不等式与不等式组 单元测试2

合集下载

人教版数学七年级下册第九章 不等式与不等式组 试题及答案2

人教版数学七年级下册第九章 不等式与不等式组 试题及答案2

人教版数学七年级下册第九章 不等式与不等式组 试题及答案一、选择题:1、若y -x>y ,x -y<x +y ,那么,下列式子中正确的是 ( ) A.y -x<0 B.xy<0 C.x +y>0 D. 2.用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-2 3.下列说法正确的是( )A.x =1是不等式-2x <1的解集B.x =3是不等式-x <1的解集C.x >-2是不等式-2x <4的解集D.不等式-x <1的解集是x <-1 4.不等式x -3>1的解集是( )A.x >2B. x >4C.x -2>D. x >-4 5.下列4种说法:① x =45是不等式4x -5>0的解;② x =25是不等式4x -5>0的一个解;③ x >45是不等式4x -5>0的解集;④ x >2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个6.若(1)1a x a -<-的解集为x >1,那么a 的取值范围是( ) A 、a >0 B 、a <0 C 、a <1 D 、a >1 7、如图1,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围,在数轴上可表示为( )8、如果不等式组 有解,那么m 的取值范围是( )(A)m>3 (B) m ≥3 (C) m<3 (D)m ≤3y0x>A图1Ax +1>0x -1≤01 2 0 1 2 0 (A) (B) 1 2 01 0 (C) (D)9.把不等式组⎪⎩⎪⎨⎧<+-<22332x x -的解集在数轴上表示出来,正确的是( )10.不等式x-1≦2的非负整数解有( )A .1个B .2个C .3个D .4个11.关于x 的不等式2x+a<1只有2个正整数解,则a 的取值范围为( ) A .53a -<<- B .-5≦a<-3 C .-5<a ≦-3 D .-5<a<-312.已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( ) A .a+c >b+dB .a ﹣c >b ﹣dC .ac >bdD .13.若m >n ,下列不等式不一定成立的是( ) A .m+3>n+3B .﹣3m <﹣3nC .D .m 2>n 214、若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是A .3<m <4B .3≤m <4C .3<m ≤4D .3≤m ≤4 15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里16、有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( ) A 、x=1,y=3 B 、x=3,y=2 C 、x=4,y=1 D 、x=2,y=3二、填空题:1、不等式的解集是_______,其中整数解是________.2.不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 3.不等式x ≤313的正整数解是____ 4、若关于x 的方程2x 2+x ﹣a=0有两个不相等的实数根,则实数a 的取值范围是________.31047x x ->⎧⎨<⎩6.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .7. 关于的分式方程的解为正实数,则实数的取值范围是 . 8.已知不等式组的解集为x >﹣1,则k 的取值范围是 .9.已知不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-,则k 的取值范围是 .10.不等式组⎩⎨⎧>->-02532x x 的解集是 .11.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打 折.三、解下列不等式组:1. 2.3.(1)解不等式组:(2)解方程:x 2322x m mx x++=--m ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325⎩⎨⎧<>-621113x x 11x-2(+2)22x 3①x ②+>≤⎧⎪⎨⎪⎩532x-12x =+4.解不等式4113x x -->,并在数轴上表示解集.5.解不等式组,并求此不等式组的整数解.6.解不等式组x 3(2)421512x x x ⎧--≥⎪⎨-+<⎪⎩,并把解集在数轴上表示出来.四、解答题:1.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .2.将23本书分给若干名学生,如果每人4本,那么有剩余;如果每人5本,却又不够.问共有多少名学生?3.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产. (1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m 的值.4. 某种为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金元;若购买甲种书柜4个,乙种书柜3个,共需资金元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金元,请设计几种购买方案供这个学校选择.5.由多项式乘法:,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:示例:分解因式:(1)尝试:分解因式:______); (2)应用:请用上述方法....解方程:.102014402043206.小明在解不等式的过程中出现了错误,解答过程如下:解不等式:解:去分母,得2(x+4)﹣3(3x﹣1)≥1(第一步)去括号,得2x+8﹣9x﹣3≥1,(第二步)移项,得2x﹣9x≥1+8﹣3,(第三步)合并同类项,得﹣7x≥6.(第四步)两边都除以﹣7,得.(第五步)(1)小明的解答过程是从第步开始出现错误的.(2)请写出此题正确的解答过程.(3)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.7.为落实“绿水青山就是金山银山”的发展理念,某工程队负责在山脚下修建一座水库的土方施工任务队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米,每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元(1)每台A型、B型挖掘机一小时分别挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,该工程队施工的最低费用是多少元?8.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s,人离开的速度为4 m/s,那么导火线的长度应为多少㎝?参考答案一、选择题:1-5 BACBB6-10 CACCD11-15 CADCC16 B二、填空题:1、 4731<<x ; 0,12.3. 1,2,3 4、a >﹣5. m <6且m ≠2.6. 50(1﹣x )2=32 7. m<6且m ≠2. 8. k ≤﹣2. 9. 2-≤k 10. x>4 11. 8三、解下列不等式组:1. 425≤<x2.无解3. 解:(1)解①得:x >﹣1, 解②得:x ≤6,故不等式组的解集为:﹣1<x ≤6;(2)由题意可得:5(x+2)=3(2x ﹣1), 解得:x=13, 检验:当x=13时,(x+2)≠0,2x ﹣1≠0, 故x=13是原方程的解. 4. 解:4x-1-3x>3 4x-3x>3+1 4x >,将不等式的解集表示在数轴上如下:5. 解:⎪⎪⎩⎪⎪⎨⎧+<-->②1)37(2①21x x x x由①得:x>31由②得:x <4,不等式组的解集为:<31x <4. 则该不等式组的整数解为:1、2、3. 6. 解:由①得:﹣2x ≥﹣2,即x ≤1, 由②得:4x ﹣2<5x+5,即x >﹣7, 所以﹣7<x ≤1. 在数轴上表示为:四、解答题:1. 解: (1)x ≥1; (2)x ≤3;(3);(4)1≤x ≤3.2. 解:设共有x 名学生。

