高中数学必修5第三章_不等式单元测试与答案

合集下载

(典型题)高中数学必修五第三章《不等式》测试题(答案解析)

(典型题)高中数学必修五第三章《不等式》测试题(答案解析)

一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .33.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .34.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .97.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-8.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .69.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a>10.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.17.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________. 18.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 19.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________. 20.已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________. 三、解答题21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?22.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?23.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式; (2)解不等式f(x)>2x +5.24.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围. 25.(1)已知()2fx kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥. 26.已知圆22:4210C x y x y +---=. (1)求y 轴被圆C 所截得的线段的长;(2)过圆C 圆心的直线与两坐标轴在第一象限内围成的三角形面积为S ,求S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.D解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.3.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344zy x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).4.C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.C解析:C【解析】0,tan02x xπ<∴,()21cos28sinsin2x xf xx++=2222cos8sin28tan114tan4tan4 2sin cos2tan tan tanx x xx xx x x x x++===+≥⨯=,当且仅当1tan2x=时取等号,函数()21cos28sinsin2x xf xx++=的最小值为4,选C.6.C解析:C由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.7.D解析:D【分析】根据约束条件画出可行域,将问题转化为133zy x=-在y轴截距最大值的求解问题,利用数形结合的方式可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133z y x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.8.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.9.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 10.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.11.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m <<综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围12.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <.故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥,即可直接求解. 【详解】30a b ab +-+=,3a b ab ∴+=-,a b 为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163. 【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140xx y=⎧⎨+-=⎩解得:13xy=⎧⎨=⎩,所以()1,3B,yx表示可行域内的点与原点连线的斜率,所以OA OByk kx≤≤,707513135OAk-==-,30310OBk-==-,令7,313ytx⎡⎤=∈⎢⎥⎣⎦,所以22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,1y tt=+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t=时,1713109213791y⎛⎫=+=⎪⎝⎭,当75t=时,1153233y⎛⎫=+=⎪⎝⎭,所以222x yxy+的最大值为53,故答案为:53. 【点睛】 思路点睛: 非线性目标函数的常见类型及解题思路: 1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的a c 倍; 2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)2222Ax By Cz Ax By C A B A B ++=++=+⋅+表示的是可行域内的点(),x y 到直线0Ax By C ++=的距离的22A B +倍.16.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=,所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】 本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.17.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.18.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定 解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案.【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=, ∴()411411414941(52)2222b a b a a b a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+⋅= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.19.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 20.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求 解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果.【详解】由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号, 所以有1108xy <≤,19118xy <+≤,18191xy≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题. 三、解答题21.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+;(2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 22.铁盒底面的长与宽均为5cm 时,用料最省.【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x ,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x ,则.. 表面积251002544425S x x x x=++⨯=++.. 2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省.解法2:设铁盒底面的长为xcm ,宽为25x ,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x-'=-=.. 令2241000x y x-'==得,5x =.当()0,5x ∈时,0y '<,函数224100x y x-'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省.23.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.24.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 25.(1)[)1,2;(2)见解析【分析】(1)由题意得,23523k k ⎧-+=⎪⎨+=⎪⎩,由此可求得()2f x x =-+,代入后转化为一元二次不等式即可求出答案;(2)分类讨论法解不等式即可.【详解】解:(1)∵()2f x kx =+,不等式()3f x <的解集为()1,5-,∴方程23kx +=的解集为1,5, ∴23523k k ⎧-+=⎪⎨+=⎪⎩,解得1k =-, ∴()2f x x =-+,∴()112x x f x x ≥⇔≥-+()2102x x -⇔≤-()()12020x x x ⎧--≤⇔⎨-≠⎩, 解得12x ≤<,∴[)1,2A =;(2)∵()2220ax a x +--≥, ①当0a =时,原不等式化为220x --≥,解得1x ≤-; 当()2010a a x x a ⎛⎫≠∴-+≥ ⎪⎝⎭, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得1x ≤-,或2x a≥; ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭, 1︒当21a =-即2a =-时,原不等式化为()210x +≤,解得1x =-; 2︒当21a<-即20a -<<时,解得21x a ≤≤-; 3︒当21a >-即2a <-时,解得21x a-≤≤; 综上:当2a <-时,原不等式的解集为21,x a⎡⎤∈-⎢⎥⎣⎦; 当2a =-时,原不等式的解集为{}1x ∈-;当20a -<<时,原不等式的解集为2,1x a ⎡⎤∈-⎢⎥⎣⎦; 当0a =时,原不等式的解集为(],1x ∈-∞-; 当0a >时,原不等式的解集为(]2,1,x a ⎡⎫∈-∞-+∞⎪⎢⎣⎭. 【点睛】本题主要考查一元二次不等式的解法,考查分式不等式的解法,考查转化与化归思想,考查分类讨论法,属于中档题.26.(1)2)4 【分析】(1)将0x =代入22:4210C x y x y +---=可得2210y y --=,将线段长为12y y -=和韦达定理相结合即可得出结果;(2)设:1(,0)x yl a b a b +=>,由直线过圆心可得211a b=+,利用基本不等式可得8ab ≥,最后根据三角形面积公式即可得出结果. 【详解】(1)设圆22:4210C x y x y +---=与y 轴的交点为()10y ,,()20,y , 将0x =代入22:4210C x y x y +---=可得2210y y --=, 即122y y +=,121y y ⋅=-,所以y 轴被圆C 所截得的线段的长为12y y -==(2)设:1(,0)x yl a b a b +=>,由于l 过(2,1)C ,∴211a b=+,利用基本不等式,得2118ab a b =+≥≥,∴142S ab =≥, 即S 的最小值为4, 此时4,2a b ==,:142x yl +=,即:240l x y +-= 【点睛】本题主要考查了直线截圆所得弦长问题,直线截距式的应用,利用基本不等式求最值,属于中档题.。

