模糊控制基本实验

合集下载

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告一、实验目的本实验旨在通过对洗衣机运行过程的模糊控制仿真实验,帮助学生更好地了解模糊控制的基本原理和实现方法。

二、实验原理洗衣机模糊控制系统主要包括模糊控制器、模糊推理机和输出规则等三个部分。

模糊控制器是模糊系统的核心部分,其主要作用是将输入信号转化为模糊集,并将控制输出信号转化为真实输出信号。

模糊控制器的输入为洗衣机工作状态的一些参数,例如水位、温度等,输出为洗衣机运行状态的一些控制命令,例如加热、搅拌等。

模糊推理机是由一系列规则组成的系统,它负责根据输入的模糊集和一组先验规则,进行模糊推理,得到控制输出信号的模糊集,即模糊控制器的中间变量。

输出规则主要为控制输出信号的模糊集赋值,即将模糊集中各个元素映射到真实输出信号的取值范围内。

三、实验步骤1、建立洗衣机的模糊控制系统模型,包括模糊控制器、模糊推理机和输出规则等。

2、设置洗衣机的运行参数,例如水位、温度等,作为模糊控制器的输入。

3、根据洗衣机的运行状态,制定一组先验规则,作为模糊推理机的输入,并进行模糊推理。

4、根据模糊推理得到的控制输出信号的模糊集,进行输出规则的映射,得到洗衣机的真实控制命令。

5、根据洗衣机的控制命令,模拟洗衣机的工作流程。

6、对洗衣机的工作流程进行仿真实验,并记录实验结果。

四、实验结果分析经过多次实验,得到了洗衣机的模糊控制系统的优化参数,能够实现洗衣机的良好控制。

通过对实验结果的分析,可以发现,模糊控制系统可以有效地调节洗衣机的运行状态,使其在不同的工作状态下保持稳定且高效的运行。

同时,模糊控制系统也具有很强的适应性和鲁棒性,可以自适应地调节参数,应对各种不同的运行环境。

五、实验总结本实验通过模拟洗衣机的工作流程,对模糊控制系统的基本原理和实现方法进行了深入探究,能够有效地帮助学生掌握模糊控制系统的设计和应用方法。

同时,在实验过程中,也需要注意对实验数据和结论的分析和总结,以便更好地优化模糊控制系统的参数和性能,实现最佳控制效果。

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。

二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。

系统的输入为杆的控制力矩,输出为杆的角度。

系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。

2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。

在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。

三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。

2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。

b. 构建模糊规则:根据经验或系统建模,确定模糊规则。

c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。

d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。

3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。

b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。

c. 执行控制器输出:将控制力矩作用在倒立摆上。

4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。

5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。

四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。

通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。

实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。

三容液位实验装置模糊控制的实现

三容液位实验装置模糊控制的实现

L Ti


心. 采用模糊控制算法对 三容液位实 验装置 的液位进
行控 制 。 并将 试验结果在 电脑显示屏上显示 出来 。
1 三 容 液 位 控 制 实 验 装 置 及 其 物 理 模 型 的
建 立
三容液位控制实验装 置主要 由 3 圆柱形水箱 、 个 1 蓄水 池 、 个 2个水泵 组成 , 图 1 如 所示 。每个水箱 都
验 装 置 的液 住 达 到给 定 值 , 过 力 控 组 态软 件 实现 液 位 运行 画 面 的监 测 。 行 结 果表 明 . 通 运 所
设 计 的 模 糊 控 制 器 能精 确 控 制 三 容 液位 实验 装 置 的 液住 . 获得 良好 的 控 制 效 果 关 键 词 :3 4 B X 模 糊 控 制 : S C4 0 : 三容 液 位 中图 分 类 号 : P 7 T 23 文 献标 志 码 : B
Ac v m e f Fu z Co r l o Thr e a k qu d v l Ex rm e t l De c  ̄e e nt o z y nt o n e -t n Li i Le e pe i n a f e i
S N h nnn ,IR n - n O G C u —ig L o g u j
( olg fElcrclE gn eig C l e o e t a n ie r ,Gu n x iest e i n a g iUnvri y,Na nn 3 0 4,C ia n ig 5 0 0 hn )
Ab t a t Usn a u g S C 4 X h p a o t l c n e ,t i p p r d s n u z o t l r t o to h e - sr c : i g S ms n 3 4 BO c i s c nr e t r h s a e e i s a f z y c n r l o c n r l a t r e o g oe tn i u d l v l e p r n a e ie, e c n r l r c nr l t e l v l o h e — a k l ud l v l e p r na e ie t a k l i e e x e me t d vc . h o t l o t s h e e f tr e tn i i e e x e i q i l r oe o q me t d vc o l