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.53.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5 4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b25.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>806.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2 8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于29.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.12.不等式4x≤12的自然数解是:.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是,无解的是.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为;最小值为.15.不等式﹣3≤5﹣2x<3的正整数解是.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子袋.三、解答题17.解不等式组:18.解不等式组,并把解集在数轴上表示出来.19.如果方程组的解满足x>0,y>0,求m的取值范围.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都减去2,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>n的两边都乘以4,不等号的方向不变,原变形正确,故本选项不符合题意;C.不等式m>n的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:C.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.5【分析】依据不等式的定义求解即可.【解答】解:①﹣3<0是不等式,②3x+5>0是不等式,③x2﹣6不是不等式,④x=﹣2不是不等式,⑤y≠0是不等式,⑥x+2≥x是不等式.故选:C.【点评】本题主要考查的是不等式的定义,掌握不等式的定义是解题的关键.3.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:由﹣x≤1得:x≥﹣1由x﹣2<3得:x<5∴不等式组的解集为5>x≥﹣1.故选:C.【点评】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点评】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>80【分析】首先设答对x道题,则答错了或不答的有(20﹣x)道,根据题意可得:答对题的得分﹣答错了或不答扣的分数≥80,列出不等式.【解答】解:设答对x道题,根据题意可得:10x﹣5(20﹣x)≥80,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,200×80+(x﹣80)×150>27000解得,x>153∴这批手表至少有154块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到即可确定m的取值范围.【解答】解:∵关于x的不等式组有解,∴m<2,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于2【分析】a、b是互不相等的任意正数,不妨设a>b>0,根据a2+b2≥2ab,即可作出判断.【解答】解:a、b是互不相等的任意正数,不妨设a>b>0,x=≥=2×,y=≥=2×,∵a>b>0,∴0<<1,>1∴y一定大于2,而x不确定.故至少有一个大于2.故选:A.【点评】本题考查不等式的性质,正确利用不等式的性质a2+b2≥2ab是关键.9.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识,及关于x轴对称的点的坐标的特点,根据题意得出点M对称点的坐标是解答本题的关键.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:A.∵a>b,∴a﹣4>b﹣4,原变形正确,故此选项不符合题意;B.∵a>b,∴﹣2a<﹣2b,原变形正确,故此选项不符合题意;C.∵a>b,∴﹣1+a>﹣1+b,原变形不正确,故此选项符合题意;D.∵a>b,∴,原变形正确,故此选项不符合题意.故选:C.【点评】本题考查的是不等式的性质.解题的关键是掌握不等式的性质,即:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.12.不等式4x≤12的自然数解是:0,1,2,3.【分析】首先解不等式,然后确定不等式的自然数解即可.【解答】解:系数化成1得:x≤3.则自然数解是0,1,2,3,故答案为:0,1,2,3.【点评】本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是|2x ﹣1|+1>0,无解的是x2+1≤0.【分析】分别求出不等式的解集,判断即可.【解答】解:不等式2x>﹣3x,解得:x>0;x2+1≤0,即x2≤﹣1,无解;|2x﹣1|+1>0,即|2x﹣1|>﹣1,解得:x为一切实数;x2﹣2x+1>0,即(x﹣1)2>0,解得:x≠1,则解集是一切实数的是|2x﹣1|+1>0,无解的是x2+1≤0.故答案为:|2x﹣1|+1>0,x2+1≤0.【点评】此题考查了解一元一次不等式,以及绝对值,熟练掌握不等式的解法是解本题的关键.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为3;最小值为.【分析】由a+b+c=6,2a﹣b+c=3关系式可以用a来表示b和c,再根据0≤c≤b列出不等式组,可以求得a的取值范围,最后根据a的取值范围来确定a的最大最小值.【解答】解:∵由已知条件得,解得,∵0≤c≤b,∴,解答,故a的最大值为3,最小值为.故答案为:3;.【点评】本题考查了解一元一次不等式组,解答本题的关键是分别用a来表示b和c,根据b≥c≥0,就可以得到关于a的不等式组.本题利用了消元的基本思想,消元的方法可以采用加减消元法或代入消元法.15.不等式﹣3≤5﹣2x<3的正整数解是2,3,4.【分析】先将不等式化成不等式组,再求出不等式组的解集,进而求出其整数解.【解答】解:原式可化为:,解得,即1<x≤4,所以不等式的正整数解为2,3,4.【点评】此题要明确,不等式﹣3≤5﹣2x<3要转化成不等式组的形式解答,否则将无从下手.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子6袋.【分析】根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款,设可以购买x袋蜜枣粽子,根据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)袋蜜枣粽子.2×10+(x﹣2)×10×0.7≤50,解得:x≤6,则她最多能买蜜枣粽子是6袋.故答案为:6.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.三、解答题17.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.解不等式组,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如果方程组的解满足x>0,y>0,求m的取值范围.【分析】先解方程组得出,根据x>0,y>0得出,求出每个不等式的解集即可得出答案.【解答】解:解方程组得,∵x>0,y>0,∴,解不等式①,得:m>1,解不等式②,得:m<或m>1,∴m的取值范围是m>1.【点评】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据已知条件列出关于m的不等式组,并熟练解不等式组.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.【分析】根据10个不等式,当10个式子都取等号时,10个式子累加后才成立,进而计算可得结论.【解答】解:a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10=a1+(a3﹣a2)+(a5﹣a4)+(a7﹣a6)+(a9﹣a8)﹣a10,∵0≤a3≤2a2,∴a3﹣a2≤a2,同理:a5﹣a4≤a4,a7﹣a6≤a6,a9﹣a8≤a8,∴原式≤a1+a2+a4+a6+a8﹣a10≤a1+a2+a4+a6+a8,∵a2≤2a1,a4≤23a1,a6≤25a1,a8≤27a1,a9≤28a1,∴原式≤(1+2+23+25+27)a1=171,最大值为171,此时a9=28=256.