高一数学必修5第三章知识点
高中数学必修知识点归纳大全

高中数学必修知识点归纳大全高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。
下面是小编给大家带来的高中数学必修知识点归纳大全,以供大家参考!高中数学必修知识点归纳大全一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:直线与直线—平行、相交、异面;直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面—平行、相交。
3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线三、空间中的垂直关系1、直线与平面垂直定义:直线与平面内任意一条直线都垂直判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直性质:垂直于同一直线的两平面平行推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度2、平面与平面垂直定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)判定:一个平面过另一个平面的垂线,则这两个平面垂直性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直人教版高一数学知识点框架1.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结知识网络二、知识梳理一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。
高一上数学知识点总结

新人教版高中数学知识点总结高中数学必修1知识点 第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 A A =∅=∅ B A ⊆A A =A ∅=B A ⊇ =⋂AC U A C U =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我a Ab B们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法yxo如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.<x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞、[,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; 么,我们称M 是函数()f x 的最(2)存在0x I ∈,使得0()f x M =.那大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. (4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换 ②伸缩变换 ③对称变换 (2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数〖〗对数函数(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a aMM N N-=③数乘:log log ()n a a n M M n R =∈④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 (3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2b x a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b x a=-③判别式:∆④端点函数值符号.①k <x 1≤x 2⇔ ②x 1≤x 2<k ⇔③x 1<k <x 2⇔af(k)<0 ④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔f(k 1)f(k 2)<0,并同时考虑f(k 1)=0或f(k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p =②若2b p q a ≤-≤,则()2b m f a=-③若2b q a ->,则()m f q =()f q) p ,则(f p ≤-()2f a -(f q)q一、方程的根与函数的零点 1x 叫做函数))((D x x f y ∈=的零点。
高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
无锡市洛社高级中学高一必修5和必修3数学重要知识点整理清单

高一必修5和必修3数学重要知识点整理清单(重要资料、请妥善保管,并逐个整理过关)无锡市洛社高级中学 高一数学备课组必修5:第一章:解三角形 1、正弦定理:R CcB b A a 2sin sin sin ===(R 为外接圆半径) 2、边角互化关系式:cb a C B A C Rc B R b A R a ::sin :sin :sin sin 2,sin 2,sin 2====3、余弦定理: .2cos ,2cos ,2cos .cos 2,cos 2,cos 2222222222222222222abc b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a -+=-+=-+=-+=-+=-+=4、三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆ 5、三角形判断方法:设、、是的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C > 第二章:数列1、数列中与之间的关系:⎩⎨⎧>-==-.1,1,11时当时,当n S S n S a n nn2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
⑵通项公式:d n a a n )1(1-+= ⑶通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--; ③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m-=-⑷等差数列性质:m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+。
高一数学必修5不等式知识点总结

高一数学必修5不等式知识点总结不等式是高一数学必修5非常重要的概念,有哪些知识点需要了解?下面店铺给大家带来高一数学必修5不等式知识点,希望对你有帮助。
高一数学必修5不等式知识点不等式(inequality)用不等号将两个解析式连结起来所成的式子。
例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3等。
根据解析式的分类也可对不等式分类,不等号两边的解析式都是代数式的不等式,称为代数不等式;只要有一边是超越式,就称为超越不等式。
例如lg(1+x)>x是超越不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的最基本性质有:①如果x>y,那么yy;②如果x>y,y>z;那么x>z;③如果x>y,而z为任意实数,那么x+z>y+z;④ 如果x>y,z>0,那么xz>yz;⑤如果x>y,z<0,那么xz由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,其中比较有名的有:柯西不等式:对于2n个任意实数x1,x2,…,xn和y1,y2,…,yn,恒有(x1y1+x2y2+…+xnyn)2≤(x12+x22+…+xn2)(y12+y22+…+yn2)。
排序不等式:对于两组有序的实数x1≤x2≤…≤xn,y1≤y2≤…≤yn,设yi1,yi2,…,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin,L=x1y1+x2y2+…+xnyn,那么恒有S≤M≤L。
根据不等式的基本性质,也可以推出解不等式可遵循的一些同解原理。
主要的有:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
高一数学必修知识点总结(15篇)