最新人教版高中数学必修5第三章不等式单元测试题及答案

最新人教版高中数学必修5第三章不等式单元测试题及答案

人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00aB ⎩⎨⎧<∆>00aC ⎩⎨⎧>∆<00aD ⎩⎨⎧<∆<00a2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3 8.已知集合A ={x |x 2-x-2<0},B ={x |-1<x <1},则( )A. A B ⊆B.B AC. A = BD. A ∩B =∅8、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1B 21C 22D 41 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方 10. 设U =R ,M ={x |x 2-2x >0},则 C U M =( )A.[0,2]B.RC.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)12、在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15、不等式255122x x -+>的解集是 .三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0; (3) 0322322≤--+-x x x x18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.19、当1>x 时,求11222-+-=x x x y 的最小值. (12分)20、已知15,13a b a b ≤+≤-≤-≤,求32a b -的取值范围。

(典型题)高中数学必修五第三章《不等式》测试卷(包含答案解析)

(典型题)高中数学必修五第三章《不等式》测试卷(包含答案解析)

一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D4.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .56.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225497.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+8.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .210.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b >D .33a b >12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.14.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.15.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面,则ab 的最小值为_______. 18.已知11()2x x f x e e a --=++只有一个零点,则a =____________.19.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的3倍.若存在正实数x ,y 使得12(2)(1)AC AB AD x y=-+-成立,则x y +的最小值为___________. 20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润? 22.解关于x 的不等式2(41)40ax a x -++>. 23.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.24.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.25.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.26.已知F 1,F 2是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,过椭圆的上顶点的直线x +y =1被椭圆截得的弦的中点坐标为3144P ⎛⎫⎪⎝⎭,. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 交椭圆于A ,B 两点,当△ABF 2面积最大时,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C++≥转化为y kx b≤+(或y kx b≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122zy x=-过点C时,直线122zy x=-的截距最大,此时z最小,420xx y=⎧⎨--=⎩,解得()4,2A.代入目标函数2z x y=-,得4220z =-⨯=,∴目标函数2z x y =-的最小值是0. 故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.6.C解析:C 【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩.画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.7.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt(,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-,表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.10.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的11.D解析:D 【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.C解析:C【分析】根据条件作出可行域,根据图形可得出答案.【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11.故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解.【详解】由,0x y >满足35x y xy +=,可得315x y +=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯ 1211(132)(1312)5553y x x y ⨯≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5.故答案为:5.【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.14.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值 解析:23【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出.【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c,则由图可知12c ≥,即2c ≥,将2z y x =-化为122z y x =+, 观察图形可知,当直线122z y x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23.【点睛】方法点睛:线性规划常见类型,(1)y b z x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a z y x b b =-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.15.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小,此时z 最大,由22 22x y x y -⎧⎨+⎩== ,得A (1,0). 代入目标函数z=x-2y ,得z=1-2×0=1,故答案为1.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最 解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案.【详解】根据题意,令()2f x x mx m ++=, 若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭, 实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题. 17.【解析】分析:由正弦定理将2ccosB =2a +b 转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab 的最小值详解:2ccosB =2a +b 由 解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0B B π<,得1cos 2C =-,0C π<<,得23C π=,则△ABC 的面积为1sin 2S ab C ==,即3c ab =, 由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等,∴2229ab ab a b +≤,即13ab ≥, 故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.18.