【点评】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找规律.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?【分析】假设宿舍共有x间,则住宿生人数是5x+19人,若每间住8人,则有一间不空也不满,说明住宿生若住满(x﹣1)间,还剩的人数大于或等于1人且小于8人,所以可列式1≤5x+19﹣8(x﹣1)<8,解出x的范围讨论.【解答】解:设有宿舍x间.住宿生人数5x+19人.由题意得,1≤5x+19﹣8(x﹣1)<8,即1≤﹣3x+27<8,解得:6<x≤8.因为宿舍间数只能是整数,所以宿舍是7间或8间,当宿舍是7间时,住宿人数为5×7+19=54;当宿舍是8间时,住宿人数为5×8+19=59.答:住宿人数是54或59人.【点评】本题考查一元一次不等式的应用,对题目逐字分析,找出隐含(数学中的客观事实,但在题目中不存在)或题目中存在的条件.列出不等式关系,求解.22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.【分析】(1)3<x﹣2<5,转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x+5<﹣,即可得到结论.【解答】解:(1)3<x﹣2<5,转化为不等式组;(2)2≥﹣2x+3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x>﹣8,同时除以﹣2,得≤x<4;(3)﹣3≤x<,不等式的左、中、右同时乘以3,得﹣9≤3x<﹣,同时加5,得﹣4≤3x+5<﹣,∴3x+5的整数值﹣4或﹣3.【点评】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.。

不等式与不等式组练习题(2)及参考答案

不等式与不等式组练习题(2)及参考答案

不等式与不等式组练习题(2)1.已知5-4a 与1-2a 的值的符号相同,求a 的取值范围2.若不等式3x -m≤0的正整数解是1,2,3,求m 的取值范围3.若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,求a 的取值范围4.关于x 的方程kx-1=2x 的解为正实数,求k 的取值范围5.已知不等式组2123x a x b -<⎧⎨->⎩,的解集为-1<x <1,则(a+1)(b-1)的值等于多少?6.已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,求代数式a 2-a1的值7.如果不等式4x -3a>-1与不等式2(x -1)+3>5的解集相同,请确定a 的值8.不等式a (x -1)>x+1-2a 的解集是x<-1,请确定a 是怎样的值9.若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围10.已知不等式组3xx a>-⎧⎨<⎩,⑴若此不等式组无解,求a的取值范围,并利用数轴说明;⑵若此不等式组有解,求a的取值范围,并利用数轴说明11.已知3(5x+2)+5<4x-6(x+1),化简|3x+1|-|1-3x|12.求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值13.若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围14.已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x>y?15.已知y=2-2x ,试求(1)当x为何值时,y>0;(2)当y为何值时,x≤-116.在平面直角坐标系中,若点P(x-2, x+5)在第二象限且x为整数,求点P的坐标不等式与不等式组练习题(2)参考答案1.解:由5﹣4a与1﹣2a的值的符号相同可知:(1),解得:a<,a<,∴a<;(2),解得:a>,a >∴a >;∴5﹣4a 与1﹣2a 的值的符号相同,a 的取值范围为:a <或a >.2.解:不等式3x-m ≤0的解集是x ≤3m ,∵正整数解是1,2,3,∴m 的取值范围是3≤3m<4,即19≤m<12,3.解不等式x-2a>0得:x>2a ,解不等式2(x+1)>14-x 得:x>4,因为不等式组的解集是x>2a ,所以2a ≥4,a ≥2,即a 的取值范围是a ≥2.4.解:kx-1=2x(k-2)x=1,解得,x=2-k 1,x 的方程kx-1=2x 的解为正实数, 2-k 1>0,解得,k>2.5.解:∵解不等式2x ﹣a <a 得:x <a ,解不等式x ﹣2b >3得:x >2b+3,∴不等式组的解集是2b+3<x <a ,∵不等式组的解集为﹣1<x <1,∴2b+3=﹣1,a =1,∴b =﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6,6.解:不等式5-3x ≤1x ≥5,x ≥34,x 的最小正整数是2,又x 的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,所以(a+9)×2=4×(2+1),即a=-3代数式a 2-a1=9+31=328.7.解:解不等式4x ﹣3a >﹣1得,x >;解不等式2(x ﹣1)+3>5得,x>2,∵两不等式的解集相同,∴=2,解得a=3.8.解:整理得:(a-1)x>1-2a+a,(a-1)x>1-a,不等式解是x<-1,a-1<0,解得:a<1.9.解:,①+②,得2x=1+m,解得x=,①﹣②,得4y=1﹣m,解得y=,即方程组的解为.∵x与y的值都不大于1,∴,解得﹣3≤m≤1.10.解:(1)若不等式组无解,说明属于“大大小小无处找”或﹣3=a的情形,因此a的取值范围为a≤﹣3,数轴如下:(2)若有解,则与(1)的情形相反,a应取≤﹣3以外的数,所以a的取值范围为a>﹣3,数轴如下:11.解:去括号得15x+6+5<4x-6x-6,移项得15x-4x+6x<-6-6-5,合并得17x<-17,系数化为1得x<-1,所以|3x+1|-|1-3x|=-(3x+1)-(1-3x)=-3x-1-1+3x=-212.解:由不等式6x﹣2≥3x﹣4,解得:x≥﹣,由<1,解得:x<,要同时满足条件:即﹣≤x<,故整数解为0.13.解:,①+②得2x=4m﹣2,解得x=2m﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x的值为负数,y的值为正数,∴,∴﹣4<m<.②×3﹣①得:x=14.解:,③,将③代入②得:y=,∴,∵x>y,∴,解得:m>3.15.(1)当y>0,2-2x>0,x<1;(2)当x≤-1,-2x≥2, -2x+2≥2+2, -2x+2≥4,即y≥4.16.根据题意x+5>0,x-2<0,故得-5<x<2,因为x为正整数,所以x=1,所以x+5=6,x-2=-1,所以P的坐标是(-1,6).。

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

