八下数学分式计算技巧 人教版

合集下载

人教版初中数学试讲逐字稿《分式的乘除》

人教版初中数学试讲逐字稿《分式的乘除》

初中数学试讲稿《分式的乘除》【选自人教版数学八年级下册】各位评委老师好(鞠躬)我是应聘初中数学的3号考生,今天我抽到的课题是《分式的乘除》,下面开始我的试讲。

(所有的X,都是假装有数字或者公式,感谢各位配合)一、导入师:好,同学们上课师:大家小时候都见过大拖拉机和小拖拉机吧?见过它们耕地吗?生:(有的说有,有的说没有)师:有得见过有的没见过啊,没关系,那大家接着想一下假设大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,那请问大拖拉机的工作效率是小拖拉机的多少倍呢?师:大家动笔算算师:有请中间那位穿红衣服的女生说一下你的计算结果生:XX倍师:大家说她说的对不?生:对师:也就是,先分别算出大、小拖拉机的工作效率,然后直接求倍数,是吧?生:点头师:那大家再想一下假设有个长方体容器,容积为V,底面长为a,宽为b,,当容器内的水占容积的X时,水面的高度为多少?师:好,班长很快举起手了,那就请班长回答一下生:长方体容器本来的高为X,以为水占容积的X,长宽不变,所以水面的高为XXX师:班长很清晰的给大家分析出了水面的高度,那就像上面的问题,讨论数量关系时,有时需要进行分式的乘除运算,那么分式的乘除法有哪些法则呢?二、新授师:大家都知道分式与分数有类似的形式,所以学习分式的乘除运算之前,先回顾一下分数的乘除法则,谁能说说分数的乘除法则呢?师:好,最后那位男生生:分数乘法法则是分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;除法是先把除式的分数的分子、分母颠倒位置后,再按照乘法法则与被除的分数相乘师:大家说这位男生说的完整不?说的对不对呀?生:对师:恩,这位男生说的很对,那接下来请大家按照前后桌为一组,进行分组,然后试着类比刚才分数的乘除法则,总结分式的乘除法则,讨论完后,举手示意师:好,各小组很快举起了手,再等等还没想好的同学师:大家都边商量边写完了,有请最先举手的前排这个小组说一下你们的结果生:乘法法则:俩分式相乘,用分子的积作为积的分子,分母的积作为分母;除法法则是,先把除式的分式分子分母颠倒位置后,再与被除式相乘师:恩,其他小组有需要补充的嘛?生:摇头示意师:那大家都认可这个小组的回答了?恩,的确刚才这位同学说的很正确,那么大家可以用数学式子来表示吗?用咱们数学语言来描述上述法则吗?提醒一下,大家可以用a、b、c、d........字母来表示分式的分子分母,自己在练习本上试着写写师:刚才我在下面看看了大家写的,大部分同学呢,写的很好,有得同学呢,把除法写错了,在这里,老师再次强调一下,除法其实也是转化为乘法来运算的,但是必须得先把除式的分子分母颠倒位置,其他不变,再与被除式相乘。

