WorkBench 接触变形分析教程
ANSYS Workbench 19.0基础入门与工程实践 第7章 接触分析

3.无摩擦
• 无摩擦接触,即两接触体之间是理想状态。当外力作用时,两接触体可以发生 分离和相对滑动,当两物体分离后,法向作用力减为0,两物体接触滑动时处 于理想状态,不产生摩擦力作用。
4.静摩擦
• 模拟静摩擦的场景,当两物体之间不发生相对滑动但是存在静摩擦力的时候, 可以使用本接触类型进行设置,可以理解为两物体之间的静摩擦力需要多大就 提供多大。
• 7.3.2 几何建模 • 7.3.3 材料属性设置 • 7.3.4 接触设置 • 7.3.5 网格划分 • 7.3.6 载荷及约束设置 • 7.3.7 模型求解 • 7.3.8 结果后处理
7.4 接触分析实例——螺栓连接
• 螺栓连接在接触问题中非常典型,本例将以螺栓连接为对象,详细介绍如何加 载预紧力、设置螺栓连接接触类型等常见技术问题,为读者进行螺栓连接分析 提供指导。
5.摩擦接触
• 通用摩擦接触,既包含静摩擦也包含滑动摩擦,在接触初始时,两接触体是静摩擦状态,当 外界作用力增大且使两接触体发生相对滑动时,此时产生滑动摩擦,滑动摩擦力基于F=计算, 用户在定义该接触类型时需要定义接触面之间的摩擦系数。
6.滑动摩擦
• 直接滑动摩擦接触是指接触体之间不发生静摩擦作用的阶段。该接触类型只针 对刚体动力学分析,系统接触力与法向正压力成正比。
• 支座及底板材质为结构钢材,在WB 19.0中默认即可;螺栓材质选用45号钢,其材料属性参 数:Ε=209000MPa,泊松比μ=0.269。
• 7.4.4 接触设置 • 7.4.5 网格划分 • 7.4.6 载荷及约束设置 • 7.4.7 模型求解 • 7.4.8 结果后处理
7.5 本章小结
• 本章先对接触问题的基本概念和模型进行介绍,让读者对有限元接触有一个概 念性的了解。然后通过两个实例分析,详细介绍如何在WB 19.0中进行含非线 性接触问题的仿真设置和操作,并对WB 19.0中提供的各类接触模型及接触类 型进行逐一讲解,使读者掌握如何选择接触类型、设置接触参数、查看接触产 生的各种结果类型,最终完成整个接触项目的仿真。
ansys workbench接触分析

Workbench -Mechanical Introduction Introduction作业3.131接触控制作业3.1 –目标Workshop Supplement •作业3.1调查了一个简单组件的接触行为。
目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。
•问题描述:问题描述–模型从一个简单Parasolid组件文件获得–我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响作业3.1 –假设Workshop Supplement •假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。
最后假设stop shaft固定在两个side plate之间。
之间Arm ShaftSide PlateSide PlatepStop Shaft作业3.1 –Project SchematicWorkshop Supplement •打开Project page(项目页)•通过“Units” 菜单确定:–Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V).–选择“Display Values in Project Units”. . .作业3.1 –Project SchematicWorkshop Supplement1.在Toolbox(工具箱)中双击Static Structural建立新的分析系统1.2.Geometry上点击鼠标右键选择2在Import Geometry导入2.Contact_Arm.x_t文件作业3.1 –前处理Workshop Supplement3.双击Model打开Mechanical application.3.4.设置作业单位制系统:Units>U S Customary(in lbm lbf°F s V A)–Units > U.S Customary (in, lbm, lbf, F, s, V, A) 4.. . .作业3.1 –前处理Workshop Supplement5.在Connections上点击鼠标右键选择Rename Based on Definition5.•在各个部件彼此之间都定义了接触。
ANSYSWorkbench接触分析案例详解