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】由函数11()2x x f x ee a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解.【详解】由题意,函数11()2x x f x e e a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解,令()11x x g x ee --=+因为110,0x x e e -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-.故答案为:1-.【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.19.【分析】由面积比得再利用三点共线可得出的关系从而利用基本不等式可求得的最小值【详解】如图设与交于点由得所以又三点共线即共线所以存在实数使得因为所以所以又因为所以当且仅当即时等号成立所以的最小值为故答【分析】由面积比得3BM MD =,再利用,,A M C 三点共线可得出,x y 的关系,从而利用基本不等式可求得x y +的最小值.【详解】如图,设AC 与BD 交于点M ,由1sin 231sin 2ABCADC AC BM AMB S BM S DM AC DM AMD ⋅∠===⋅∠△△得3BM MD =,所以1313()4444AM AB BM AB BD AB AD AB AB AD =+=+=+-=+, 又,,A M C 三点共线,即,AM AC 共线,所以存在实数k 使得AC k AM =, 因为12(2)(1)AC AB AD x y =-+-,所以11242314k x k y ⎧-=⎪⎪⎨⎪-=⎪⎩,所以327x y +=, 又因为0,0x y >>,所以1321321()()(5)5777y x x y x y x y x y ⎛+=++=++≥+= ⎝,当且仅当32y x x y =,即x =,y =时等号成立. 所以x y +.故答案为:57+.【点睛】本题考查向量共线定理,考查基本不等式求最值,解题关键是利用平面向量共线定理得出,x y 的关系,然后用“1”的代换,凑配出定值,用基本不等式求得最小值.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最 解析:4【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B +的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--.所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>. 所以121121414(2)()(4)[4]4222A B A B A B A B A B B A B A+=⨯+⨯+=++≥+⋅=. 当且仅当1,12A B ==时取“等号”. 所以12A B+的最小值为4. 故答案为:4【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)20k =,()16002440,010L x x x =--≥+;(2)30万元. 【分析】(1)0x =,28,y =代入已知模型求出k ,得年销售量函数解析式,求出销售价格后可得 利润函数;(2)利用基本不等式求最值.【详解】(1)由题意,可知当0x =时,28,y =283010k ∴=-, 解得20k =203010y x ∴=-+ 又每件产品的销售价格为801601.5y y +⨯元, ()801601.580160y L y y x y ⎛⎫+∴=⨯-++ ⎪⎝⎭4080y x =+-2040803010x x ⎛⎫- ⎝=+⎪⎭-+ ()16002440,010x x x =--≥+ (2)0x ≥,()1016001600101070101010x x x x ∴+=++++-≥== 当且仅当16001010x x =++时等号成立, 2440702370y ∴≤-= max 2370y ∴=故该工厂计划投入促销费为30万元时,才能获得最大利润,最大利润为2370万元.【点睛】关键点点睛:本题考查函数的应用,在已知函数模型时,需从题目中选取恰当的数据求出参数值,然后根据提示模型求出函数解析式.函数应用题中求最值方法一是利用基本不等式求得最值,一是利用函数的单调性求得最值.基本不等式要注意其最值存在的条件. 22.答案见解析【分析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->,再对a 进行分类讨论,比较根的大小,即可得答案;【详解】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x --> (1)当0a =时,不等式化为40x -<,解得4x <,(2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<, (3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >, (4)当14a =时,不等式化为2(4)0x ->,解得4x ≠, (5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >, 综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 【点睛】本题考查含参一元二次不等式的求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力,求解时注意讨论的依据是比较根的大小.23.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3.(2)①当0a =时,()30f x =-≤恒成立;②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】 研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.24.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =. 【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解.【详解】作出可行域,如图ABC 内部(含边界), 由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,, 作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.25.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-, 解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =. 所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 平行,所以它们之间的距离为223=51024+; 点Q 到直线2410x y ++=的距离为2254|2+4+1|2933=53024⨯⨯+.所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030(,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.26.(Ⅰ)23x +y 2=1;(Ⅱ)x ﹣y 2+=0或x +y 2+=0.【分析】(Ⅰ)根据直线椭圆的过上顶点,得b =1,再利用点差法以及弦中点坐标解得a 2=3,即得椭圆方程;(Ⅱ)先设直线l 方程并与椭圆方程联立,结合韦达定理,并以|F 1F 2|为底边长求△ABF 2面积函数关系式,在根据基本不等式求△ABF 2面积最大值,进而确定直线l 的方程. 【详解】(Ⅰ)直线x +y =1与y 轴的交于(0,1)点,∴b =1, 设直线x +y =1与椭圆C 交于点M (x 1,y 1),N (x 2,y 2), 则x 1+x 232=,y 1+y 212=,∴221122x y a b +=1,222222x y a b+=1, 两式相减可得21a (x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0, ∴()2121221212()y y b x x x x a y y -+=--+, ∴22b a- ⋅3212=-1,解得a 2=3,∴椭圆C 的方程为23x +y 2=1.(Ⅱ)由(Ⅰ)可得F 1(,0),F 2,0),设A (x 3,y 3),B (x 4,y 4),可设直线l 的方程x =my l 的方程x =my 代入23x +y 2=1,可得(m 2+3)y 2﹣my ﹣1=0, 则y 3+y423m =+,y 3y 4213m -=+, |y 3﹣y 4|== ∴212ABF S=|F 1F 2|⋅|y 3﹣y 4|=⋅|y 3﹣y 4|==≤=,=,即m =±1,△ABF 2面积最大,即直线l 的方程为x ﹣y =0或x +y =0. 【点睛】本题考查椭圆标准方程、点差法、基本不等式求最值以及利用韦达定理研究直线与椭圆位置关系,考查综合分析与求解能力,属中档题.。

