约场中学八年级第二学期数学期终测试卷2
人教版数学八年级下学期期中测试卷二(含答案及解析)

人教版数学八年级下学期期中测试卷二一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.22.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =24.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=255.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2B.C.2D.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.58.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=.12.(3 分)若a=2+,b=2﹣,则ab 的值为.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为.15.(3 分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD 的面积为.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ABC 的顶点A 在△ECD 的斜边上,若AE=,AD=,则AC 的长为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.(8 分)计算:(I)(+ )+(﹣);(II)2 ×÷5 .18.(8 分)已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.19.(10 分)已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.20.(12 分)如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.21.(10 分)如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.22.(12 分)在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.23.(12 分)如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).人教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:=5.故选:B.2.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x 的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.3.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =2【分析】先把各个二次根式化成最简二次根式再合并判断即可.【解答】解:A、,错误,不符合题意;B、,错误,不符合题意;C、,正确,符合题意;D、,错误,不符合题意;故选:C.4.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=25【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、12+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.5.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选:A.6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2 B.C.2 D.【分析】根据题意,可以得到AC 和BC 的长,然后利用勾股定理,即可得到AB 的长,本题得以解决.【解答】解:作BC∥x 轴,作AC∥y 轴交BC 于点C,∵点A(﹣4,4),点B(﹣3,1),∴AC=3,BC=1,∵∠ACB=90°,∴AB==,故选:B.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.5【分析】正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短,根据勾股定理可求出路径长,【解答】解:如图,它运动的最短路程AB==,故选:C.8.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形【分析】根据勾股定理得出a2+b2=c2(设 c 为最长边),再逐个判断即可.【解答】解:∴a,b,c 为直角三角形的三边,设c 为最长边,∴a2+b2=c2,A.∵a2+b2=c2,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴以2a,2b,2c 为边能组成直角三角形,故本选项不符合题意;B.∵a2+b2=c2,∴100a2+100b2=100c2,即(10a)2+(10b)2=(10c)2,∴以10a,10b,10c 为边能组成直角三角形,故本选项不符合题意;C.∵a2+b2=c2,∴a2+ b2=c2,即()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项符合题意;故选:D.9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°【分析】作AE⊥BC 于点E.根据面积的关系可以得到AB=2AE,进而可得∠ABE=30°,再根据平行四边形的性质即可求解.【解答】解:如图,作AE⊥BC 于点E.∵矩形的面积=BC•CF=2S=2BC•AE,平行四边形ABCD∴CF=2AE,∴AB=2AE,∴∠ABE=30°,∵AB∥CD,∴∠BCD=180°﹣∠ABE=150°.故选:D.10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.【分析】连接HF,直线HF 与AD 交于点P,根据正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD 的面积为24x2,进而求出FM,最后求得结果.【解答】解:如图,连接HF,直线HF 与AD 交于点P,∵正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2 x,由折叠可知:正方形ABCD 的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2 x,∴FM=PH=(PM﹣HF)=(2 x﹣2 x)=(﹣)x,∴==.故选:A.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=10 .【分析】根据二次根式的性质计算.【解答】解:原式=5+5=10.12.(3 分)若a=2+,b=2﹣,则ab 的值为 1 .【分析】直接利用平方差公式计算得出答案.【解答】解:∵a=2+ ,b=2﹣,∴ab=(2+ )×(2﹣)=4﹣3=1.故答案为:1.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为60°.【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【解答】解:设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故答案为:60°.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为3﹣.【分析】由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.【解答】解:连接AB,AD,如图所示:∵AD=AB==2 ,∴DE==,∴CD=3﹣.