ANSYSWorkbench接触分析案例详解本⽂由Workbench⼩学⽣授权转载这篇⽂章囊括了接触分析中常见的问题,并通过思考和验证,给出了解决⽅案和经验总结,相信朋友们按照这篇教程完整的⾛⼀遍分析过程,会对接触分析的理解更近⼀步。
1.建模。
条件:⼀个圆盘与⼀个矩形板,⽣成壳体。
注意:两者分析之前未接触。
2.选取材料。
进⼊材料库,选取⾮线性材料中的铝合⾦(Aluminum Alloy NL)注意:NL表⽰Nonlinear ,译为⾮线性。
3.进⼊分析模块,调出Properties选项4.修改分析类型,将Analysis type由3D改为2D5.双击Model进⼊分析界⾯,修改矩形板的材料为Aluminum Alloy NL,圆盘默认为结构钢(Structural Steel)6.参数设置(1)根据左侧outline依次向下添加(由于此分析不⽤添加局部坐标系,因此修改完材料属性后,直接添加接触)(2)⼯况:矩形板与圆盘为摩擦接触(也可使⽤⽆摩擦接触,读者可以亲⾃尝试)(3)接触⾯为圆盘外圆周,⽬标⾯为矩形板顶边,设置摩擦系数为0.15(4)由于模型为刚-柔接触,因此修改behavior为⾮对称(Asymmetric)(5)在advanced中将接触算法设置为增⼴拉格朗⽇(Augmented Lagrange)(6)探测⽅法设置为⾼斯点探测(on Gauss point )注意:①由于两者的材料都是⾦属,因此摩擦系数 ≤0.2②⾮线性分析中默认的接触算法为增⼴拉格朗⽇(Augmented Lagrange),线性默认为纯罚函数(Pure penalty)③纯罚函数的收敛性很好,接触刚度对其影响⼤,但是它的穿透性不可控制,⽽增⼴拉格朗⽇收敛性表现为穿透较⼤,迭代次数较多,但其可以在⼀定程度上控制穿透性④⾼斯点与节点探测的区别:⾼斯点:适合⼤多情况,⽹格密度⼩、更精确节点:仅适⽤于⾓接触⑤局部坐标系的添加:如果全局坐标系不是所需要的,就必须添加局部坐标系作为附属坐标系7.划分⽹格(Mesh),选中图中模型,根据模型⾃动划分⽹格8.分析设置(Analysis Setting)(1)打开⾃动时间步(Anto Time Stepping)与⼤变形(Large Deflection)(2)修改载荷⼦步依次为50,50,100后,其他均默认9.添加边界条件(Load or Supports)(1)选中矩形板的下边线,将其设置为Displacement(2)X⽅向数值设置为-15mm,Y⽅向数值设置为0(3)选中圆盘的外圆周,将其设置为Fixed support思考:为什么打开⼤变形开关?答:因为在静⼒学中,极限转动⾓度为10°,⼤位移或者⼤转动即视为⾮线性分析,当受⼒物体的变形与其⼏何尺⼨相⽐较⼤,且线性叠加原理不再适⽤时,可视作⼤变形。
Workbench接触分析教程

接触分析过程
1、经验证用从其他CAD导入到Workbench的模型进行接触分析,得到的结果
偏差比较大,所以最好选择用Workbench自带的design modeler进行建模后导入simulation,用以上方法导入的模型如下左图。
2、如上图右,因为在design modeler中添加了对称,进入simulation中就会自动
施加了对称约束。
3、如上图,添加接触单元,在contact、target中添加想要的接触面。
在type中
设置为frictional,摩擦系数0.2。
4、网格划分结果如下图:
5、在静态算例添加contact tools、等效应力、合位移,如下图:
点击contact tools在左下角进行细节设置,在右侧窗口选择接触面。
在分析选项中打开大变形选项:
6、添加外圆面的径向固定约束,定义为normal to。
7、开始计算并查看结果如下图,此结果与经典ANSYS中计算的结果基本吻合。
ANSYS Workbench培训课件-接触分析讲义