2021-2022学年度初中数学七年级下册不等式与不等式组模拟试题(二)一、单选题1.﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <0 2.某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤33 3.若关于x 的分式方程2x x -+1=22ax x --有整数解,且关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解,则所有满足条件的整数a 的值之积是( ) A .0 B .24 C .﹣72 D .12 4.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗(注:饭碗的大小形状都一样,下同)摞起来的高度为15cm ,9只饭碗摞起来的高度为20cm ,李老师家的碗橱每格的高度为31cm ,则里面一摞碗最多只能放( )A .16只B .15只C .14只D .13只 5.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,下列结论:℃[0)=0;℃[x )-x 的最小值是0;℃[x )-x 的最大值是1;℃存在实数x ,使[x )-x =0.5成立,其中正确的是( )A .℃℃B .℃℃C .℃℃℃D .℃℃℃6.已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 7.下列说法正确的个数是( )(1)一个数绝对值越大,表示它的点在数轴上离原点越远;(2)当0a ≠时,a 总是大于0;(3)若mn =0,则m 、n 中必有一个数为0;(4)如果0a ≥那么5a -一定有最小值-5.A .1个B .2个C .3个D .4个8.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( )A .4个B .3个C .2个D .1个 9.若10a -<<,则有( )A .1a a >B .33a a <C .2a a ->D .32a a <- 10.一群女生住若干间宿舍,若每间住4人,剩下16人无处住;若每间住6人,有一间宿舍住人但不足4人,那么这群女生的人数是( )A .52B .56C .60或56D .60二、填空题11.若0622x k x -≥⎧⎨->-⎩的整数解共有5个,则k 的取值范围是________. 12.已知关于x 的不等式组223x x x m ⎧->+⎨≥⎩只有两个整数解,则实数m 的取值范围是 __________.13.若点P 为数轴上一个定点,点M 为数轴上一点将M ,P 两点的距离记为MP .给出如下定义:若MP 小于或等于k ,则称点M 为点P 的k 可达点.例如:点O 为原点,点A 表示的数是1,则O ,A 两点的距离为1,1<2,即点A 可称为点O 的2可达点.(1)如图,点B 1,B 2,B 3中,___是点A 的2可达点;(2)若点C 为数轴上一个动点,℃若点C 表示的数为﹣1,点C 为点A 的k 可达点,请写出一个符合条件的k 值 ___; ℃若点C 表示的数为m ,点C 为点A 的2可达点,m 的取值范围为 ___;(3)若m ≠0,动点C 表示的数是m ,动点D 表示的数是2m ,点C ,D 及它们之间的每一个点都是点A 的3可达点,写出m 的取值范围 ___.14.有一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段,剩余部分作废料处理,若使废料最少,则x +y =__.15.某学校举办“创文知识”竞赛,共有20道题,每一题答对得10分,答错或不答都扣5分,小聪要想得分不低于140分,他至少要答对多少道题?如果设小聪答对a 题,则他答错或不答的题数为()20a -题,根据题意列不等式:___________. 16.为了迎接“母亲节”的到来,枣庄市购物中心超市准备开展打折促销活动,现在有某件商品进价200元,标价320元出售,商场规定打折销售后利润率不能少于20%,那么这种商品最多打______折.17.不超过数x 的最大整数称为x 的整数部分,记作[x ]例如,[3.4]=3,[-2.1]=-3则满足关系式[37]6x +=5的x 的整数值有________ 18.如果不等式组320x x m ->⎧⎨≥⎩有解,则m 的取值范围是______. 三、解答题19.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?20.利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x -7>26(2)3x <2x +121.解下列不等式组32122x x x +>⎧⎪⎨≤⎪⎩. 22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x 个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.23.“学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?24.解下列不等式:(1)2x﹣1<﹣6;(2)145 23--<x x;(3)解不等式组:3(2)41213x xxx--≥⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.参考答案:1.B【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,℃a <﹣1,℃﹣a >1,故A 选项判断错误,不合题意;℃﹣b <0,℃b >0,b ﹣a >0,故B 正确,符合题意;℃a <﹣1,℃a +1<0,故C 判断错误,不合题意;℃a <﹣b ,℃a +b <0,℃﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .2.D【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间, ℃该市气温t (℃)的变化范围是:24≤t ≤33;故选:D .3.D【详解】先解分式方程,再解一元一次不等式组,进而确定a 的取值.解:℃2x x -+1=22ax x --, ℃x +x ﹣2=2﹣ax .℃2x +ax =2+2.℃(2+a )x =4.℃x =42a+ . ℃关于x 的分式方程2x x -+1=22ax x --有整数解, ℃2+a =±1或±2或±4且42a +≠2. ℃a =﹣1或﹣3或﹣4或2或﹣6.℃2(y ﹣1)+a ﹣1≤5y ,℃2y ﹣2+a ﹣1≤5y .℃2y ﹣5y ≤1﹣a +2.℃﹣3y ≤3﹣a .℃y ≥﹣1+3a . ℃2y +1<0,℃2y <﹣1.℃y <12-. ℃﹣1+3a ≤y <12-. ℃关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解, ℃﹣3<﹣1+3a ≤﹣2. ℃﹣6<a ≤﹣3.又℃a =﹣1或﹣3或﹣4或2或﹣6,℃a =﹣3或﹣4.℃所有满足条件的整数a 的值之积是﹣3×(﹣4)=12.故选:D .4.B【详解】解:设碗底的高度为xcm ,碗身的高度为ycm ,由题意得:615920x y x y +=⎧⎨+=⎩, 解得:535x y ⎧=⎪⎨⎪=⎩, 设李老师一摞碗能放a 只碗,由题意得:5+53a ≤31, 解得:a ≤7815.65=, 则一摞碗最多只能放15只,故选:B .5.B【详解】解:由题意可知:℃[x )表示大于x 的最小整数,℃设[x )=n ,则n -1≤x <n ,℃[x )-1≤x <[x ),℃0<[x )-x ≤1,℃℃[0)1=,故℃错误;℃[)x x -可无限接近0,但取不到0,无最小值,故℃错误;℃[)x x -的最大值是1,当x 为整数时,故℃正确;℃存在实数x ,使[)0.5x x -=成立,比如x =1.5,故℃正确,故选:B .6.D【详解】解:解不等式组得:22x x a ≤⎧⎨>⎩, ℃该不等式组恰有4个整数解,℃-2≤2a <-1,解得:﹣1≤a <﹣12,故选:D .7.D【详解】℃一个数绝对值越大,表示它的点在数轴上离原点越远,℃(1)正确; ℃a ≥0,℃当0a ≠时,a 总是大于0,℃(2)正确;℃mn =0,℃m =0或n =0,℃(3)正确;℃5055a -≥-≥-,℃5a -一定有最小值-5℃(4)正确;故选D .8.C【详解】 解:解方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩得:213322x a y a ⎧=+⎪⎪⎨⎪=--⎪⎩,℃关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥, ℃213a +≥322a --, 解得:a ≥-1813, ℃关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2, ℃7323a --≤<-, 解得-2≤a <1, ℃1813-≤a <1, ℃符合条件的整数a 的值有:-1,0,共2个,故选:C .9.C【详解】 解:采用特殊取值法,取12a =-, 则12a=-,由122-<-,A 选项错误; 33111111,,282888⎛⎫⎛⎫-=-=->- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 2111111,,222424⎛⎫⎛⎫--=-=> ⎪ ⎪⎝⎭⎝⎭,C 选项正确; 由1184->-知321122⎛⎫⎛⎫->-- ⎪ ⎪⎝⎭⎝⎭,D 选项错误; 故选:C .10.B【详解】解:设有x 间宿舍,则有6(x -1)<4x +16<6(x -1)+4,整理得()()61416416614x x x x ⎧-+⎪⎨+-+⎪⎩<①<②, 解不等式℃得11x <,解不等式℃得9x >,℃不等式组的解集为911x <<,℃x =10,当x =10时4×10+16=56人,故选择B .11.21k -<≤-【详解】解:0622x k x -≥⎧⎨->-⎩①②由℃得:,x k ≥由℃得:x <4,k x ∴≤<4,622x k x -≥⎧⎨->-⎩的整数解共有5个,∴ 不等式组的整数解为:3,2,1,0,1,-∴ 21k -<≤-故答案为:21k -<≤-12.32m -<-【详解】解:当2x 时,223x x ->+,13x ∴<-,13x ∴<-;当2x >时,223x x ->+,5x ∴->,∴不等式的解为13m x ≤<-,不等式组|2|23x x x m ->+⎧⎨⎩只有两个整数解,∴两个整数解为1-和2-,32m ∴-<-,故答案为:32m -<-.13. 