故答案为:3﹣.15.(3 分)如图,有一四边形空地 ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为 36 .【分析】连接 BD ,先根据勾股定理求出 BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形 ABCD 的面积.【解答】解:如图,连接 BD ,∵在 Rt △ABD 中,AB ⊥AD ,AB =3,AD =4,根据勾股定理得,BD =5,在△BCD 中,BC =12,CD =13,BD =5,∴BC 2+BD 2=122+52=132=CD 2,∴△BCD 为直角三角形,∴S 四边形 ABCD =S △ABD +S △BCD= AB •AD + BC •BD= ×3×4+ ×12×5=36.故答案为:36.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点 A 在△ ECD 的斜边上,若 AE = ,AD = ,则 AC 的长为 .【分析】连接 BD ,根据等腰直角三角形性质和全等三角形的性质可得 AE =BD =,根据勾股定理可求 BC 的长,即可求解.【解答】解:如图,连接 BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∠CED=∠EDC=45°,∴∠ACE=∠DCB,且CE=CD,AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD=,∠CED=∠CDB=45°,∵∠ADB=∠EDC+∠CDB,∴∠ADB=90°,∴AB2=AD2+DB2=3+7=10,∴AB=,∵AC2+BC2=AB2,∴AC=BC=,故答案为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.计算:(I)(+ )+(﹣);(II)2 ×÷5 .【分析】(I)直接化简二次根式进而合并得出答案;(II)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(I)(+ )+(﹣)=2 +2 + ﹣=3 + ;(II)2 ×÷5=4 ×÷5=3×=.18.已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.【分析】首先计算x2的值,然后代入所求的式子利用平方差公式计算,最后合并同类二次根式即可.【解答】解:x2=(2﹣)2=7﹣4 ,则原式=(7+4 )(7﹣4 )+(2+ )(2﹣)+=49﹣48+1+=2+ .19.已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.【分析】证出∠A=∠B=∠C=∠D=90°,直接利用三个角是直角的四边形是矩形,进而得出即可.【解答】证明:∵四边形ABCD,∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD 是矩形.20.如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为9 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD 即可;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)AC==,S△ABC=4×5﹣×2×4﹣×2×5﹣×1×4=9,故答案为,9;(2)如图所示,BD 即为所求,(3)∵S△ABC=AC•BD=BD=9,∴BD=.21.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.【分析】(I)先利用勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半的性质即可得到CM 的长;(Ⅱ)先求出∠BCD,再根据直角三角形两锐角互余求出∠B,根据直角三角形斜边上的中线等于斜边的一半可得AM=MC,根据等边对等角可得∠ACM=∠A,再求出∠MCD=45°.【解答】解:(Ⅰ)∵在△ABC 中,∠ACB=90°,BC=1,AC=3,∴AB==,∵M 是斜边的中点,∴CM=AB=;(Ⅱ)∵∠ACB=∠ACD+∠BCD=90°,∠ACD=3∠BCD,∴∠ACD=90°×=67.5°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=22.5°,∵CM=AB=AM,∴∠ACM=∠A=22.5°,∴∠MCD=∠ACD﹣∠ACM=67.5°﹣22.5°=45°.22.在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.【分析】(1)如图1,过A 作AD⊥BC 于D,根据等腰三角形的性质得到BD=CD=3,求得AD =4,根据折叠的性质得到AM=CM,AN=AC=,设AM=CM=x,根据勾股定理即可得到结论;(2)如图2,过A 作AE⊥BC 于E,根据等腰三角形的性质得到BE=CE=BC,设BC=2t,CD =3t,AE=h,得到BE=CE=t,根据勾股定理和勾股定理的逆定理即可得到结论.【解答】解:(1)如图1,过A 作AD⊥BC 于D,∵AB=AC=5,BC=6,∴BD=CD=3,∴AD=4,∵将△ABC 沿MN 折叠,使得点C 与点A 重合,∴AM=CM,AN=AC=,设AM=CM=x,∴MD=x﹣3,∵AD2+DM2=AM2,∴42+(x﹣3)2=x2,解得:x=,∴MN===;(2)如图2,过 A 作AE⊥BC 于E,∵AB=AC,∴BE=CE=BC,∵BC:CD=2:3,∴设BC=2t,CD=3t,AE=h,∴BE=CE=t,∵AB=5,AD=10,∴h2+t2=52,h2+(4t)2=102,联立方程组解得,t=(负值舍去),∴BD=5 ,∵AB2+AD2=52+102=125=(5 )2=BD2,∴△ABD 是直角三角形.23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).【分析】(I)根据正方形的性质可得AC⊥OA,CB⊥OB,结合A,B 两点坐标可求解;(II)根据中点的定义可得AM=3,设OE=x,则EM=OE=x,AE=6﹣x,利用勾股定理可求解x 值,进而求解E 点坐标;(III)设点E 的坐标为(0,a),由勾股定理可求解a 值,进而求解E 点坐标.【解答】解:(I)∵正方形AOBC,A(0,6),B(6,0),∴OA=AC=CB=OB=6,且每个内角都是90°,即AC⊥OA,CB⊥OB,∴C(6,6);(II)∵M 为AC 的中点,∴AM=AC=3,设OE=x,则EM=OE=x,AE=6﹣x,在Rt△AEM 中,EM2=AM2+AE2,∴(6﹣x)2+32=x2,解得x=,∴E(0,);(III)设点E 的坐标为(0,a),由题意得OE=EM=a,AE=6﹣a,AM=t,在Rt△EAM 中,EM2=AM2+AE2,∴a2=(6﹣a)2+t2,解得a=,∴点E 的坐标为(0,).。
八年级数学第二学期期中综合测试二(答案)

八年级数学第二学期期中综合测试(二)满分:100分时间:40分钟一、选择题:本大题共6小题,每小题5分,共30分。
1.下列二次根式中,与3是同类二次根式的是(B)A.18 B.13C.24 D.0.32.如图1,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4 m.如果保持梯子底端的位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,那么小巷的宽度为(C) A.0.7 m B.1.5 m C.2.2 m D.2.4 m3.已知a,b是方程x2+x-3=0的两个实数根,则a2-b+2 019的值是( A )A.2 023 B.2 021 C.2 020 D.2 0194.已知M=23a-1,N=a2-79a(a为任意实数),则M、N的大小关系为( A )A.M<N B.M=N C.M>N D.不能确定5.定义:如果一元二次方程:ax2 +bx +c =0(a≠0)满足a + b + c = 0,那么我们称这个方程为“凤凰”方程,已知ax2 +bx +c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( A )A.a = c B.a = b C.b = c D.a = b = c6.如图2,已知等腰直角三角形ABC的各顶点分别在直线l1,l2,l3上,且l1∥l2∥l3,l1,l2间的距离为1,l2,l3间的距离为3,则AB的长度为(D )A.2 2 B.3 2 C.4 2 D.5 2图1 图2 图3 图4 图5二、填空题:本大题共6小题,每小题5分,共30分。
