去了r 的影响), Rs 为比较臂, Rx 为测量臂。 使用该式, 即可测量低值电阻。 步骤与操作方法: 1. 自组惠斯通电桥测量中值电阻 a) 按照电路图连接电路, 并且根据待测电阻的大小来选择合适的M 。 b) 接通电路开关, 接通检流计开关; 调节电阻箱Rs 的阻值(注意先大后小原则), 使检流 计指零, 记下电阻箱的阻值Rs c) 重复以上步骤测量另外两个待测电阻值。 2. 使用成品单臂电桥测量中值电阻

单双臂电桥测电阻实验报告

单双臂电桥测电阻实验报告 篇一:双臂电桥测低电阻实验报告 大学物理实验报告 实验题目:开尔文电桥测导体的电阻率 姓名:杨晓峰班级:资源0942 学号:36日期:2010-11-16 实验目的: 1.了解双臂电桥测量低电阻的原理和方法。2.测量导体电阻率。 3.了解单、双臂电桥的关系和区别。 实验仪器 本实验所使用仪器有双臂电桥、直流稳压电源、电流表、电阻、双刀双掷换向开关、标准电阻、低电阻测试架(待测铜、铝棒各一根)、直流复射式检流计(?C15/4或6型)、千分尺(螺旋测微器)、米尺、导线等。 实验原理:

双臂电桥工作原路:工作原理电路如图1所示,图中Rx是被测电阻,Rn 是比较用的可调 电阻。Rx和Rn各有两对端钮,C1和C2、Cn1和On2是它们的电流端钮,P1和P2、Pn1和Pn2是它们的电位端钮。接线时必须使被测电阻Rx只在电位端钮P1和P2之间,而电流端钮在电位端钮的外侧,否则就不能排除和减少接线电阻与接触电阻对测量结果的影响。比较用可调电阻的电流端钮Cn2与被测电阻的电流端钮C2用电阻为r的粗导线连接起来。R1、R1’、R2和R2’是桥臂电阻,其阻值均在lOΩ以上。在结构上把R1和R’1以及R2和R2’做成同轴调节电阻,以便改变R1或R2’的同时,R1’和R2’也会随之变化,并能始终保持测量时接上RX调节各桥臂电阻使电桥平衡。此时,因为Ig=0,可得到被测电阻Rx为 1、为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图方

式,将低电阻Rx 以四端接法方式连接 2—4—1 图1 直流双臂电桥工作原理电路 可见,被测电阻Rx仅决定于桥臂电阻Rz和R1的比值及比较用可调电阻Rn 而与粗导线电阻r无关。比值R2/R1称为直流双臂电桥的倍率。所以电桥平衡时 被测电阻值=倍率读数×比较用可调电阻读数 因此,为了保证测量的准确性,连接Rx和Rn电流端钮的导线应尽量选用导电性能良好且短而粗的导线。 只要能保证,R1、R1’、R2和R2’均大于1OΩ,r又很小,且接线正确,直流双臂电桥就可较好地消除或减小接线电阻与接触电阻的影响。因此,用直流双臂电桥测量小电阻时,能得到较准确的测量结果。 由图?和图?,当电桥平衡时,通过检流计G的电流IG = 0, C和D两点电位