高一数学必修知识点总结高一数学必修知识点总结(15篇)总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以给我们下一阶段的学习和工作生活做指导,为此要我们写一份总结。
但是却发现不知道该写些什么,下面是小编精心整理的高一数学必修知识点总结,仅供参考,希望能够帮助到大家。
高一数学必修知识点总结11.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。
高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。
考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。
4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。
5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。
高一数学知识点总结-填空版

高一数学 知识点总结必修一 集合与函数第一部分 集合1.集合与元素的关系,是从属关系,用_____2.集合与集合间的关系,是包含关系,用_____(子集、真子集)3、常见数集R_______ Q________ N________ Z_________ +*N N 或________; 4、集合的运算:(1)交集: B A ___ (取公共部分) (2)并集: B A ___ (取全部) (3)补集: A C u (U 中除掉A ,取剩下的;原集无等号,补集有等号)第二部分 函数1、 求函数的定义域时,一般遵循以下原则:① 分式的分母_______;②偶次方根的被开方数_________;③零次幂的底数________; ④ 对数的真数________;⑤正切y=tan x,定义域{x |x ≠Z k k ∉+,2ππ}⑥ 如果函数是由一些基本函数组合而成的,则它的定义域为各基本函数的定义域的交集. 2.求值域(最值)的方法:①画图,找最高最低点(二次函数等) ②根据单调性求最值③基本不等式(和定积有最大值,积定和有最小值) 3、函数的单调性① 画图看单调性(上升递增,下降递减) ② 证明步骤(1) 在区间上 x 1,x 2,设x 1<x 2; (2)作差 ; (3)变形 (4)定号(即判断差f (x 1)-f (x 2)的正负); (5)下结论(指出函数f (x )在区间上的单调性)。
4、函数的奇偶性①画图看奇偶性:奇函数的图象关于 对称;偶函数的图象关于 对称; ②利用定义判断函数奇偶性的格式步骤:(1)首先确定函数的 ,并判断其定义域是否关于 对称; (2)确定 与 的关系;(3)作出相应结论:若 ,则f (x )是偶函数;若 ,则f (x )是奇函数。
5、函数的零点①f(x)的零点指使f(x)=0的x 的值② 函数f(x)的零点轴的交点与函数的根方程x )(y 0)(f x f x =⇔=⇔③ 零点定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点(判断区间上有没有零点,关键看区间端点的函数值是否异号) 第三部分 指对幂函数1、 指数计算公式:()Q s r a ∈>,,0_____=⋅sr a a ________=s raa _____)(=s r a ______)(=r ab)1,,0_______(>∈>=*n N n m a anm , ________=n na 2、 对数值的计算公式:)0,0,10(>>≠>M N a a 且(1) 指对数互化:N a x=_______⇔ (2) 求对数值的计算公式_____1log =a _____log =a a ______log =n a a ______log =na a m(3) 同底对数式的加减计算法则_____log log =+N M a a _____log log =-N M a a (4) 不同底的对数计算① 化同底:______log =n a M m ②换底公式:_____log =b a 3、指对数函数的图像与性质4、幂函数:幂函数解析式的一般形式__________________ 重要的幂函数:必修四 三角函数与向量第一部分 三角函数 1、.扇形的计算公式:(a 为圆心角的弧度数,r 为半径)面积:__________________ 弧长:____________________2、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(x, y ),则sin α=_________;cos α=________;tan α=____________.3、同角三角函数的基本关系:(1)_________________(2)________________4、诱导公式:(π不变π/2变,符号看象限) ()ααπcos cos -=+()ααπsin sin -=+()ααπsin sin =-()ααπcos cos -=-()ααsin sin -=-()ααcos cos =-word 专业资料-可复制编辑-欢迎下载56、三角函数化简(和差角、倍角公式)7、()ααπtan tan =+()ααπtan tan -=-()ααtan tan -=-ααπcos 2sin =⎪⎭⎫ ⎝⎛-ααπsin 2cos =⎪⎭⎫ ⎝⎛-ααπcos 2sin =⎪⎭⎫ ⎝⎛+ααπ-sin 2cos =⎪⎭⎫ ⎝⎛+ααπ-cos 23sin =⎪⎭⎫ ⎝⎛-ααπ-sin 23cos =⎪⎭⎫ ⎝⎛-ααπ-cos 23sin =⎪⎭⎫⎝⎛+ααπsin 23cos =⎪⎭⎫ ⎝⎛+=+)(cos βα=-)(sin βα=-)(cos βα=+)tan(βα=-)(tan βα=+)(sin βα=α2sin =α2cos =αtan2=+=x x x f cos sin )(化简解析式:=+=x x x f cos 3sin )(第二部分 向量1、 2、加法、减法、数乘:3、数量积:4、模长:5、夹角:6、平行:7、垂直:必修一综合测试题一、选择题1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ⋂=( ) A .{}5 B .{}0,3 C .{}0,2,3,5 D .{}0,1,3,4,5 2.