7.当-1<x<3时,化简:x-32+x2+2x+1=___4____.8.已知2+3是关于x的方程x2-4x+m=0的一个根,则m=__1____.9.公元三世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图3,设勾a=6,弦c=10,则小正方形ABCD的面积是 4 .10.如图4,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB= 6 .11.若一个直角三角形的两直角边的长恰好是方程x2-72x+172=0的两根,则该直角三角形的斜边长为___9__.12.如图5,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是____3<BC<23____.三、解答题:本大题共4小题,每小题10分,共40分。
人教版八年级数学第二学期期中考试试卷及答案2

人教版八年级数学第二学期期中考试试卷及答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列根式中是最简二次根式的是()A.B.C.D.2.(3分)下列各组线段中,不能组成直角三角形的一组是()A.,2,B.0.3,0.4,0.5C.8,24,25D.5,12,133.(3分)如图,数轴上的点可近似表示的值是()A.点A B.点B C.点C D.点D4.(3分)要使+有意义,则x应满足()A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤35.(3分)如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为()A.2B.C.3D.46.(3分)如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m7.(3分)如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD⊥BC且AB=AC,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是矩形8.(3分)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个9.(3分)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()A.3B.C.5D.10.(3分)如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7B.C.D.2二.填空题(共8小题,满分24分,每小题3分)11.(3分)把化为最简二次根式,结果是.12.(3分)最简二次根式与是同类二次根式,则b=.13.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB 是平行四边形,则点D的坐标是.14.(3分)如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为3、4,则正方形的周长为.15.(3分)如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.16.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.17.(3分)如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P 分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.18.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH 的长是.三.解答题(共5小题,满分42分)19.(6分)计算:()2+2×3.20.(6分)已知y=+﹣4,计算x﹣y2的值.21.(10分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.22.(10分)如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.23.(10分)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列根式中是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的条件:①被开方数不含能开得尽方的因数或因式;②被开方数不含分母,据此逐项判断即可.【解答】解:A、被开方数是分数,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、=3可以化简,不是最简二次根式;D、=2可以化简,不是最简二次根式;故选:B.2.(3分)下列各组线段中,不能组成直角三角形的一组是()A.,2,B.0.3,0.4,0.5C.8,24,25D.5,12,13【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、()2+22=()2,故能组成直角三角形;B、0.32+0.42=0.52,故能组成直角三角形;C、82+242≠252,故不能组成组成直角三角形;D、52+122=132,故能组成组成直角三角形.故选:C.3.(3分)如图,数轴上的点可近似表示的值是()A.点A B.点B C.点C D.点D【分析】先利用二次根式的除法法则得到原式=3+,然后利用无理数的估算和数轴表示数的方法进行判断.【解答】解:原式=3+=3+,而2<<3,∴点C表示的数可近似表示3+.故选:C.4.(3分)要使+有意义,则x应满足()A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.5.(3分)如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为()A.2B.C.3D.4【分析】根据平行四边形的性质可知,OA=OC,OB=OD,由AC:BD=2:3,推出OA:OB=2:3,设OA =2m,OB=3m,在Rt△AOB中利用勾股定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AC:BD=2:3,∴OA:OB=2:3,设OA=2m,BO=3m,∵AC⊥BD,∴∠BAO=90°,∴OB2=AB2+OA2,∴9m2=5+4m2,∴m=±1,∵m>0,∴m=1,∴AC=2OA=4.故选:D.6.(3分)如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4米,最后利用勾股定理得BC的长度即可.【解答】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.7.(3分)如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD⊥BC且AB=AC,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是矩形【分析】根据两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形,逐项分析即可.【解答】解:因为DE∥CA,DF∥BA,所以四边形AEDF是平行四边形.