• Contact is a changing-status nonlinearity: the stiffness of the system depends on the contact status (whether parts are touching or separated).
6
© 2016 ANSYS, Inc.
• Mechanical supports contact relationships with rigid bodies. − Rigid to Rigid − Rigid to Flexible − Useful for improved efficiency when certain Rigid bodies
in the model are considerably stiffer than other Flexible bodies
CONTACT BETWEEN TWO RIGID BODIES
CONTACT BETWEEN ONE RIGID AND ONE FLEXIBLE BODY
5
© 2016 ANSYS, Inc.
SOLID BODY FACE TO
SOLID BODY FACE
4
© 2016 ANSYS, Inc.
June 13, 2016
SURFACE BODY FACE TO
SURFACE BODY FACE
SURFACE BODY EDGE TO
SURFACE BODY FACE
01.01 Contact Technology Review
• Objectives:
ANSYS workbench有限元模拟教程接触分析

第五章控制程序及监控界面的开发控制系统的效率和性能一方面决定于系统的硬件设计,另一方面在很大程度上取决于应用程序的设计质量。
只有将系统的硬件和软件有机的结合在一起,相辅相成,才能使系统最大程度的发挥效率。
软件是计算机控制系统的神经中枢,控制系统中的控制任务最终是靠软件即应用程序的执行来完成的。
因此软件开发占有相当重要的地位,本实验室自控系统是由三大软件支撑的,分别是利用PLC 编程软件STEP7 V5.2,嵌入式组态软件MCGS,以及虚拟仪器Labview7.0所开发的程序。
STEP7基础软件是用于西门子公司SIMATIC S7、SIMATIC C7和SIMATIC WinAC 等控制系统的标准开发软件,主要用于完成控制程序的开发。
本实验室包含的设备种类多、数量大、各设备间关系复杂。
实验室的操作者要全面、综合和有效地监控、操作和管理试验系统并不是件容易的事情,因此还需要设计合理的控制操作界面,本实验室利用MCGS嵌入式组态软件开发出形象的控制界面,并利用其提供的动画功能仿真试验系统的运行状态。
无论是研究性试验还是本科教学试验,都需要采集大量的数据,并需要对这些数据作分析、存储、曲线显示等,因此本试验室采用Labview开发数据采集程序。
因为他们的界面和和操作模仿物理仪器,如示波器和万用表,所以Labview 程序被称作虚拟仪器,。
在Labview中包含了一系列进行采集、分析、显示的工具,能很快的帮助解决复杂数据采集问题。
通过这些软件的应用,可以构造强大的实验室自控系统。
§5.1控制程序方案确定§5.1.1控制算法的选择随着智能控制技术的发展,不断有空调控制算法方面的报道,现已有模糊控制、神经网络控制、自适应控制、解耦控制在变风量空调系统中的应用的思想,但这些研究成果多为仿真结果,在实际应用还用一定的距离,而PID算法控制简单、抗干扰性好、可靠性高等优点[46]。
PID控制是最早发展起来的控制策略之一,由于其算法简单、代码少,可靠性高等优点,使得PID在工程中应用达90%以上。
workbench的接触解析(1)