2B 、3B ##B 3、B 2 3 13m -≤≤ 12m -≤≤【详解】解:(1)由题意知:1>2B A 2,2<2B A 2,3<2B A 2,℃2B 、3B 是点A 的2可达点,故填:2B 、3B ;(2)℃当点C 表示的数为﹣1时,=2CA ≤k ,故k =3,故填:3;℃当点C 表示的数为m 时,=1CA m -≤2,解得:13m -≤≤,故填:13m -≤≤;(3)由题意知:=1CA m -,21DA m =-, 即:13m -≤,213m -≤,解得:12m -≤≤,故填:12m -≤≤.14.6【详解】℃一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段, ℃3x +5y ≤22, ℃2253y x -≤, ℃2250y -≥,且y 为正整数,℃y 的值可以为1、2、3、4,当y =1时,x≤173,则x =5,此时,所剩的废料是:22﹣5﹣3×5=2cm , 当y =2时,x≤4,则x =4,此时,所剩的废料是:22﹣2×5﹣4×3=0cm ,当y =3时,x≤73,则x =2,此时,所剩的废料是:22﹣3×5﹣2×3=1cm , 当y =4时,x≤23,则x =0(舍去), ℃废料最少的是:x =4,y =2,℃x +y =6,故答案为:615.()10520140a a --≥【详解】解:根据题意,得10a −5(20−a )≥140.故答案是:10a −5(20−a )≥140.16.七五【详解】解:设这种商品可以按x 折销售,则售价为320×0.1x ,那么利润为320×0.1x -200,所以相应的关系式为320×0.1x -200≥200×20%,解得:x ≥7.5.℃这种商品最多可以按7.5折销售.故答案为:七五.17.8,9.【详解】解:因为原方程即为[37]6x +=5, 所以5≤376x +<6, 所以37563766x x +⎧≥⎪⎪⎨+⎪<⎪⎩, 解得:232933x ≤<, 因为x 是整数,所以x =8, 9,故答案为:8,9.18.32m <【详解】 解:320x x m ->⎧⎨≥⎩, 解不等式320x ->,解得32x <, 因为不等式组320x x m->⎧⎨≥⎩有解, 所以32m x ≤<, 所以32m <. 故答案为:32m <.19.(1)共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)方案1费用最低,最低费用是22320元(1)解:设组建中型图书角x 个,则组建小型图书角(30)x -个,依题意得:()()80303019005060301620x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 解得:1820x ≤≤,又∵x 为整数,∴x 可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个;(2)选择方案1的费用为:860185701222320⨯+⨯=(元);选择方案2的费用为:860195701122610⨯+⨯=(元);选择方案3的费用为:860205701022900⨯+⨯=(元).223202*********<<,∴方案1费用最低,最低费用是22320元.20.(1)x >33,见解析(2)x <1,见解析【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x -7+7>26+7,x >33.这个不等式的解集在数轴上的表示如图:(2)3x <2x +1;解:(2)根据不等式的性质1,不等式两边减2x ,不等号的方向不变,所以:3x -2x <2x +1-2x ,x <1.这个不等式的解集在数轴上的表示如图:21.14x -<≤【详解】解:解不等式3x +2>x 得:x >-1, 解不等式122x ≤,得:4x ≤, 则不等式组的解集为:14x -<≤.22.(1)长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298 【详解】解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100﹣x )个,则长方形纸板用了43(100)300x x x +-=+张,正方形纸板用了2(100)200x x x +-=-张 ℃长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张.(2)依题意,得:300340200162x x +≤⎧⎨-≤⎩, 解得:3840x ≤≤. ℃x 为整数,℃x =38,39,40,℃共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.(3)设可以生产竖式纸盒m 个,横式纸盒1622m -个,由此可得,m 为偶数,依题意,得:43(81)2m a m =+-∵290300a << ∴43(8129030)02m m +-<< ∴18.822.8x ≤≤∴20m =或22m =∴293a =或298a =答:a 的值为293或298.23.(1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案(1)设政府对划线新增一个停车位补贴x 元,对建设改造新增一个停车位补贴y 元,依题意得:4380002500x y x y +=⎧⎨+=⎩, 解得:{x =500y =2000. 答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增m 个停车位,则建设改造新增(100)m -个停车位,依题意得:()100 1.55002000100143000m mm m -⎧⎨+-⎩,解得:3840m .又m 为整数,m ∴可以为38,39,40,∴老旧小区新增停车位共有3种方案.24.(1)x <﹣2.5(2)x >1.4(3)x ≤1,在数轴上表示它的解集见解析(1)解:移项得:2x <﹣6+1,合并得:2x <﹣5,解得:x <﹣2.5;(2)解:去分母得:3(x ﹣1)<2(4x ﹣5),去括号得:3x ﹣3<8x ﹣10,移项得:3x ﹣8x <﹣10+3,合并得:﹣5x <﹣7,解得:x >1.4;(3) 解:3(2)41213x x xx --≥⎧⎪⎨+>-⎪⎩①②由℃得:x ≤1,由℃得:x <4,解得:x ≤1.。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。

七下第9章 不等式与不等式组2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)

七下第9章 不等式与不等式组2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)