故A正确.∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B正确.若AD⊥BC且AB=AC,则四边形AEDF是菱形,故C正确;因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故D错误.故选:D.8.(3分)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个【分析】可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.【解答】解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选:D.9.(3分)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()A.3B.C.5D.【分析】延长BD交CA的延长线于E,根据等腰三角形三线合一的性质可得BD=DE,AB=AE,再求出CE,然后判断出DM是△BCE的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:延长BD交CA的延长线于E,∵AD为∠BAC的平分线,BD⊥AD,∴∠EAD=∠BAD,∠ADE=∠ADB=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=CE=×15=7.5.故选:D.10.(3分)如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7B.C.D.2【分析】如图作DH⊥BA交BA的延长线于H.首先证明△ABC≌△DHB,推出DH=AB=4,利用勾股定理求出AH、BD,即可解决问题;【解答】解:如图作DH⊥BA交BA的延长线于H.∵AC⊥BD,∴∠BEC=∠ABC=∠H=90°,∵∠BDH+∠HBD=90°,∠CAB+∠ABD=90°,∴∠CAB=∠HDB,∵AC=BD,∴△ABC≌△DHB,∴AB=DH=4,在Rt△BDH中,∵DH=4,AD=5,∴AH==3,∴AC=BD===,BC==7,∴BE==,DE=,EC==,在Rt△EDC中,DC==,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.(3分)把化为最简二次根式,结果是.【分析】直接利用二次根式的性质化简求出答案.【解答】解:,故答案为:12.(3分)最简二次根式与是同类二次根式,则b=2.【分析】利用同类二次根式的定义建立方程,解方程即可.【解答】解:∵与是同类二次根式,∴2b+1=7﹣b,7﹣b>0,2b+1>0,∴b=2,故答案为:213.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB 是平行四边形,则点D的坐标是(+1,1).【分析】利用平移的性质和平行四边形的判定即可得到结论.【解答】解:∵A(,0),∴OA=,∵四边形OADB是平行四边形,∴BD=OA=,BD∥OA,∵B(1,1),∴D(+1,1),故答案为:(+1,1).14.(3分)如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为3、4,则正方形的周长为20.【分析】证明△DF A与△AEB(AAS),推出AF=BE=3,利用勾股定理求出AD即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵DF⊥直线m、BE⊥直线m,∴∠DF A=∠AEB=90°,∴∠ADF+∠DAF=90°,∵∠DAF+∠BAE=180°﹣∠BAD=180°﹣90°=90°,∴∠FDA=∠BAE(同角的余角相等).∴△DF A与△AEB(AAS),∴AF=BE=3,∴AD===5,∴正方形ABCD的周长=4×5=20,故答案为20.15.(3分)如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是14.【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【解答】解:∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1416.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为32或42.【分析】在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD﹣CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【解答】解:在Rt△ABD中,BD==9;在Rt△ACD中,CD==5,∴BC=BD+CD=14或BC=BD﹣CD=4,∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=32.故答案为:32或42.17.(3分)如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P 分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.【分析】连接BP,利用勾股定理列式求出AC,判断出四边形BFPE是矩形;根据矩形的对角线相等可得EF=BP,再根据垂线段最短可得BP⊥AC时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【解答】(1)证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=BC•AB=AC•CP,即×4×3=×5•CP,解得CP=.故答案为:.18.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH 的长是.【分析】连接AC,CF,根据正方形的性质得到∠ACD=∠GCF=45°,求得∠ACF=90°,根据勾股定理得到AF===2,根据三角形的面积公式即可得到结论.【解答】解:连接AC,CF,∵正方形ABCD和正方形CEFG中,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵BC=1,CE=3,∴AC=,CF=3,∴AF===2,∵CH⊥AF,∴S△ACF=AC•CF=AF•CH,∴CH===,故答案为:.三.解答题(共5小题,满分42分)19.(6分)计算:()2+2×3.【分析】先利用完全平方公式计算,再利用二次根式的乘法法则运算,然后合并即可.【解答】解:原式=2﹣2+3+×3=5﹣2+2=5.20.(6分)已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.21.(10分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.【分析】(1)连接AC,根据勾股定理可知AC2=BA2+BC2,再根据AC2=DA2+DC2即可得出结论;(2)根据S四边形ABCD=S△ABC+S△ADC即可得出结论.【解答】解:(1)∠D是直角.理由:连接AC,∵∠B=90°,∴AC2=BA2+BC2=400+225=625,∵DA2+CD2=242+72=625,∴AC2=DA2+DC2,∴△ADC是直角三角形,即∠D是直角;(2)∵S四边形ABCD=S△ABC+S△ADC,∴S四边形ABCD=AB•BC+AD•CD=×20×15+×24×7=234.22.(10分)如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.【分析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.23.(10分)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【分析】(1)由勾股定理求出AC=8,设AP=t,则PC=8﹣t,在Rt△PCB中,依勾股定理得(8﹣t)2+62=t2,解方程即可;(2)分两种情况,①点P在BC上时,过点P作PE⊥AB,则PC=t﹣8,PB=14﹣t,证明△ACP≌△AEP(AAS),得出AE=AC=8,BE=2,在Rt△PEB中,依勾股定理得出方程,解方程即可;②点P又回到A点时,由AC+BC+AB=24,得出t=24;即可得出答案.【解答】解:(1)如图1,P A=PB,在Rt△ACB中,设AP=t,则PC=8﹣t,在Rt△PCB中,依勾股定理得:(8﹣t)2+62=t2,解得,即此时t的值为;(2)分两种情况:①点P在BC上时,如图2所示:过点P作PE⊥AB,则PC=t﹣8,PB=14﹣t,∵AP平分∠BAC且PC⊥AC∴PE=PC在△ACP与△AEP中,,∴△ACP≌△AEP(AAS),∴AE=AC=8,∴BE=2,在Rt△PEB中,依勾股定理得:PE2+EB2=PB2即:(t﹣8)2+22=(14﹣t)2解得:;②点P又回到A点时,∵AC+BC+AB=8+6+10=24,∴t=24;综上所述,点P在∠BAC的平分线上时,t的值为秒或24秒.。