设集合2{650}M x x x =-+=,2{50}N x x x =-=,则MN 等于 ( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )=+=x x x x f 2cos 2cos sin 2)(()()___________AB B A 2211=,则,的坐标为,点,的坐标为若点y x y x ()(),则:,,,若2211y x b y x a == _______________________==⋅b a______________cos =θ(),,2121y y x x b a ±±=± ()11y x a λλλ,= __________=a1221//y x y x b a b a =⇔=⇔λ001221=+⇔=•⇔⊥y x y x b a b aA (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后, 所得函数的解析式应为 ( )A 1x 3x 2y --=B 1x 1x 2y ---= C 1x 1x 2y ++= D 1x 3x 2y ++-=7、设x x e1e )x (g 1x 1x lg )x (f +=-+=,,则 ( )A f(x)与g(x)都是奇函数B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数8、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) 9、若0.52a=,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题10、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______11、计算:2391- ⎪⎭⎫⎝⎛+3264=______12、函数212log (45)y x x =--的递减区间为______13、函数122x )x (f x -+=的定义域是______14.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 . 三、解答题1. 计算 5log 3333322log 2log log 859-+-2、 已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f (1)求)4(-f 、)3(f 、[(2)]f f -的值; (2)若10)(=a f ,求a 的值.3、已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由.4、已知函数()f x =1515+-x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:不等式
1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.
比较两个数的大小可以用相减法;相除法;平方法;开方法;倒数法等等。
2、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+;
④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;
⑧)0,1a b n n >>⇒>∈N >.
3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.
4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
判别式24b ac ∆
=-
0∆> 0∆= 0∆<
二次函数
2y ax bx c =++
()0a >的图象
一元二次方程2
0ax
bx c ++=
()0a >的根
有两个相异实数根
1,22b x a
-=
()12x x <
有两个相等实数根
122b x x a
==-
没有实数根
一元二次不等式的解集
20ax bx c ++> ()0a >
{}
1
2
x x x x x <>或
2b x x a ⎧⎫≠-⎨⎬⎩⎭
R
20ax bx c ++< ()0a >
{}1
2x x
x x <<
∅
∅
5、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.
6、二元一次不等式组:由几个二元一次不等式组成的不等式组.
7、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.
8、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P .
①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方.
②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.
9、在平面直角坐标系中,已知直线0x y C A +B +=.
①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线
0x y C A +B +=下方的区域.
②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线
0x y C A +B +=上方的区域.
10、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.
目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.
线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .
可行域:所有可行解组成的集合.
最优解:使目标函数取得最大值或最小值的可行解.
11、设a 、b 是两个正数,则2
a b
+称为正数a 、b a 、b 的几何平均数.
12、均值不等式定理: 若0a >,0b >,则a b +≥2
a b
+≥. 13、常用的基本不等式:
①()2
2
2,a b ab a b R +≥∈;
②()22
,2
a b ab a b R +≤∈;
③()20,02a b ab a b +⎛⎫
≤>> ⎪⎝⎭;④()2
22,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭
.
14、极值定理:设x 、y 都为正数,则有
⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值2
s .
⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值。