初二分式解题技巧

初二分式解题技巧

初二分式解题技巧
初中数学中,分式是一个很重要的内容。

在学习分式时,我们需要掌握一些解题技巧,以下是几个常用的技巧:
1. 化简分式
当分式的分子和分母有公因数时,可以先将分式进行化简。

这样可以使分式更加简单,更方便解题。

2. 分子分母同乘或同除
当我们需要将两个分式进行加减运算时,需要先将它们的分母通分。

而分式乘除时,我们可以将分子分母同乘或同除以一个数,使分式更容易计算。

3. 去分母
当我们需要将一个分式转化为整数时,可以采用去分母的方法。

去分母的方法有多种,其中最常用的是交叉相乘法和倍增倍减法。

4. 分式方程的解法
当一个方程中含有分式时,我们需要将分式通分,然后化简方程,得到一个一次方程或二次方程,再利用解方程的方法求解。

以上是一些初二分式解题技巧,掌握这些技巧可以帮助我们更好地解决分式相关的问题。

- 1 -。

分式运算中的常用技巧与方法

分式运算中的常用技巧与方法

分式运算中的常用技巧与方法1在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。

现就分式运算中的技巧与方法举例说明。

一、整体通分法例1.化简:21a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。

解:21a a --a-1=21a a --(a+1)= 21a a --(1)(1)1a a a -+-=22(1)1a a a ---=11a - 二、逐项通分法例2.计算1a b --1a b +-222b a b +-3444b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b --1a b +-222b a b +-3444b a b -=22()()a b a b a b +----222b a b +-3444b a b- =222b a b --222b a b +-3444b a b -=2222442()2()b a b b a b a b +----3444b a b - =3444b a b --3444b a b-=0 三、先约分,后通分例3.计算:2262a a a a +++22444a a a -++ 分析:分子、分母先分解因式,约分后再通分求值计算 解:2262a a a a +++22444a a a -++=(6)(2)a a a a +++2(2)(2)(2)a a a +-+=62a a +++22a a -+=242a a ++=2 四、整体代入法例4.已知1x +1y=5求2522x xy y x xy y -+++的值 解法1:∵1x +1y =5∴x y ≠0,.所以2522x xy y x xy y -+++=225112y x y x -+++=112()5112x y x y+-++=25552⨯-+=57解法2:由1x +1y=5得,x y xy +=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy+-++=25552xy xy xy xy ⨯-+=57xy xy =57 五、运用公式变形法例5.已知a 2-5a+1=0,计算a 4+41a 解:由已知条件可得a ≠0,∴a+1a=5 ∴a 4+41a =(a 2+21a )2-2=[(a+1a )2-2]2-2=(52-2)2-2=527 六、设辅助参数法例6.已知b c a += a c b += a b c +,计算:()()()a b b c c a abc+++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;a+b=ck ; 把这3个等式相加得2(a+b+c)= (a+b+c)k若a+b+c=0,a+b= -c,则k= -1若a+b+c ≠0,则k=2()()()a b b c c a abc +++=ak bk ck abc⋅⋅=k 3 当k=-1时,原式= -1当k=2时,原式= 8七、应用倒数变换法例7.已知21a a a -+=7,求2421a a a ++的值 解:由条件知a ≠0,∴21a a a -+=17,即a+1a =87∴4221a a a ++=a 2+21a +1=(a+1a)2-1=1549 ∴2421a a a ++=4915八、取常数值法例8.已知:xy z ≠0,x+y+z=0,计算y z x ++x z y ++x y z+ 解:根据条件可设x=1,y=1,z=-2.则y z x ++x z y ++x y z+=-3.当然本题也可以设为其他合适的常数。

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析一、选择题1.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.如果关于x 的不等式(a +1)x >2的解集为x <-1,则a 的值是( ). A .a =3 B .a ≤-3C .a =-3D .a >3【答案】C 【解析】 【分析】根据不等式的解集得出关于a 的方程,解方程即可. 【详解】解:因为关于x 的不等式(a +1)x >2的解集为x <-1, 所以a+1<0,即a <-1,且21a +=-1,解得:a=-3. 经检验a=-3是原方程的根 故选:C .【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.5.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.6.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x=- D .90606x x=+ 【答案】A 【解析】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得:90606x x =-.故选A .7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()A.4116xx x+=+-B.416xx x=-+C.4116xx x+=--D.4116xx x+=-+【答案】D 【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的11x-,而乙每天完成总工程的16x+,据此根据题意最终如期完成了工程进一步列出方程即可.【详解】∵工程期限为x天,∴甲每天完成总工程的11x-,乙每天完成总工程的16x+,∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,∴可列方程为:4116xx x+=-+,故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+ B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.13.方程31144x x x --=--的解是( ) A .-3 B .3C .4D .-4【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:3-x-x+4=1, 解得:x=3,经检验x=3是分式方程的解. 故选:B . 【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.15.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x-= B .3030101.5x x-= C .3630101.5x x -= D .3036101.5x x+=【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.16.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+. 故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x ax -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( ) A .1个 B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可以列出方程为( )A .480360140x x =-B .480480140x x =-C .480360140x x +=D .360480140x x-= 【答案】A【解析】【分析】设甲每天做x 个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x个零件,根据题意得:480360140x x=-,故选:A.【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.。

分式运算的技巧方法

分式运算的技巧方法

分式运算的技巧方法分式运算是数学中的一种运算方法,主要涉及到分数的加减乘除等运算。

下面给出一些分式运算的技巧方法:一、分式的加减运算:1.确定两个分式的分母是否相同,如果相同,则可以直接将两个分子相加或相减,分母保持不变。

2.如果分母不同,则需要寻找一个公共分母,并通过乘以适当的因数将分子和分母都变换为公共分母的倍数。

最后再将两个分子相加或相减。

二、分式的乘除运算:1.分式的乘法是将两个分式的分子相乘,并将分母相乘,得到的分子和分母再化简为最简形式。

2.分式的除法是将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘,再将两个分子相除,两个分母相除,得到的分子和分母再化简为最简形式。