人教版八年级数学第二学期期中测试二.doc

八年级第二学期数学期中测试卷二一、选择题(每题2分,共24分)1•函数尸占+ _2的自变量x的取值范围()A. XN2B. X>2C. XH2D. XW22.如图,在AABC中,DE/7CA, DF/7BA,下列四个判断不止确的是()A.四边形AEDF是平行四边形B.如果ZBAC二90°,那么四边形AEDF是矩形C.如果AD平分ZBAC,那么四边形AEDF是矩形D.如果AD1BC,且AB=AC,那么四边形AEDF是菱形3矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直4.已知在一次函数y二T・5x+3的图象上,有三点(-3, yj, (-1, y2), (2, y3),则y” y2,『3大小关系为()A. yl>y2>y3B. yl>y3>y2C. y2>yl>y3D.无法确定5.甲、乙两人在操场上赛跑,他们赛跑的路程(米)与时间(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点6 •在四边形ABCD中,M,N分别是CD, BC的中点,且AM丄CD, AN±BC,已知ZMAN=74° , ZDBC=41,则ZADB 度数为()A. 15°B. 17°C. 16°D. 32°7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形&如图,在菱形ABCD中,E是AB边上一点,JLZA=ZEDF=60° ,有下列结论:①AE二BF②ADEF是等边三角形;③ABEF是等腰三角形;④ZADE二ZBEF,其中结论正确的个数是( )A. 3B. 4C. 1D. 29.若直线与直线y=2x-3关于x轴对称,则直线I的解析式为()A. y=-2x~3B. y二一2x+3C. y = —x + 3D. y =——x-3' 丿 2 ? 210.若式子+^-l)0有意义,则一次函数=(k-l)x+l-k的图象可能是( ) />7\1\ 、\// X X0X X11.如图,一次函数yi=x+b与一次函数y2=kx+4的图象交于点P(l, 3),则关于x的不等式x+b>kx+4的解集是()A. x>~2B. x>0C. x>lD. x<l12.若等腰三角形的周长是80cm,则能反映这个等腰三角形的腰长y (cm)与底边长x (cm)的函数关系的图象是( )二、填空题(每题3分,共24分)13. ____________________________________________________________________ 已知菱形ABCD 的边长为乙ZDAB=60°,则对角线BD 的长是 ________________________________________ L 14. 如图,在口 ABCD 中,下列条件:①AC 二BD;②AB 二AD;③Z1二Z2;④AB 丄BC.能说明ABCD是矩形的有 ________________15. 如图,两个正方形的边长分别为a 和b,若a4+b 二10, ab=20,那么阴影部分的面积是 _____________ ・16. 在同一坐标系中,对于函数①y=-x-l ;②y=x+l :③y 二-2(x+l):④y 二-x+1的图彖经过(-1, 0)的是 ____________ ,相互平行的是 __________ ,与y 轴交于同一点的是 _________17. 若一次函数y 二kx+b 的图象不经过第三象限,则k, b 的取值范围分别为k _____ 0. b _______ 0. 18. 己知一次函数的图象过点(-2, 5),并且与y 轴交于点P,直线y 二-丄兀+ 3与y 轴交于点Q,点Q 恰好与点P 关于X 轴对称,则这个一次函数的解析式为 _______________ , 三、解答题(共52分)19. (6分)已知关于x 的一次函数y= (6+3m) x+ (n-4). (1) 当m, n 为何值时,y 随x 的增大而减小?(2) 当m, n 为何值时,函数的图象与y 轴的交点在x 轴的下方? (3) 当m, n 为何值时,函数图象经过原点?20. (7分)一次函数y 二kx+b,当-3WxWl 时,对应的函数值的取值范围为lWyW9,求k+b 的值.B C G21. (8分)已知一次函数y二kx+4的图象与两坐标轴围成的的三角形的面积为16,求这个一次函数的解析式22. (9分)如图,已知一次函数y二kx+b的图象经过A(-2, -1), B(l, 3)两点,并且交y轴于点D・(1)求该一次函数的解析式;(2)求AAOB的面积.23. (10 分)如图,在△ ABC 中,AB二AC, AD 平分ZBAC,CE〃AD 且CE二AD(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC, DE相交于点0,在CE上截取CF二CO,连接0F,求线段FC的长及四边形AOFE的面积.a24. (12分)某数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB二6,将一个直角放在正方形ABCI)上,使直角顶点与与D点重合•直角的一边交AB于点P,另一边交BC的延长线于点Q(1)求证:DP 二DQ;(2)如图②,小明在图①的基础上作ZPDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)如图③,固定直角顶点在D点不动,转动直角,使直角的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作ZPDQ的平分线DE交BC的延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出ADEP的面积.。
2021-2022学年八年级(下)期中数学试卷二

第 7 个等式为:15 2 56 ( 8 7)2 故答案为:15 2 56 ( 8 7)2 .
15.【解答】解:函数
y
x
1
2
的图象可以看成是由反比例函数
y
1 x
的图象向左平移
2
个单位长度得到.
故答案为:左,2.
16.【解答】解:作 BD AC 于 D ,如图, ABC 为等腰直角三角形, AC 2AB 2 2 , BD AD CD 2 , AC x 轴,C( 2 ,2 2) ,C( 2 ,2 2) 代入 y k 得 k 2 2 2 4 .故答案为 4.
D. 24 8 2 6 2
5.(2 分)迅速发展的 5G 网络峰值速率为 4G 网络峰值速率的 10 倍,在峰值速率下传输 500 兆数据,5G 网络比 4G
网络快 45 秒,求这两种网络的峰值速率.设 4G 网络的峰值速率为每秒传输 x 兆数据,依题意,可列方程是 ( )
A. 500 500 45 B. 500 500 45 C. 5000 500 45 D. 500 5000 45
2021-2022 年八年级(下)期中数学试卷二
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.)