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。

(典型题)高中数学必修五第三章《不等式》检测卷(答案解析)

(典型题)高中数学必修五第三章《不等式》检测卷(答案解析)

一、选择题1.已知2244x y +=,则2211x y +的最小值为( ) A .52 B .9 C .1 D .942.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64 B .81 C .100 D .1213.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( ) A .1- B .2 C .3 D .44.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R 6.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .57.设,x y 满足约束条件0{4312x y x x y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5 B .2,6 C .[]2,10D .[]3,11 8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( )A .m ≤0B .0≤m <57C .m <0或0<m <57D .m <5710.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1b B .a 2>b 2 C .21a c +>21b c + D .a |c |>b |c | 11.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∧ D .()p q ∧⌝12.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤ B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤ 二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.15.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.16.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______. 17.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.18.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________19.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x y x+的取值范围是__________. 20.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.三、解答题21.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅- ⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大?(3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).22.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (*x ∈N )名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元(0a >),剩下的员工平均每人每年创造的利润可以调高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?25.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x +5.26.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地. (1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】 由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭222222221414955444y x y x x y x y ⎛⎛⎫=++≥+⨯= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立. 故选:D .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值.【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += , z ax by =+中,由于0,0a b >>,a b是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值,则561a b +=,所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.3.D解析:D【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论.【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时,使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A , 所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象.【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<, ∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C .【点睛】 关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.A解析:A【解析】 分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集. 详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.6.B解析:B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2. z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.7.D解析:D【分析】试题分析:作出不等式组0{4312x y x x y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.C解析:C【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围【详解】由()()()123f f f -=-=-可得184********a b c a b c a b c a b c-+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩ 则()32611f x x x x c =+++所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<,故选C .【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.D解析:D【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立令g (x )=mx 2-mx +m -5,对称轴为12x =当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0当m >0时,有g (x ) 开口向上且在[1,3]上单调递增∴在[1,3]上max ()(3)750g x g m ==-<,得507m <<综上,实数m 的取值范围为57m <故选:D【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围 10.C解析:C【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案.【详解】当a =1,b =-2时,满足a >b ,但11a b >,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D ,故选:C.【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.A解析:A【分析】 由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】 解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.12.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫ ⎪⎝⎭在可行域内即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥,即可直接求解. 【详解】30a b ab +-+=,3a b ab ∴+=-,a b为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5. 【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.15.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.16.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最解析:13- 【分析】 由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4zy x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-,()2717134343343xx y x y x x z x x x +∴+-=-=---,()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-,所以,()()717171311143343433x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当t = 因此,x y x y z ++-1.故答案为:13-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2 【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值. 【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.22(31)(11)2-+-=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.18.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.19.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大; 联立1{4x x y =+=,可得13x y ,即()1,3A ,联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤,所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.20.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.三、解答题21.(1)3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65 【分析】(1)根据已知条件列出关系式,即可得出答案; (2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544kx x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004kk x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】 (1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204kk x x =---+,即3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544kx x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004kk x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+,令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x mm++++==+++,由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题. 22.(1)3. (2)5. 【解析】 试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论. 试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元,则由,可得∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出, ∴二手车出售后,小张的年平均利润为,当且仅当时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大. 考点:根据实际问题选择函数类型, 基本不等式 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1)最多调整500名员工从事第三产业;(2)(]0,5.【分析】(1)根据题意可列出()()10100010.2%101000x x -+≥⨯,进而解不等式求得x 的范围,确定问题的答案.(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a 的范围.【详解】(1)由题意,得()()10100010.2%101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤,即最多调整500名员工从事第三产业;(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫-≤-+ ⎪ ⎪⎝⎭⎝⎭, 所以23500x ax -≤2110002500x x x +--, 所以221000500x ax x ≤++,即210001500x a x ≤++在(]0,500x ∈时恒成立,因为210004500x x+≥=, 当且仅当21000500x x =,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤,所以a 的取值范围为(]0,5.【点睛】本题主要考查了基本不等式在求最值问题中的应用,考查了学生综合运用所学知识,解决实际问题的能力,属于常考题.25.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.26.(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽.【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x 米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.。

(压轴题)高中数学必修五第三章《不等式》检测题(有答案解析)(2)

(压轴题)高中数学必修五第三章《不等式》检测题(有答案解析)(2)