人教新版七年级下册《第9章不等式与不等式组》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)试题数:25,总分:01.(单选题,0分)下列式子:① 3>0; ② 4x+5>0; ③ x <3; ④ x 2+x ; ⑤ x≠-4; ⑥ x+2>x+1,其中不等式有( )个A.3B.4C.5D.62.(单选题,0分)下列说法不一定成立的是( )A.若a >b ,则a+c >b+cB.若a+c >b+c ,则a >bC.若a >b ,则ac 2>bc 2D.若ac 2>bc 2,则a >b3.(单选题,0分)若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是( )A.x≤2B.x >1C.1≤x <2D.1<x≤2 4.(单选题,0分)已知关于x 的不等式组 {x ≤2x >a有解,则a 的取值不可能是( ) A.0B.1C.2D.-25.(单选题,0分)已知(m-4)x |m-3|+2>6是关于x 的一元一次不等式,则m 的值为( )B.2C.4或2D.不确定6.(单选题,0分)若关于x,y的方程组{2x+y=4x+2y=−3m+2的解满足x-y>-32,则m的最小整数解为()A.-3B.-2C.-1D.07.(单选题,0分)关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-28.(单选题,0分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20-x.根据题意得()A.10x-5(20-x)≥120B.10x-5(20-x)≤120C.10x-5(20-x)>120D.10x-5(20-x)<1209.(单选题,0分)已知关于x的不等式组{2a+3x>03a−2x≥0恰有3个整数解,则a的取值范围是()A. 23≤a≤32B. 43≤a≤32C. 43<a≤32D. 43≤a<3210.(单选题,0分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()B.4种C.3种D.2种11.(填空题,0分)不等式(m-2)x >2-m 的解集为x <-1,则m 的取值范围是___ .12.(填空题,0分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 ___ .13.(填空题,0分)若不等式3x-m≤0的正整数解是1,2,3,则m 的取值范围是___ .14.(填空题,0分)若关于x的不等式组 {x+223≥2−x x <m 的所有整数解的和是-9,则m 的取值范围是 ___ .15.(填空题,0分)我们定义 |a b c d| =ad-bc ,例如 |2345| =2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1< |1x y 4| <3,则x+y 的值是 ___ . 16.(问答题,0分)解不等式: 2x−13 ≤ 3x+24 -1,并把解集表示在数轴上.17.(问答题,0分)解不等式 4x−13 -x >1,并在数轴上表示解集.18.(问答题,0分)解不等式组 {x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.19.(问答题,0分)解不等式组: {4x >2x −6x−13≤x+19 ,并把解集在数轴上表示出来.20.(问答题,0分)已知关于x 、y 的方程组 {x −y =32x +y =6a的解满足不等式x+y <3,求实数a 的取值范围.21.(问答题,0分)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A 、B 两种型号的净水器,下表是近两周的销售情况:(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(问答题,0分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?23.(问答题,0分)已知关于x 、y 的方程组 {3x −y =2a −5x +2y =3a +3的解都为正数. (1)求a 的取值范围;(2)已知a+b=4,且b >0,z=2a-3b ,求z 的取值范围.24.(问答题,0分)(经典题)已知关于x 的不等式组 {x −a ≥03−2x >−1的整数解共有5个,求a 的取值范围.25.(问答题,0分)已知不等式组 {2x −a <1x −2b >3 的解集为-1<x <1,求(a+1)(b-1)的值.人教新版七年级下册《第9章不等式与不等式组》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)参考答案与试题解析试题数:25,总分:01.(单选题,0分)下列式子:① 3>0;② 4x+5>0;③ x<3;④ x2+x;⑤ x≠-4;⑥ x+2>x+1,其中不等式有()个A.3B.4C.5D.6【正确答案】:C【解析】:根据不等式定义可得答案.【解答】:解:① 3>0;② 4x+5>0;③ x<3;⑤ x≠-4;⑥ x+2>x+1是不等式,共5个,故选:C.【点评】:此题主要考查了不等式定义,关键是掌握用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.2.(单选题,0分)下列说法不一定成立的是()A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【正确答案】:C【解析】:根据不等式的性质进行判断.【解答】:解:A 、在不等式a >b 的两边同时加上c ,不等式仍成立,即a+c >b+c ,不符合题意;B 、在不等式a+c >b+c 的两边同时减去c ,不等式仍成立,即a >b ,不符合题意;C 、当c=0时,若a >b ,则不等式ac 2>bc 2不成立,符合题意;D 、在不等式ac 2>bc 2的两边同时除以不为0的c 2,该不等式仍成立,即a >b ,不符合题意. 故选:C .【点评】:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(单选题,0分)若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是( )A.x≤2B.x >1C.1≤x <2D.1<x≤2【正确答案】:D 【解析】:根据数轴表示出解集即可.【解答】:解:根据题意得:不等式组的解集为1<x≤2.故选:D .【点评】:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(单选题,0分)已知关于x 的不等式组 {x ≤2x >a有解,则a 的取值不可能是( ) A.0B.1D.-2【正确答案】:C【解析】:根据关于x 的不等式组 {x ≤2x >a有解,可得:a <2,再根据有理数大小比较的方法,判断出a 的取值不可能是多少即可.【解答】:解:∵关于x 的不等式组 {x ≤2x >a有解, ∴a <2,∵0<2,1<2,-2<2,∴a 的取值可能是0、1或-2,不可能是2.故选:C .【点评】:此题主要考查了不等式的解集问题,要熟练掌握,解答此题的关键是要明确:不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.5.(单选题,0分)已知(m-4)x |m-3|+2>6是关于x 的一元一次不等式,则m 的值为( )A.4B.2C.4或2D.不确定【正确答案】:B【解析】:根据一元一次不等式的定义,|m-3|=1,m-4≠0,分别进行求解即可.【解答】:解:根据题意|m-3|=1,m-4≠0,所以m-3=±1,m≠4,解得m=2.故选:B .【点评】:本题考查一元一次不等式的定义和绝对值.解题的关键是明确一元一次不等式的定义中的未知数的最高次数为1次,还要注意未知数的系数不能是0.6.(单选题,0分)若关于x ,y 的方程组 {2x +y =4x +2y =−3m +2 的解满足x-y >- 32 ,则m 的最小整数解为( )B.-2C.-1D.0【正确答案】:C【解析】:方程组中的两个方程相减得出x-y=3m+2,根据已知得出不等式,求出不等式的解集即可.【解答】:解:{2x+y=4①x+2y=−3m+2②,① - ② 得:x-y=3m+2,∵关于x,y的方程组{2x+y=4x+2y=−3m+2的解满足x-y>-32,∴3m+2>- 32,解得:m>- 76,∴m的最小整数解为-1,故选:C.【点评】:本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.7.(单选题,0分)关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-2【正确答案】:D【解析】:表示出已知不等式的解集,根据负整数解只有-1,-2,确定出b的范围即可.【解答】:解:不等式x-b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴-3≤b<-2故选:D.【点评】:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.8.(单选题,0分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20-x.根据题意得()A.10x-5(20-x)≥120B.10x-5(20-x)≤120C.10x-5(20-x)>120D.10x-5(20-x)<120【正确答案】:C【解析】:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.【解答】:解:根据题意,得10x-5(20-x)>120.故选:C.【点评】:此题要特别注意:答错或不答都扣5分.