1.(2 分)使得式子 x 有意义的 x 的取值范围是 (
)
4x
A. x 4
B. x 4
C. x4
D. x 4
2.(2
分)若分式
|
x x
| 1 1
的值等于
0,则
x
的值为
(
)
A. 1
B. 1
bb
2
2
5.【解答】解:设 4G 网络的峰值速率为每秒传输 x 兆数据,依题意,可列方程是 500 500 45 ,故选: B . x 10x
八年级第二学期期中考试(数学)试题含答案

八年级第二学期期中考试(数学)(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.若分式有意义,则实数x的取值范围是()A.x≥1且x≠﹣2B.x≥1C.x>1D.x≥1且x≠02.(3分)2.直角三角形的两条边长为5和12,它的斜边长为()A.13B.C.13或D.13或123.(3分)3.计算的结果是()A.B.C.D.4.(3分)4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形5.(3分)5.如图,长方形ABCD中,AB=4,AD=1,AB在x轴上.若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为()A.(3,0)B.(+1,0)C.(﹣1,0)D.(,0)6.(3分)6.如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,则MN的最小值是()A.1.5B.2C.4.8D.2.47.(3分)7.下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分8.(3分)8.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A.12B.11 C.10D.99.(3分)9.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论,其中,所有正确的结论是()①△FPD是等腰直角三角形;②AP=EF=PC;③AD=PD;④∠PFE=∠BAP.A.①②B.①④C.①②④D.①③④10.(3分)10.如图,在正方形ABCD中,点E,F分别是边AD,CD上的点,且AE=DF,AF与BE交于点G,取BF中点H,连接GH,则下列结论:①AF=BE;②BF=2GH;③△ABG与四边形EGFD面积相等,正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(本题共计5小题,总分20分)11.(4分)11.若,则m的取值范围是.12.(4分)12.已知:如图,在一块三角形土地上,准备规划出阴影所示部分作为绿地,若规划图设计中∠ADC=90°,AD=4,CD=3,AB=13,BC=12.求绿地的面积.(第12题)13.(4分)13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.14.(4分)14.如图,AC是菱形ABCD的对角线,P是AC上的一个动点,过点P分别作AB和BC的垂线,垂足分别是点F和E,若菱形的周长是12cm,面积是15cm2,则PE+PF的值是cm.15.(4分)15. 平行四边形ABCD中,AB=4,对角线AC=3,另一条对角线BD的取值范围是.三、解答题(本题共计8小题,总分50分)16.(8分)16.(8分,每小题4分)计算:(1)(2).17.(5分)17.(5分)已知y=﹣+9x,求的平方根.18.18.(5分)(5分)已知实数a、b在数轴上的对应点如图,化简+|a+b|+|﹣a|﹣.19.(5分)19.(5分)在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)20.(5分)20.(5分)如图,在平行四边形ABCD中,E、F是对角线A、C上的两点,且AE=CF,求证:四边形BFDE是平行四边形.21.(6分)21.(6分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求OE的长.22.(8分)22.(8分)如图,四边形ABCD是平行四边形对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.23.(8分)23.(8分) 如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.答案一、单选题(本题共计10小题,总分30分)1.(3分)B2.(3分)D3.(3分)A4.(3分)D5.(3分)C6.(3分)C7.(3分)C8.(3分)A9.(3分)C10.(3分)D二、填空题(本题共计5小题,总分20分)11.(4分)(11)m≤4,12.(4分)(12)24 ,13.(4分)(13)8,14.(4分)(14)5 ,15.(4分)(15)5<BD<11三、解答题(本题共计8小题,总分50分)16.(8分)16.(8分)解:(1)原式=﹣1+1﹣×4----------- 2分=﹣1+1﹣=0;----------------------------------- 2分(2)原式=9﹣6+5+5﹣1 -------------------------- 2分=18﹣6------------------------------------ 2分17.(5分)17.(5分)解:由题意得,3x﹣1≥0,1﹣3x≥0,解得,x=,则y=3 ------------------- 2分=2,-------------- 1分则的平方根是±.---------2分18.(5分)18.解:由数轴可知a<b<0,且|a|>|b|,∴a+b<0,∵>0,∴﹣a>0、b﹣<0,------------ 1分则原式=|a|﹣(a+b)+﹣a﹣|b﹣|=﹣a﹣a﹣b+﹣a+(b﹣)------------------ 2分=﹣3a﹣b++b﹣=﹣3a.----------------------------- 2分19.(5分)19.(5分)解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),————2分∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴(m),————- 2 分∴)(m).答:船向岸边移动了)m.————1分20.(5分)20.(5分)证明:连接DB,交AC于点O,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,------------------------------2 分又∵AE=CF,∴EO=FO,∴四边形BFDE是平行四边形。
人教版八年级数学第二学期期中考试试卷及答案二

人教版八年级数学第二学期期中考试试卷及答案一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.下列各式中不是二次根式的是()A.B.C.D.2.下列各组数是三角形的三边,能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,12 D.3.下列条件中,能确定一个四边形是平行四边形的是()A.一组对边相等B.一组对角相等C.两条对角线相等D.两条对角线互相平分4.下列计算错误的是()A.;B.;C.;D.5.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.107.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.48.菱形具有而矩形不一定具有的性质是()A.内角和等于360°B.对角相等C.对边平行且相等D.对角线互相垂直9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形10.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C.+2 D.﹣﹣211.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是()A.12 B.24 C.12D.1612.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定二、填空题(本题有8小题,每小题4分,共32分)13.若代数式有意义,则实数x的取值范围是.14.计算的结果是.15.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.16.如图,要使平行四边形ABCD是矩形,则应添加的条件是(只填一个).17.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为.18.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.19.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.20.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.三、解答下列各题(满分52分)21.(1)(+)(﹣)﹣(+3)2.(2)÷(﹣)﹣×+.(3)22.如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.23.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)24.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.25.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.26.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥B C.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案与试题解析一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.下列各式中不是二次根式的是()A.B.C.D.【分析】式子(a≥0)叫二次根式.(a≥0)是一个非负数.【解答】解:A、,∵x2+1≥1>0,∴符合二次根式的定义;故本选项正确;B、∵﹣4<0,∴不是二次根式;故本选项错误;C、∵0≥0,∴符合二次根式的定义;故本选项正确;D、符合二次根式的定义;故本选项正确.故选B.2.下列各组数是三角形的三边,能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,12 D.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选B.3.