3.对于有多个分式相乘或相除的情况,可以先进行一些分式的合并,再进行乘除运算。

三、分式的化简:1.将分子和分母的最大公因数约分,使得分式变为最简形式。

2.将分子和分母进行因式分解,然后进行约分化简。

3.分式相加或相减时,可以先将分子和分母的最小公倍数作为公共分母,再进行化简运算。

四、分式的整理:1.将分式中的分子和分母按照一定的规律整理成一个分数或者整数。

2.使用括号来整理分子或分母,减少操作的复杂性和错误的发生。

五、化简复杂分式:1.对于复杂的分式,可以先分解分子和分母,再进行化简运算。

2.对于双重分式(一个分子或分母是另一个分式的情况),可以使用变量来进行整理和化简。

3.对于有多个分式相加或相减的情况,可以先将分式按照一定的规律进行合并,再进行化简运算。

六、变量的运算:1.在分式中使用变量进行运算时,可以运用代数的基本运算规则进行计算。

2.在变量的运算中,可以利用代数的性质进行合并和化简,最后得到一个最简形式。

初中数学《分式的乘除》解题技巧

初中数学《分式的乘除》解题技巧

《分式的乘除》解题技巧 分式的乘除法,是分式之间的第一种运算.这类运算具体来说,包含三个内容:分式的乘法,分式的除法和分式的混合运算.
◆类型一:分式的乘法
法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
【例1】计算:3
432x y y x -⋅ 【分析】先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;如果有奇数个负号,积为负.计算分子与分子的积;计算分母与分母的积;把积中
【小结】分式的乘法主要是分三步:定号,套用分式乘法法则,化简.
◆类型二:分式的除法 法则:两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.
【例2】计算:2
32b ab a ÷-() 【分析】所有参与运算的式子中,有一个负号,因此,积的符号是负号.除法运算变成乘法运算,除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子.
【解】原式b a b
b a b a ab 3232322
222-=-=⋅-= 【小结】这种类型的计算主要是两步:定号,套用除法法则,最终结果一定是最简分式. ◆类型三:分式乘除混合运算:
【例3】计算:2235325953
x x x x x ÷⋅--+ 【分析】在解答分式的乘除法混合运算时,注意两点,就可以了:注意运算的顺序:按照从左到右的顺序依次计算;注意分式乘除法法则的灵活应用.
【解】原式2
2(53)(53)2533533
x x x x x x x -+=⋅⋅=-+
【小结】这种类型的题目最容易出错的地方就是运算顺序,从左到右,熟练掌握乘除法法则,最终结果为最简分式即可.。

八年级下册数学分式的加减法

八年级下册数学分式的加减法

八年级下册数学分式的加减法摘要:一、分式的基本概念1.分式的定义2.分式的组成部分3.分式的基本性质二、分式的加减法1.分式加法的规则2.分式减法的规则3.分式加减混合运算的顺序三、分式的加减法实际应用1.实际问题中的分式加减法2.利用分式的加减法解决实际问题正文:一、分式的基本概念分式是数学中一种常见的表达形式,它由分子和分母组成,用斜杠“/”表示。

分式的定义是:如果A 和B 是两个整式,并且B 不等于零,那么我们用A 除以B 所得到的商A/B 就叫做分式。

分式的组成部分包括分子、分母和分数线,其中分子和分母都是整式,分数线表示分式的开始和结束。

分式的基本性质有:分子和分母同时乘以或除以一个非零数,分式的值不变;分子和分母同时加上或减去一个相同的数,分式的值不变。

二、分式的加减法分式的加减法是数学中常见的运算,其规则如下:1.分式加法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的和就是(A+C)/B;如果分母不同,需要将它们通分,然后将分子相加,分母保持不变。

2.分式减法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的差就是(A-C)/B;如果分母不同,需要将它们通分,然后将分子相减,分母保持不变。