WorkBench接触解析1.接触的基本概念1.1. 接触的定义两独立表面相互接触并相切,则称之为接触.一般物理意义上, 接触的表面包含如下特性:不会渗透.可传递法向压缩力和切向摩擦力.通常不传递法向拉伸力.可自由分离和互相移动.接触是状态改变非线性. 也就是说, 系统刚度取决于接触状态, 即part之间是接触或分离.1.2. workbench接触类型1)Bonded(绑定): 这是Workbench中关于接触的默认设置。
如果接触区域被设置为绑定,不允许面或线间有相对滑动或分离,可以将此区域看作被连接在一起,类似于共结点。
因为接触长度/面积是保持不变的,所以这种接触可以用作线性求解。
如果接触是从数学模型中设定的,程序将填充所有的间隙,忽略所有的初始渗透。
2)No Separation(不分离): 这种接触方式和绑定类似。
它只适用于面。
不允许接触区域的面分离,但是沿着接触面可以有小的无摩擦滑动。
即法向不分离,切向可以有小位移,也只用于线性接触。
3)Frictionless(无摩擦): 这种接触类型代表单边接触,即如果出现分离则法向压力为零。
只适用于面接触。
因此,根据不同的载荷,模型间可以出现间隙。
它是非线性求解,因为在载荷施加过程中接触面积可能会发生改变。
假设摩擦系数为零,因此允许自由滑动。
使用这种接触方式时,需注意模型约束的定义,防止出现欠约束。
法向可分离,但不渗透,切向自由滑动。
程序会给装配体加上弱弹簧,帮助固定模型,以得到合理的解。
4)Rough(粗糙的): 这种接触方式和无摩擦类似。
但表现为完全的摩擦接触,即没有相对滑动,法向可分离,不渗透,切向不滑动。
只适用于面接触。
默认情况下,不自动消除间隙。
这种情况相当于接触体间的摩擦系数为无穷大。
5)Frictional(有摩擦): 这种情况下,在发生相对滑动前,两接触面可以通过接触区域传递一定数量的剪应力。
有点像胶水。
法向可分离,但不渗透,切向滑动,有摩擦力。
WorkBench 接触变形分析教程

前言WokBench是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述这是一个塑料小卡扣的例子,主要想使用WorkBench了解在使用中,塑料件的变形是否足够。
模型是用ProE制作的,为了简化,只切取了关于变形的部分,如下图:其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:进入WorkBench本人使用的是ProE/WF3.0,直接通过菜单上的WorkBenck即可进入WorkBench了。
接下来,按照图中的1、2、3操作:材料设置之后进入Simulation界面。
第一个事情是设置材质,考虑到蓝色部件没有必要考察变形,因此将它设置为默认的结构钢。
红色部件可以直接选个聚乙烯的材料,如果今后有了明确的材质信息,可以再更改。
接触设置在接触(Connections)中,添加一个手动接触区域注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball类型的接触区域时,Pinball的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region设置为Radius方式(4),并将Radius设置一个合适的值(5),本例设置了3毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格WorkBench中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
WokBench是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述
这是一个塑料小卡扣的例子,主要想使用WorkBench了解在使用中,塑料件的变形是否足够。
模型是用ProE制作的,为了简化,只切取了关于变形的部分,如下图:
其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:
进入WorkBench
本人使用的是ProE/WF3.0,直接通过菜单上的WorkBenck即可进入WorkBench了。
接下来,按照图中的1、2、3操作:
材料设置
之后进入Simulation界面。
第一个事情是设置材质,考虑到蓝色部件没有必要考察变形,因此将它设置为默认的结构钢。
红色部件可以直接选个聚乙烯的材料,如果今后有了明确的材质信息,可以再更改。
接触设置
在接触(Connections)中,添加一个手动接触区域
注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball类型的接触区域时,Pinball的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region设置为Radius方式(4),并将Radius设置一个合适的值(5),本例设置了3毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格
WorkBench中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
如果你的其他设置正确,即便是这个自动的值也能很精确了。
添加分析
这个分析用静力学就可以了(1)。
之后要设置Analysis Setting(2)。
将Nuber Of Step设置为2(3)。
注意:
1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过程至少分解为至少两个阶段(阶段指“Step”)。
2)对于一个阶段而言,Ansys求解时,会先考察它的开始和结束两个点的状态。
因此如果将本例设置为一个阶段,蓝色部件在开始点和结束点,都不会对红色部件有任何作用,因此求解的结果是中间过程也没有任何相互作用了。
3)而划分为两个阶段,前期作用力由小变大,求解器才能求出这期间的相互作用,对后一阶段也是如此。
4)进而,如果在某一阶段中,作用力变化曲线有拐点,则可以从这个点划分出新的阶段。
让Ansys在一个单调变化的力里面求解是一件愉快的事情。
之后设置固定面,如图:
之后设置运动
在第三步中,X、Y两个方向需要固定下来。
第四步中,分别设置移动2毫米和3.5毫米。
输出结果
注意:在解算过程中默念“上帝保佑”
如有疑问请致信houzer@。