下列条件中,能确定一个四边形是平行四边形的是()A.一组对边相等 B.一组对角相等C.两条对角线相等D.两条对角线互相平分【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边;(5)对角线互相平分的四边形是平行四边形.根据判定方法知D正确.【解答】解:根据平行四边形的判定可知,只有D满足条件,故选D.4.下列计算错误的是()A.B.C. D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.5.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC 边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.8.菱形具有而矩形不一定具有的性质是()A.内角和等于360°B.对角相等C.对边平行且相等D.对角线互相垂直【分析】根据菱形的性质及矩形的性质,结合各选项进行判断即可得出答案.【解答】解;∵菱形与矩形都是平行四边形,A,B,C是平行四边形的性质,∴二者都具有,故此三个选项都不正确,由于菱形的对角线互相垂直且平分每一组对角,而矩形的对角线则相等,故选:D.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=A C.∴原四边形一定是对角线相等的四边形.故选:C.10.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C.+2 D.﹣﹣2【分析】先利用积的乘方得到原式=[(﹣2)•(+2)]2015•(+2),然后根据平方差公式计算.【解答】解:原式=[(﹣2)•(+2)]2015•(+2)=(3﹣4)2015•(+2)=﹣﹣2.故选D.11.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是()A.12 B.24 C.12D.16【分析】解:在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.12.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.二、填空题(本题有8小题,每小题4分,共32分)13.若代数式有意义,则实数x的取值范围是x≥0且x≠1.【分析】利用二次根式有意义的条件以及分式有意义的条件得出即可.【解答】解:∵有意义,∴x≥0,x﹣1≠0,∴实数x的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.14.计算的结果是2.【分析】根据二次根式乘法、商的算术平方根等概念分别判断.【解答】解:原式=2×=2.故答案为2.15.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.16.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=B D.故答案为:∠ABC=90°或AC=B D.17.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为1.【分析】求出阴影部分的正方形的边长,即可得到面积.【解答】解:∵四个全等的直角三角形的直角边分别是5和4,∴阴影部分的正方形的边长为5﹣4=1,∴阴影部分面积为1×1=1.故答案为:1.18.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5度.【分析】连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【解答】解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.19.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为6cm.【分析】在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.【解答】解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.20.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为4.【分析】根据等腰直角三角形斜边等于直角边的倍分别求解即可.【解答】解:由等腰直角三角形的性质得,OA1=OA=,OA2=OA1=•=2,OA3=OA2=2,OA4=OA3=2•=4.故答案为:4.三、解答下列各题(满分52分)21.(1)(+)(﹣)﹣(+3)2.(2)÷(﹣)﹣×+.【分析】(1)根据平方差和完全平方公式计算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=7﹣5﹣(3++18)=2﹣21﹣6=﹣19﹣6;(2)原式=﹣﹣+2=4﹣+2=4+.22.如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.【分析】首先判定四边形AEDF是平行四边形,然后证得AE=AF,利用邻边相等的平行四边形是菱形判定菱形即可.【解答】证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.23.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)【分析】首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.【解答】解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.24.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.【分析】(1)先根据题意得出△ABD是等边三角形,△BCD是直角三角形,进而可求出BDC的度数;(2)根据四边形周长计算BC,CD,即可求△BCD的面积,正△ABD的面积根据计算公式计算,即可求得四边形ABCD的面积为两个三角形的面积的和.【解答】解:(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形,∵∠ADC=150°∴∠BDC=150°﹣60°=90°;(2)∵△ABD为正三角形,AB=8cm,∴其面积为××AB×AD=16,∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.25.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.【分析】(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB;(2)当AC=或AB=2AC时,四边形DCBE是平行四边形.根据(1)中所求得出DC∥BE,进而得到四边形DCBE是平行四边形.【解答】(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=C D.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥C B.(2)解:当AC=或AB=2AC时,四边形DCBE是平行四边形,理由:∵AC=,∠ACB=90°,∴∠B=30°,∵∠DCB=150°,∴∠DCB+∠B=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.26.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥B C.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF==10,∴OC=EF=5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.。
八年级下学期期中考试数学试卷(共3套,最新人教版,含答案)

八年级第二学期期中考试数学试卷本试卷分卷和卷两部分:卷为选择题,卷为非选择题。
本试卷满分120分,考试时间为120分钟。
卷(选择题,共41分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
3.卷学生自己保存。
一、选择题.(本大题共个16小题,1-7题每小题2分,8-16题每小题3分,共41分,在每小题给出的四个选项中,只有一个选项符合题意)1、下图中是中心对称图形的是()2、已知a<b,则下列不等式一定成立的是()A.a+3>b+3B.2a>2bC.-a<-bD.a-b<03、等腰三角形的一边为3,另一边为8,则这个三角形的周长为()A.11B.14C.19D.14或194、如图,用不等式表示数轴上所示的解集,正确的是()-10123A.x<-1或x≥3B.x≤-1或x>3C.-1≤x<3D.-1<x≤35、下列四组线段中,可以构成直角三角形的是()A.6,7,8B.1,2,5C.6,8,10D.5,23,156、已知三角形三边长分别为3,1-2a,8,则a的取值范围是()A.5<a<11B.4<a<10C.-5<a<-2D.-2<a<-57、在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点a a -1 0 1 3 x2.58、如果不等式(1+a )x >1+a 的解集为 x <1,那么 a 的取值范围是( )A. a >0B. <0C. >-1D. a <-19、不等式组x4x m的解集是 x 4 ,那么 m 的取值范围是 ( )A.m ≥4B.m ≤4C. 3≤x <4D. 3< x ≤410、已知,如图,在△ABC 中,OB 和 OC 分别平分∠ABC 和∠ACB ,过 O 作 DE ∥BC ,分别交 AB 、AC 于点 D 、E ,若 BD+CE =5,则线段 DE 的长为()A . 5B . 6C .7D .810 题图y-3 2 411、如图,已知一次函数 y =kx+b ,观察图象回答问题: 当 kx+b>0,x 的取值范围是()A. x >2.5B .x <2.5C. x >-5D. x <-51-1 -2 -3 -4 -511 题图12、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2 米,其侧面如图所示 (单位: 米),则小明至少要买( )平方米的地毯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
约场中学八年级第二学期数学期终复习试卷 班级: 姓名: 座号: 得分:
一、选择题(每题3分共15分)
1.化简6
2962
-+-x x x 的结果是( )
A.