3.分式加减混合运算的顺序:在没有括号的情况下,先进行乘除运算,再进行加减运算。

如果有括号,先进行括号内的运算。

三、分式的加减法实际应用分式的加减法在实际问题中有很多应用,例如在物理、化学、地理等学科中,常常需要用分式的加减法来解决问题。

例如,在化学中,可能会遇到需要将两种物质的摩尔质量相加或相减的问题,这时候就需要用到分式的加减法。

在解决实际问题时,我们需要先将问题抽象成数学模型,然后根据问题中给出的条件,选择合适的数学方法,包括分式的加减法,来解决问题。

以上就是八年级下册数学分式的加减法的内容。

分式的加减法是数学中重要的基本概念和基本运算,它在解决实际问题中有着广泛的应用。

数学约分解题技巧

数学约分解题技巧

相同因式的最低次幂
依据是什么?
分式的基本性质
在化简分式 出现了分歧:
时,小颖和小明的做法
小颖: 小明:
对于分数而 言,彻底约 分后的分数 叫什么?
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
总结分式的约分
把一个分式的分子和分母的公因式 约去,不改变分式的值,这种变形叫做分 式的约分。
人教版八年级(下册)
第十六章分式
16.1分式(第3课时)
复习回顾
分式的基本性质
分式的分子与分母同乘(或除以) 一个不等于0的整式,分式的值不变。
用式子表示为:
• C , C .(C 0) •C C
其中A,B,C是整式。
(1)
2b
2a
ab
(3)
ac a2
c
a
(2)
3a 3b 9c
1
( 3) 2 xy 0 (
xy 2
4)
a2 a2
2a 2a
3 1
a a
3 1
A、1个 B、2个 C、3个 D、0个
2、下列各式中是最简分式的( B )
A、a b B、 x2 y2
ba
x y
C、x2 4 D、
x2
2a a2 a 2
约分

32a2b3c 24b2cd
2x x5
2x( x 5) ( x 5)( x 5)
2x2 10x x2 25
3x 3x( x 5) x 5 ( x 5)( x 5)
3x2 15x x2 25
思考:
分数和分式在约分和通分的做 法上有什么共同点?这些做法根据 了什么原理?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八下分式运算技巧分式运算,一要准确,二要迅速,其中起着关键作用的就是通分. 但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,对于分式的通分,要讲究技巧.下面介绍几种常用的通分技巧.一、逐步通分法 例1 计算2111111xxx++++-分析:此题若采用将各项一起通分后相加的方法,计算量很大.注意到前后分母之间存 在着平方差关系,可逐步通分达到目的.解:原式=221212xx++-=414x-评注:若一次通分,计算量太大,利用分母间的递进关系,逐步通分,避免了复杂的计算.依次通分构成平方差公式,采用逐步通分,则可使问题简单化。

二、整体通分法 例2 计算112+-+a a a分析 题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式=11111)1)(1(1222+=++-=++--+a a a a a a a a a评注:此题是一个分式与多项式的和,若把整个多项式看作分母为1的分式,再通分相 加,使得问题的解法更简便.三、分裂整数法 例3. 计算:34452312-----+++-++x x x x x x x x分析 如果几个分母不同通分时可使用分裂整数法,对分子降次后再通分. 31412111)311()411()211()111(313414212111:-+--+-+=-----+++-++=-------++++-+++=x x x x x x x x x x x x x x x x 原式解)4)(3(1)2)(1(1)3)(4()4(3)2)(1()1(2---++=------+++-+=x x x x x x x x x x x x)4)(3)(2)(1(23127)4)(3)(2)(1()2)(1()4)(3(22--++---+-=--+++----=x x x x x x x x x x x x x x x x)4)(3)(2)(1(1010--+++-=x x x x x评注:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。

四、裂项相消法 例4 计算)3)(2(1)2)(1(111--+--+-x x x x x分析 我们看到题目中每一个分式的分母是两个因数之积,而分子又是一个定值时,可将每一个分式先拆成两项之差,前后相约后再通分.解:原式=2131112111---+---+-x x x x x =31-x评注:本题若采用通分相加的方法,将使问题变的十分复杂,注意到分母中各因式的关 系,再逆用公式)1(1111+=+-a a a a ,各个分式拆项,正负抵消一部分,再通分。