一、选择题1.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .52.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-3.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .14.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞5.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b+的最小值为( ) A .2B .4CD.6.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>7.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .28.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-9.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .6010.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭12.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.15.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.16.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.17.若实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则1x y x ++的取值范围为_____.18.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.19.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.20.已知实数x ,y 满足10,0,0,x y x y x +-≤⎧⎪-≤⎨⎪≥⎩则函数2z x y =-的最大值为__________.三、解答题21.解关于x 的不等式2(41)40ax a x -++>. 22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.23.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).24.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3ma b +=,求212a b +的最小值.25.已知关于x 的一元二次不等式2(1)0ax a x b -++<的解集为112x x x ⎧⎫-⎨⎬⎩⎭或.(Ⅰ)求,a b 的值;(Ⅱ)若不等式2(2)30bx m a x m +++-≥对任意实数[0,4]m ∈恒成立,求实数x 的取值范围.26.已知函数()()231f x x a x b =-++.(1)当1a =,5b =-时,解不等式()0f x >;(2)当222b a a =+时,解关于x 的不等式()0f x <(结果用a 表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.A解析:A 【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.3.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解.【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.4.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.5.B解析:B 【分析】求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=,表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上, 故220a b --+=,即22a b +=,∴22122221122422a ba b b a b a a b a b a b a b+++=+=++++⋅, 当且仅当22b aa b=,即2a b =时,等号成立, 故选:B . 【点睛】本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题.6.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩则()32611f x x x x c =+++所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.7.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.8.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.9.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a ++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.12.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <.故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,22a b +≥=,当且仅当2a b =,即2a =,4b =时等号成立.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5. 【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.16.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】 由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】由110,0,1x y x y >>+=, 得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy +-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.【分析】作出不等式组对应的平面区域然后化简目标函数利用不等式的几何意义利用线性规划的知识进行求解即可【详解】解:实数满足不等式组的可行域如图三角形的三边及其内部部分:它的几何意义是可行域内的点与连线解析:5,53⎡⎤⎢⎥⎣⎦【分析】作出不等式组对应的平面区域,然后化简目标函数,利用不等式的几何意义,利用线性规划的知识进行求解即可. 