实验报告电桥测电阻实验报告

实验题目: 惠斯通电桥测电阻 实验目的: 1.了解电桥测电阻的原理和特点。 2.学会用自组电桥和箱式电桥测电阻的方法。 3.测出若干个未知电阻的阻值。 实验仪器 仪器名称 直流电源 滑线变阻器 1 滑线变阻器 2 检流计 型号 DH1718C J2354 J2354 AC5 规格 0-30V 5A 100Ω 2A 100Ω 2A 0.5kv 电阻箱的型号、规格及各档的等级 电阻箱 型号 规格 ×10000 ×1000 × 100 ×10 ×1 ×0.1 ×0.01 R 2 ZX21a 111111Ω 0.1 0.1 0.2 0.5 2.0 5.0 无 R 3 ZX21a 111111Ω 0.1 0.1 0.2 0.5 2.0 5.0 无 R 4 ZX21a 111111Ω 0.1 0.1 0.2 0.5 2.0 5.0 无 实验原理: 1.桥式电路的基本结构。 电桥的构成包括四个桥臂(比例臂 R 2 和 R 3,比较臂 R 4,待测臂 R x ),“桥”——平衡 指示器(检流计) G 和工作电源 E 。在自组电桥线路中还联接有电桥灵敏度调节器 R G (滑 线变阻器)。 2.电桥平衡的条件。 惠斯通电桥 (如图 1 所示 )由四个“桥臂”电阻( R 2、 R 3、R 4、和 R x )、一个“桥” (b 、 d 间所接的灵敏电流计)和一个电源 E 组成。 b 、d 间接有灵敏电流计 G 。当 b 、 d 两点电位相等时,灵敏电流计 G 中无电流流过,指针不偏转,此时电桥平衡。所以,电桥平衡的条件是: b 、 d 两点电位相等。此时有 U ab =U ad ,U bc =U dc , 0 ,所以 b 、 d 间相当于断路,故有 R x R 2 由于平衡时 I g B I 4=I 3 I x =I 2 R G 所以 I x R x I 4R 4 I 3R 3 I 2R 2 A C 可得 R 4 R 2 R 3 R x 或 R x R 2 R 4 R 3 R 4 DR 3 一般把 R 2 K 称为“倍率”或“比率” ,于是 R 3 R =KR x4 E R E 要使电桥平衡,一般固定比率 K ,调节 R 4 使电桥达到 图 1 平衡。 3.自组电桥不等臂误差的消除。 实验中自组电桥的比例臂 ( R 2 和 R 3)电阻并非标准电阻, 存在较大误差。 当取 K=1 时, 实际上 R 2 与 R 3 不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换 测量法进行。先按原线路进行测量得到一个 R 4 值,然后将 R 2 与 R 3 的位置互相交换(也可 ’ 将 R x 与 R 4 的位置交换),按同样方法再测一次得到一个 R 4 值,两次测量, 电桥平衡后分别 有:

实验报告(双臂电桥测低电阻)

实验报告(双臂电桥测低电阻) 姓名:齐翔 学号:PB05000815 班级:少年班 实验台号:2(15组2号) 实验目的 1.学习掌握双臂电桥的工作原理、特点及使用方法。 2.掌握测量低电阻的特殊性和采用四端接法的必要性。 3.学习利用双臂电桥测低电阻,并以此计算金属材料的电阻率。 实验原理 测量低电阻(小于1Ω),关键是消除接触电阻和导线电阻对测量的影响。利用四端接法可以很好地做到这一点。 根据四端接法的原理,可以发展成双臂电桥,线路图和等效电路如图所示。 标准电阻Rn电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为

R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx 电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R 1、R 2、R 3、R 相串连,故其影响可忽略。 由图 5 和图 6 ,当电桥平衡时,通过检流计G 的电流I G = 0, C 和D 两点电位相等,根据基尔霍夫定律,可得方程组(1) ()() ? ?? ??+=-+=+=2321232 23123113 R R I R I I R I R I I I R I R I n R R X (1) 解方程组得

??? ? ??-+++= R R R R R R R RR R R R R X 3121231 11 (2) 通过联动转换开关,同时调节R 1、R 2、R 3、R ,使得 R R R R 3 12= 成立,则(2)式中第二项为零,待测电阻R x 和标准电阻R n 的接触电阻R in1、R ix2均包括在低电阻导线R i 内,则有 1 Rx n R R R = (3) 但即使用了联动转换开关,也很难完全做到R R R R //312=。为了减小(2)式中第二项的影响,应使用尽量粗的导线,以减小电阻R i 的阻值(R i <0.001Ω),使(2)式第二项尽量小,与第一项比较可以忽略,以满足(3)式。 参考: 铜棒:1.694×10-8Ω·m 铝棒:2.7×10-8Ω·m 所用到的器材: 直流复射式检流计、0.02级QJ36型双臂两用电桥、059-A 型电流表、电源、单刀双掷开关,导线若干 实验数据处理:

相关文档
最新文档