2
3+x B. 2
92
x + C.
22
92
x - D 32
x -
2.已知某品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每d 与t
3.如图,在Rt ABC ∆中,90ABC ∠=。
,CD AB ⊥于D ,已知BC=8,AC=6,则斜边AB 上的高
是( )
A.10
B. 5
C.
245 D. 125
4.已知四边形ABCD,有以下四个条件:①AB//CD ②AB=CD ③BC//AD ④BC=AD 。
从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )
A 、6种
B 、5 种
C 、4 种
D 、3种
5、数学老师布置10到填空题,测验后得到如下统计表 根据图中的数据可知,全班同学答对的题数所组成的样 本的中位数和众数分别是( ) A 、8、8 B 、8、9 C 、9、9 D 、9、8
二、填空题(每题4分共20分)
6、使分式13x x -+有意义的x 的取值范围是
7、点P (2m-3,1)在反比例函数1
y x
=的图象上,则m= ,
8、四边形ABCD 中,AB//CD,要使四边形ABCD 为平行四边形,则应添加的条件是
(添加一个即可)
9、如图,在ABC ∆中,点D 、E 、F 分别是AB 、BC 、CA 的中点,若ABC ∆的周长为10cm,则DEF ∆的周长是 cm
10、甲、乙两人5次射击命中的环数如下:甲 7 9 8 6 10 乙 7 8 9 8 8
则这两人5次射击命中的环数的平均数==8x x -
-
乙甲,方差2
s 甲 2
s 乙
三、解答题(每题6分共30分)
11、先化简,再求值:222
44(4)2x x x x x
+--÷+ ,其中1x =- D
C
B A F
E D C B A
(命题:张贝)
12. 解方程:
221
211
x x x =+--
13、如图,小明在公园里放风筝,拿风筝线的手B 离地面高度AB 为1.5米,风筝飞到C 处时BC 为30米,这时测得60CBD ∠=。
,求此时风筝离地面的高度。
(
14. 如图,在ABCD 中,对角线AC, BD 相较于点O ,点E, F 在BD 上,且BE=DF.
(1)求证:ABE ∆≅CDF ∆;
(2)在不添加辅助性的情况下,请你补充一个条件,
使的四边形AECF 是菱形,并给予证明。
15.在2008年的北京奥运会的射击项目上,甲乙两人的射击成绩如下(单位:环) 甲 10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2 乙 9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7
(1)两名射击运动员的平均成绩分别是多少?(2)那位运动员发挥比较稳定? (参考数据:14.26.03.06.014.02.03.02.02
2
2
2
2
2
2
2
=+++++++,
46.11.04.05.02.02.09.01.02.03.01.022*******=+++++++++)
四.解答题(每题7分共28分)
16在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电,该地供电局组织员工进行抢修,供电局距离抢修地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修地,已知吉普车的速度是抢修车速度的1.5倍。
求这两种车的速度。
C
17. 给出下列命题:命题1.点(1,1)是直线y x =与双曲线1
y x =
的一个交点; 命题2.点(2,4)是直线2y x =与双曲线8
y x =的一个交点;
命题3.点(3,9)是直线3y x =与双曲线27
y x
=的一个交点;
……
(1) 请你观察以上命题,猜想出命题n (n 是正整数); (2) 证明你猜想的命题n 是正确的。
18如图,四边形ABCD 中,AE//CD, AC 平分BAD ∠,CE//AD 交AB 于E. (1) 求证:四边形AECD 是菱形
(2)若点E 是AB 的中点,试判断ABC ∆的形状,并说明理由。
19. 如图,要修一个育苗棚,棚的横侧面是直角三角形,棚宽a=3m,高b=4m ,长d=10m , 求覆盖在顶上的塑料薄膜需多少平方米?(结果保留小数点后
1位)
五.解答题(每题9分共27分)
20如图,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2k
y x
=(k 为常数,0k ≠)的图象相较于点A(1,3)。
(1) 求这两个函数的解析式及其图象的另外一交点 B 坐标; (2) 观察图象,写出使函数值21y y ≤的自变量x E D
C B d=10m
b=4m
a=3m
A
21.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每次参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,
(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 (2)请将表格补充完整
(3)请从下列不同角度对这次 成绩 的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩 ②从平均数和众数的角度来比较一班和二班的成绩
③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩
22、如图(1)在Rt ABC ∆中90A ∠=。
,AB=AC, BC=另有一等腰梯形DEFG (GF//DE ) 的底边DE 与BC 重合,两腰分别落在AB 、AC 上,且G 、F 分别是AB 、AC 的中点。
图(1) 图(2) (1) 求等腰梯形DEFG 的面积;
(2) 操作:固体ABC ∆,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向运动,直到点D
与点C 重合时停止。
设运动时间为x 秒,运动后的等腰梯形为DEF G ,,
(如图2) 探究:在运动过程中,四边形BDG G ,能否是菱形?若能,请求出此时x 的值;若不能,请说明理由。
G F (E) C B
A
G F E D C B A G ' F '
级4% D 16。