在解某些分式方程中,也可使用拆项法。

五. 见繁化简法例5. 计算:343622322222+--+--+-+--x x x x x x x x x分析 分式加减时,如果分母不同要先分解因式,再找到公分母,把每个分式的分母都化为公分母的形式 解:原式)1)(3(3)2)(3(2)1)(2()1(2----+-+----=x x x x x x x x x)3)(2)(1()65()23()34(2113122222---+--+--+-=-----=x x x x x x x x x x x x)3)(2)(1(2----=x x x评注:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。

在分式运算中,应根据分式的具体特点,灵活机动,活用方法。

方能起到事半功倍的效率。

六、挖掘隐含条件,巧妙求值例6 若09x 2=-,则3x 6x 5x 2++-=___________。

解:∵09x 2=-,∴3x ±= 但考虑到分式的分母不为0,故x=3 所以,原式03x )3x )(2x (=+--=说明:根据题目特点,挖掘题中的隐含条件,整体考虑解决方案是解决本类题目的关键。

七、巧用特值法求值 例7 已知6z 5y 4x ==,则z3z4y 3x 2+-=_____________。

解:此题可直接令x=4,y=5,z=6,代入得: 原式63645342⨯⨯+⨯-⨯=1817=说明:根据题目特点,给相关的字母赋予特定的数值,可简化求解过程。

八、巧设参数(辅助未知数)求值 例8 已知实数x 、y 满足x:y=1:2,则=+-yx y x 3__________。

解:设k 2y 1x ==,则k x =,k 2y =,故原式31k2k k 2k 3=+-=说明:在解答有关含有比例式的题目时,设参数(辅助未知数)求解是一种常用的方法。

九、 整体代入 例9 若11x y -=5,求3533x xy y x xy y+---的值.分析:将11xy-=5变形,得x-y=-5xy,再将原式变形为3()5()3x y xy x y xy-+--,把x-y=-5xy代入,即可求出其值.解:因为11x y-=5,所以x-y=-5xy.所以原式=3()5()3x y xyx y xy-+--=3(5)553xy xyxy xy⋅-+--=108xyxy--=5.4说明:在已知条件等式的求值问题中,把已知条件变形转化后,通过整体代入求值,可避免由局部运算所带来的麻烦.十、倒数法例2已知a+1a=5.则2421aa a++=__________.分析:若先求出a的值再代入求值,显然现在解不出.如果将2421aa a++的分子、分母颠倒过来,即求4221a aa++=a2+1+21a的值,再进一步求原式的值就简单很多.解:因为a+1a=5,所以(a+1a)2=25,a2+21a=23.所以4221a aa++=a2+1+21a=24,所以2421aa a++=1.24说明:利用x和1x互为倒数的关系,沟通已知条件与所求未知式的联系,使一些分式求值问题思路自然,解题过程简洁.十一、主元法例11已知xyz≠0,且3x-4y-z=0,2x+y-8z=0,求2222x y zxy yz zx++++的值.解:将z看作已知数,把3x-4y-z=0与2x+y-8z=0联立,得3x-4y-z=0,2x+y-8z=0.解得x=3z,y=2z.所以,原式=222(3)(2)(3)(2)(2)2(3)z z zz z z z z z++⋅+⋅+⋅=22141.14zz=说明:当已知条件等式中含有多元(未知数)时(一般三元),可视其中两个为主元,另一个为常量,解出关于主元的方程组后代入求值,可使问题简化.十二、 特殊值法 例十二 已知abc=1,则1a ab a +++1b bc b +++1c ca c ++=_________.分析:由已知条件无法求出a 、b 、c 的值,可根据已知条件取字母的一组特殊值,然后代入求值.解:令a=1,b=1,c=1,则原式=11111⨯+++11111⨯+++11111⨯++=13+13+13=1.说明:在已知条件的取值范围内取一些特殊值代入求值,可准确、迅速地求出结果.练习题:1.计算1211112+-+--x x x 181484+-+-x x2. 计算:200820071761541431321211⨯++⨯+⨯+⨯+⨯+⨯ 答案:1.11616-x; 2.20082007;分式方程习题1.解方程:(1)233x x=- (2)1222xx x +=--(3)263111x x -=--(4)012142=---x x (5)12211x x x +=-+ (6)21124x x x -=-- (7)423532=-+-x x x (8)21221-=+--x x x2.请选择一组,a b 的值,写出一个关于x 的形如2a b x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________. 3.若分式351x x +-无意义,当510322m xm x-=--时,则m = .4.若23b a=,则2222369b aa+=的值是 。

相关文档
最新文档