【详解】解:实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,的可行域如图,三角形ABC 的三边及其内部部分:111x y y x x+++=+,它的几何意义是可行域内的点与()0,1D -连线的斜率加1, 由图象知BD 的斜率最小,CB 的斜率最大,由4020x y x y +-=⎧⎨-+=⎩解得()1,3C ,此时DC 的斜率:3141+=, 由25040x y x y --=⎧⎨+-=⎩得()3,1B ,此时BD 的斜率:11233+=, 则1x y x ++的取值范围为是5,53⎡⎤⎢⎥⎣⎦,故答案为:5,53⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.18.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.19.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.20.【解析】作出不等式所表示的平面区域如图所示由得作出直线并平移由图象可知当直线经过点时纵截距最小此时最大联立得即故 解析:12【解析】作出不等式所表示的平面区域,如图所示,由2z x y =-得2y y z --,作出直线2y x =,并平移,由图象可知,当直线经过点A 时,纵截距最小,此时z 最大,联立10x y y x +-=⎧⎨=⎩,得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即11,22A ⎛⎫ ⎪⎝⎭,故1112222max z =⨯-=.三、解答题21.答案见解析 【分析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->,再对a 进行分类讨论,比较根的大小,即可得答案; 【详解】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->(1)当0a =时,不等式化为40x -<,解得4x <,(2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<, (3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >,(4)当14a=时,不等式化为2(4)0x ->,解得4x ≠,(5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >,综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭;14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;【点睛】本题考查含参一元二次不等式的求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力,求解时注意讨论的依据是比较根的大小. 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦. 【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果. 【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.(1)3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65 【分析】(1)根据已知条件列出关系式,即可得出答案; (2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544kx x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004kk x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】 (1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204kk x x =---+,即3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦ 故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004kk x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+,令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x mm++++==+++, 由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.24.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.25.(Ⅰ)2,1a b =-=;(Ⅱ){}(,1]1[3,)-∞-⋃⋃+∞.【详解】试题分析:(1)一元二次不等式的解集的端点即相应的二次方程的根;(2)二次不等式恒成立问题结合相应的函数图象特征,抓端点值即可.试题(Ⅰ)由根与系数的关系得11122,1112a a ab b a +⎧-+=⎪⎪⇒=-=⎨⎪-⨯=⎪⎩ (Ⅱ)由题意()2430x m x m +-+-≥对任意[]0,4m ∈恒成立,即()21430m x x x -+-+≥令()()2143g m x m x x =-+-+,即()()220430410g x x g x ⎧=-+≥⎪⎨=-≥⎪⎩, 故(]{}[),113,x ∈-∞-⋃⋃+∞.26.(1)()(),15,-∞-+∞;(2)1a >时,解集为()1,2a a +,1a =时,解集为∅,1a <时,解集为()2,1a a +.【分析】(1)求出()0f x =的根(由因式分解完成),根据二次函数的图象写出结论.(2)化简变形表达式[]()(2)(1)f x x a x a =--+,然后根据2a 和1a +的大小关系分类讨论.【详解】(1)当1a =,5b =-时()()()24515f x x x x x =--=+-, ∴()0f x >的解集为()(),15,-∞-+∞.(2)当222b a a =+时,()()()()22312221f x x a x a a x a x a =-+++=--+⎡⎤⎣⎦,()0f x <即()()210x a x a --+<⎡⎤⎣⎦,①当1a >时,21a a >+,此时不等式的解集为()1,2a a +,②当1a =时,21a a =+,此时不等式的解集为∅,③当1a <时,21a a <+,此时不等式的解集为()2,1a a +.【点睛】本题考查解一元二次不等式,掌握一元二次不等式的解,二次函数的图象,一元二次方程的根之间的关系是解题关键.。