至少即大于或等于.9.(单选题,0分)已知关于x的不等式组{2a+3x>03a−2x≥0恰有3个整数解,则a的取值范围是()A. 23≤a≤32B. 43≤a≤32C. 43<a≤32D. 43≤a<32【正确答案】:B【解析】:先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】:解:由于不等式组有解,则−2a3<x≤3a2,必定有整数解0,∵ |3a2|>|−2a3|,∴三个整数解不可能是-2,-1,0.若三个整数解为-1,0,1,则不等式组 {−2≤−2a3<−11≤3a2<2 无解; 若三个整数解为0,1,2,则 {2≤32a <3−1≤−23a <0 ; 解得 43≤a ≤32. 故选:B .【点评】:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.(单选题,0分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A.5种 B.4种 C.3种 D.2种【正确答案】:C【解析】:设小明购买了A 种玩具x 件,则购买的B 种玩具为 10−x2件,根据题意列出不等式组进行解答便可.【解答】:解:设小明购买了A 种玩具x 件,则购买的B 种玩具为 10−x2件,根据题意得, {x ≥110−x2≥110−x2<x , 解得,3 13 <x≤8, ∵x 为整数,10−x2 也为整数, ∴x=4或6或8, ∴有3种购买方案. 故选:C .【点评】:本题主要考查了一元一次不等式组的应用题,正确表示出购买B种玩具的数量和正确列出不等式组是解决本题的关键所在.11.(填空题,0分)不等式(m-2)x>2-m的解集为x<-1,则m的取值范围是___ .【正确答案】:[1]m<2【解析】:根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】:解:不等式(m-2)x>2-m的解集为x<-1,∴m-2<0,m<2,故答案为:m<2.【点评】:本题考查了不等式的解集,由不等号方向改变,得出未知数的系数小于0.12.(填空题,0分)关于x的不等式3x-a≤0,只有两个正整数解,则a的取值范围是 ___ .【正确答案】:[1]6≤a<9【解析】:解不等式得x≤ a3,由于只有两个正整数解,即1,2,故可判断a3的取值范围,求出a的取值范围.【解答】:解:原不等式解得x≤ a3,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤ a3<3,解得6≤a<9.故答案为:6≤a<9.【点评】:本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.13.(填空题,0分)若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是___ .【正确答案】:[1]9≤m<12【解析】:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】:解:不等式3x-m≤0的解集是x≤ m3 , ∵正整数解是1,2,3,∴m 的取值范围是3≤ m 3<4即9≤m <12. 故答案为:9≤m <12.【点评】:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 14.(填空题,0分)若关于x 的不等式组 {x+223≥2−xx <m的所有整数解的和是-9,则m 的取值范围是 ___ .【正确答案】:[1]-2<m≤-1或1<m≤2【解析】:先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【解答】:解: {x+223≥2−x①x <m②∵解不等式 ① 得:x≥-4,又∵不等式组的所有整数解得和为-9,∴-4+(-3)+(-2)=-9或(-4)+(-3)+(-2)+(-1)+0+1=-9, ∴-2<m≤-1或1<m≤2,故答案为:-2<m≤-1或1<m≤2.【点评】:本题考查了解一元一次不等式组,不等式组的整数解等知识点,能得出关于m 的不等式组是解此题的关键.15.(填空题,0分)我们定义 |a bc d| =ad-bc ,例如 |2345| =2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1< |1xy 4| <3,则x+y 的值是 ___ .【正确答案】:[1]±3【解析】:先根据题意列出不等式,根据x 的取值范围及x 为整数求出x 的值,再把x 的值代入求出y 的值即可.【解答】:解:由题意得,1<1×4-xy <3,即1<4-xy <3, ∴ {xy <3xy >1,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=-2-1=-3.故答案为:±3【点评】:此题比较简单,解答此题的关键是根据题意列出不等式,根据x,y均为整数求出x、y的值即可.16.(问答题,0分)解不等式:2x−13≤ 3x+24-1,并把解集表示在数轴上.【正确答案】:【解析】:先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】:解:去分母得,4(2x-1)≤3(3x+2)-12,去括号得,8x-4≤9x+6-12,移项得,8x-9x≤6-12+4,合并同类项得,-x≤-2,把x的系数化为1得,x≥2.在数轴上表示为:.【点评】:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.17.(问答题,0分)解不等式4x−13-x>1,并在数轴上表示解集.【正确答案】:【解析】:根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】:解:4x-1-3x>3,4x-3x>3+1,x>4,将不等式的解集表示在数轴上如下:【点评】:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.(问答题,0分)解不等式组{x−3(x−2)≥42x−15<x+12,并将它的解集在数轴上表示出来.【正确答案】:【解析】:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】:解:由① 得:-2x≥-2,即x≤1,由② 得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【点评】:本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.19.(问答题,0分)解不等式组: {4x >2x −6x−13≤x+19 ,并把解集在数轴上表示出来.【正确答案】:【解析】:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】:解: {4x >2x −6①x−13≤x+19②∵解不等式 ① 得:x >-3, 解不等式 ② 得:x≤2, ∴不等式组的解集为-3<x≤2,在数轴上表示不等式组的解集为:.【点评】:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.20.(问答题,0分)已知关于x 、y 的方程组 {x −y =32x +y =6a 的解满足不等式x+y <3,求实数a 的取值范围.【正确答案】:【解析】:先解方程组,求得x 、y 的值,再根据x+y <3,解不等式即可.【解答】:解: {x −y =3①2x +y =6a②,① + ② 得,3x=6a+3, 解得x=2a+1,将x=2a+1代入 ① 得,y=2a-2, ∵x+y <3, ∴2a+1+2a -2<3, 即4a <4, a <1.【点评】:本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中. 21.(问答题,0分)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A 、B 两种型号的净水器,下表是近两周的销售情况:(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【正确答案】:【解析】:(1)设A 、B 两种型号净水器的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的净水器收入18000元,4台A 型号10台B 型号的净水器收入31000元,列方程组求解;(2)设采购A 种型号净水器a 台,则采购B 种型号净水器(30-a )台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a 的值,符合(2)的条件,可知能实现目标.【解答】:解:(1)设A 、B 两种净水器的销售单价分别为x 元、y 元, 依题意得: {3x +5y =180004x +10y =31000,解得:{x=2500y=2100.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30-a)台.依题意得:2000a+1700(30-a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500-2000)a+(2100-1700)(30-a)=12800,解得:a=8,答:采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.【点评】:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.22.(问答题,0分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【正确答案】:【解析】:(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:① 1辆甲种客车和3辆乙种客车共需租金1240元,② 3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】:解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有{x+3y=12403x+2y=1760,解得 {x =400y =280.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元; (2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用, 400×6+280×2 =2400+560 =2960(元).方法2:设租用甲种客车x 辆,依题意有 45x+30(8-x )≥330, 解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为: 400×6+280×2 =2400+560 =2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为: 400×7+280 =2800+280 =3080(元); 2960<3080,故最节省的租车费用是2960元.【点评】:本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.23.(问答题,0分)已知关于x 、y 的方程组 {3x −y =2a −5x +2y =3a +3 的解都为正数.(1)求a 的取值范围;(2)已知a+b=4,且b >0,z=2a-3b ,求z 的取值范围.【正确答案】:【解析】:(1)根据二元一次方程组的解法即可求出x 与y 的表达式,从而可求出a 的范围. (2)根据(1)问可求出b 的范围,将z 化为8-5b ,从而可求出z 的范围.【解答】:解:(1)∵ {3x −y =2a −5x +2y =3a +3∴ {x =a −1y =a +2由于该方程组的解都是正数, ∴ {a −1>0a +2>0 ∴a >1(2)∵a+b=4, ∴a=4-b , ∴ {b >04−b >1 解得:0<b <3, ∴z=2(4-b )-3b=8-5b ∴-7<8-5b <8, ∴-7<z <8【点评】:本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法以及不等式组的解法,本题属于中等题型.24.(问答题,0分)(经典题)已知关于x 的不等式组 {x −a ≥03−2x >−1 的整数解共有5个,求a 的取值范围.【正确答案】:【解析】:首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【解答】:解:由原不等式得a≤x <2,其整数解必为1,0,-1,-2,-3故-4<a≤-3.【点评】:正确解出不等式组的解集,正确确定a 的范围,是解答本题的关键.25.(问答题,0分)已知不等式组 {2x −a <1x −2b >3 的解集为-1<x <1,求(a+1)(b-1)的值.【正确答案】:【解析】:解出不等式组的解集,与已知解集-1<x <1比较,可以求出a ,b 的值,然后求(a+1)(b-1)的值.【解答】:解:由2x-a <1得:x <1+a 2 由x-2b >3得:x >3+2b∴不等式组的解集为:3+2b <x <1+a 2 又∵-1<x <1∴ {3+2b =−11+a 2=1∴ {a =1b =−2, ∴(a+1)(b-1)=(1+1)(-2-1)=-6.【点评】:本题是已知不等式组的解集,求不等式中其余未知数的问题.可以先将其余未知数当作已知处理,求出解集与已知解集比较,进而求得其余未知数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 不等式与不等式组
A2卷 · 基础知识点点通 班级_______姓名________成绩________
一、 选择题(4′×8=32′)
1.若,a a -则a 必为( )
A 、负整数 B、 正整数 C、负数 D、正数
2.不等式组⎩⎨⎧+-020
1 x x 的解集是( )
A、12 x - B、1 x C、x 2- D、无解
3.下列说法,错误的是( )
A、33- x 的解集是1- x B、-10是102- x 的解
C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个
4.不等式组21
30x x ≤⎧⎨+≥⎩的解在数轴上可以表示为( )
A
C
5.不等式组⎩⎨⎧--≥-31201 x x 的整数解是( )
A、-1,0 B、-1,1 C、0,1 D、无解
6.若a <b <0,则下列答案中,正确的是( )
A、a <b B B 、a >b C、2a <2b D 、a 3>b 2
7.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )
A、a >3 B、a <3- C、a <3 D、a >-3
8.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○”
“△”“□”质量从大到小的顺序排列为( )
A、□○△ B、 □△○ C、 △○□ D 、△□○
二、 填空(3×10=30)
9.当x 时,代数式52+x 的值不大于零
10.若x <1,则22+-x 0(用“>”“=”或“”号填空)
11.不等式x 27->1,的正整数解是
12. 不等式x ->10-a 的解集为x <3,则a
13.若a >b >c ,则不等式组⎪⎩
⎪⎨⎧c x b x a x 的解集是 14.若不等式组⎩
⎨⎧--3212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 15.有解集2<x <3的不等式组是 (写出一个即可)
16.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0
”其中蛋白质
的含量为 _____ g 17.若不等式组⎩
⎨⎧3 x a
x 的解集为x >3,则a 的取值范围是 三、 解答题(5′×2+6′×2+8′+8′=38′)
18.解不等式①
1)1(22 ---x x ; ②341221x x +≤--并分别把它们的解集在数轴上表示出来
19.解不等式组 ①⎪⎩⎪⎨⎧--≤--x x x x 14214)23( ②⎪⎩⎪⎨⎧-≥--+35663
4)1(513x x x x
20.关于y x ,的方程组⎩⎨⎧-=-+=+1
31m y x m y x 的解满足x >y ,求m 的最小整数值
21.一本英语书共98页,张力读了一周(7天),而李永不到一周就已读完,李永平均每
天比张力多读3页,张力平均每天读多少页?(答案取整数)
附加题(10)
22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
A 2 一、1C 2A 3D 4A 5C 6
B 7
C 8B 二、9. 2
5-≤x 10.> 11. 1,2; 12.7 ; 13. 无解c<x<b 14.-2 15⎩⎨⎧3
2 x x 16. 大于180, 17. ≤
3 三、18.①1110,2≥-x x 19 . ①231
x ≤- ②39
24 x 20. 1 21. 12或13 22.甲50人,乙 100人。

相关文档
最新文档