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小? 18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩ 解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩ ∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元).∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。

(压轴题)高中数学必修五第三章《不等式》检测题(包含答案解析)(2)

(压轴题)高中数学必修五第三章《不等式》检测题(包含答案解析)(2)

一、选择题1.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .32.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .53.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1B .2C .2D .224.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-55.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6546.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B .42,2⎡⎤⎣⎦C .(][)1,24,⋃+∞D .([)41,22,⎤⋃+∞⎦7.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣148.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .29.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .910.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭11.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 14.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.15.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.16.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________. 18.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 19.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.20.若函数32()1f x x x mx =+++是R 上的增函数,则实数m 的取值范围是__________.三、解答题21.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A C b cB a c--=+.(1)求角A ;(2)若ABC 的外接圆半径为2,求ABC 周长的最大值. 24.已知关于x 的一元二次不等式2(3)30x m x m -++<. (Ⅰ)若不等式的解集为(2,3)-,求实数m 的值;(Ⅱ)若不等式的解集中恰有两个整数,求实数m 的取值范围. 25.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 26.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x,y满足约束条件2030x yx y mx-+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z=3x-4y得344zy x=-,它表示斜率为34纵截距为4z-的一系列直线,当直线经过点A时,直线的纵截距4z-最小,z最大.由3x y mx+-=⎧⎨=⎩,解得A(3,m-3),故()max33439z m=⨯--=,解得3m=.故选:D.【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量,x y;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y=;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z=为参数).2.C解析:C【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z=-+,由直线方程可知,要使z 最大,则直线2y x z=-+的截距要最大,结合可行域可知当直线2y x z=-+过点A时截距最大,因此,解出A点坐标,代入目标函数,即可得到最大值.【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=,即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫--- ⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.6.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.7.D解析:D【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.8.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】111()2()22f x x b k f b b b x b b''=+-∴==+≥⋅= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.11.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.二、填空题13.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()2111821211161102111029,a b a b a b a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛≥+ ⎝=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.1【分析】根据题意分析两圆的圆心与半径由两圆外切可得变形可得:据此可得结合基本不等式的性质分析可得答案【详解】解:根据题意圆其圆心为半径圆其圆心为半径若两圆外切则有变形可得:当且仅当时等号成立故的最解析:1 【分析】根据题意,分析两圆的圆心与半径,由两圆外切可得12||C C R r =+,变形可得:2249a b +=,据此可得22222211a b a b a b+=+,结合基本不等式的性质分析可得答案.【详解】解:根据题意,圆221:()4C x a y ++=,其圆心1C 为(,0)a -,半径2r ,圆222:(2)1C x y b +-=其圆心2C 为(0,2)b ,半径1R =,若两圆外切,则有12||3C C R r =+=,变形可得:2249a b +=,2222222222222211111141(4)()(5)(521999a b a b a b a b a b a b b a +=+=++=+++=,当且仅当222a b =时等号成立,故2222a b a b+的最小值为1;故答案为:1.【点睛】本题考查圆与圆的位置关系,涉及基本不等式的性质以及应用,属于中档题.15.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.16.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.17.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】如图所示,则ABC的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭.当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩时取等号. 所以,a +3c 的最小值为8+43. 故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.18.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案.【详解】0a >,0b >,且a ,1,b 依次成等差数列, ∴2a b +=,∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.19.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围.【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立, 只需()2231m f x x x x <-=-+恒成立,设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.20.【分析】由题意知在上恒成立从而结合一元二次不等式恒成立问题可列出关于的不等式进而可求其取值范围【详解】解:由题意知知在上恒成立则只需解得故答案为:【点睛】本题考查了不等式恒成立问题考查了运用导数探究解析:1,3⎡⎫+∞⎪⎢⎣⎭【分析】由题意知2()320f x x x m '=++≥在R 上恒成立,从而结合一元二次不等式恒成立问题,可列出关于m 的不等式,进而可求其取值范围. 【详解】解:由题意知,知2()320f x x x m '=++≥在R 上恒成立,则只需22430m ∆=-⨯⨯≤,解得13m ≥. 故答案为:1,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在R 上恒成立问题,如若()200ax bx c a ++≥≠在R 上恒成立,可得00a >⎧⎨∆≤⎩ ;若()200ax bx c a ++≤≠在R 上恒成立,可得00a <⎧⎨∆≤⎩. 三、解答题21.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞. 【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围. 试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立,令()12h x x x ⎛⎫=+ ⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立, 又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=,则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型. 23.(1)3π;(2) 【分析】(1)正弦定理角化边可得a c b cb a c--=+,利用余弦定理,结合角A 的范围,即可得答案;(2)由(1)得3A π=,由正弦定理可得a 的值,利用余弦定理及均值不等式,即可求得b+c 的最大值,进而可得答案. 【详解】 (1)由sin sin sin A C b c B a c --=+及正弦定理得:a c b cb a c--=+,化简得222b c a bc +-=,∴2221cos 222b c a bc A bc bc +-===,又∵(0,)A π∈,∴3A π=.(2)∵ABC 的外接圆半径为2,3A π=,∴由正弦定理得324sinaR π==,解得a =∴由余弦定理得2222cos a b c bc A =+-⋅,∴2222212()3()32b c b c bc b c bc b c +⎛⎫=+-=+-≥+- ⎪⎝⎭,∴b c +≤b c =时,等号成立, ∴ABC的周长的最大值为a b c ++=【点睛】本题考查正弦定理、余弦定理、均值定理的应用,考查分析理解,求值化简的能力,属中档题.24.(Ⅰ)2m =-;(Ⅱ)[0,1)(5,6]⋃. 【分析】(1)根据不等式的解集为(2,3)-,得到关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,代入方程求解即可.(2)将不等式2(3)30x m x m -++<,转化为()(3)0x m x --<,然后分3m <和3m >讨论求解. 【详解】(1)由题意可知,关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3, 则2(2)2(3)30m m -+++=, 整理得5100m +=, 解得2m =-;(2)不等式2(3)30x m x m -++<,即为()(3)0x m x --<.①当3m <时,原不等式的解集为(,3)m , 则解集中的两个整数分别为1、2,此时01m ≤<;②当3m >时,原不等式的解集为(3,)m ,则解集中的两个整数分别为4、5,此时56m <≤.综上所述,实数m 的取值范围是[0,1)(5,6]⋃. 【点睛】本题主要考查一元二次不等式的解法以及应用,还考查了分类讨论求解问题的能力,属于中档题.25.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解. 【详解】(1)由2y <得2430x x -+<,即13x <<, 所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<, 由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<, 所以24m <<,所以实数m 的取值范围为()2,4. 【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般. 26.(1)-1,6;(2)答案见详解 【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解.【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠;②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27C .4D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a+3b的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域取得最优解(最大值)有无数多个,则m 的值为( ).A .-207 B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x 2=241x ,x =22时取等号;41+22yy ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; xyy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy ,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫ ⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =kx +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.ab ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即ab ≥ab 2+3(当且仅当a =b 时等号成立),∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即ab ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+=yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p 1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)....下载可编辑.. (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。

相关文档
最新文档