模糊控制的数学基础-1(2-16至2-30)模糊运算、分解定理

模糊控制的数学基础-1(2-16至2-30)模糊运算、分解定理

从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。

②例证法此法是扎德教授于1972年提出的。

基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。

例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。

为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。

如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。

把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。

对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。

③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。

这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。

§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。

一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。

如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。

或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。

②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。

基于单片机模糊PID控制算法实验设计

基于单片机模糊PID控制算法实验设计

基于单片机模糊PID控制算法实验设计基于单片机的模糊PID控制算法是一种将模糊逻辑和PID控制相结合的控制方法。

模糊PID控制算法在许多工程和科学领域中具有广泛的应用,用于控制各种物理系统,例如机械系统、电子系统和化学系统等。

本文将介绍基于单片机的模糊PID控制算法的实验设计。

一、实验目的本实验旨在通过使用单片机实现模糊PID控制算法,控制一个虚拟物理系统的运动。

通过这个实验,我们可以了解模糊PID控制算法的原理和实现过程,并通过实验结果对其性能进行评估。

二、实验原理模糊PID控制算法是将模糊逻辑和传统的PID控制算法相结合而得到的一种控制方法。

PID控制算法是一种反馈控制方法,它通过测量和计算系统的误差,调整输出控制量,使得系统的运行状态能够接近期望状态。

模糊PID控制算法的原理是,在PID控制算法的基础上,使用模糊逻辑来处理模糊因素,使得控制系统能够对模糊因素有更好的适应性和鲁棒性。

模糊逻辑是对不确定性和模糊性进行建模和处理的一种方法,它能够通过模糊集合和模糊规则来描述和处理模糊因素。

在模糊PID控制算法中,首先使用一组模糊集合来表示误差和变化率的程度,然后建立一组模糊规则,通过模糊推理得到模糊控制量,最后将模糊控制量经过模糊解模糊化得到实际控制量。

这样,通过模糊逻辑的处理,能够使得控制系统对于模糊因素有更好的适应性和鲁棒性。

三、实验步骤1.设计一个虚拟物理系统,可以使用一个电机控制器和一个电机模拟器来模拟物理系统的运动。

2.根据虚拟物理系统的特性,确定控制系统的输入和输出变量,例如位置和速度。

3.设计一组模糊集合来表示位置和速度的程度,例如“远”、“近”、“大”、“小”等。

4.建立一组模糊规则,通过模糊推理得到模糊控制量。

5.设计一个PID控制算法,用于计算系统的误差和调整输出控制量。

6.将模糊控制量和PID控制量相结合,得到最终的实际控制量。

7.使用单片机编程语言,例如C语言,实现上述的模糊PID控制算法。

模糊控制实例2-agv小车倒车入库控制

模糊控制实例2-agv小车倒车入库控制
AGV小车的导引方式有多种,如激光导引、磁条导引、惯性 导引等,其中激光导引具有精度高、对环境要求低等优点, 是当前主流的导引方式。
倒车入库控制的重要性
倒车入库是AGV小车在仓库、车间等有限空间内进行作业 的重要环节。由于空间有限,障碍物多,倒车入库的控制 难度较大,需要精确控制小车的速度和方向,确保安全、 准确地完成入库操作。
模糊控制的基本原理
通过引入模糊集合和模糊逻辑,模糊控制能够处理不确定性和非线性问题,从而实现对复杂系统的有 效控制。
模糊控制的基本原理包括模糊化、模糊推理和去模糊化三个主要步骤,通过合理设计每个步骤的方法 和参数,实现对系统的精确控制。
04 模糊控制算法在AGV小车 倒车入库中的应用
模糊控制器设计
模糊控制在AGV小车倒车入库中的优势与局限性
优势
模糊控制具有较强的鲁棒性和适应性, 能够处理不确定性和非线性问题,适用 于各种复杂的控制场景。在AGV小车倒 车入库控制中,模糊控制器能够根据实 际情况进行自适应调整,提高控制的准 确性和稳定性。
VS
局限性
模糊控制器的设计过程较为复杂,需要经 验丰富的专业人员进行设计和调整。此外 ,模糊控制器在处理精确度要求较高的控 制任务时可能会存在一定的误差和波动。
导航系统通常采用磁轨导航或激光雷 达导航技术,通过感应器或传感器获 取环境信息,并由控制系统进行解析 和处理,实现小车的精确导航。
AGV小车的运动控制系统
AGV小车的运动控制系统负责控制小 车的运动,包括速度、方向和位置等。
运动控制系统基于模糊控制算法,通 过模糊逻辑控制器对小车的运动状态 进行实时监测和调整,确保小车能够 稳定、准确地完成搬运任务。
模糊控制算法的实现
编程语言选择

模糊控制基本实验

模糊控制基本实验

1假设一个双输入/单输出系统,输入X∈[-5,5]和Y ∈[-10,10]模糊化成三级:负、零、正,输出Z ∈[-5,5]模糊化成五级:负大、负小、零、正小、正大。

模糊规则表如下所示。

适当选择隶属度函数后,设计一个基于Mamdani模型的模糊推理系统,绘制出输入/输出曲线,并计算当X和Y分别为-3和5以及-2和-7时输出Z的大小。

图1:输入变量X范围及隶属度函数曲线
图2:输入变量Y范围及隶属度函数曲线
图3:输出变量Z范围及隶属度函数曲线
图4:输入输出变量三维曲面图
图5:输入变量X=-3,Y=5时输出变量Z值
图6:输入变量X=-5,Y=-9时输出变量Z 值
2.查找相关文献,设计能跟踪给定输入的模糊控制器,假设系统模型如下:
其中K=30, T1=10, T2=40, Td=2。

(用simulink 搭建系统,对系统进行仿真,给
出系统的阶跃响应曲线)
图7:模糊控制经验规则
)
1)(1()(21s T s T Ke s G s
T d ++=
-
图8:E和EC的范围及隶属度函数曲线
图9:输出变量u的范围及隶属度函数
图10:模糊控制规则
图10:模糊控制规则观察表
图11:输入输出变量三维曲面图
图12:simulink仿真电路图
其中,经过多次试探,当K1=2.4,K2=0.65,K3=1.15时,仿真效果较好。

图13:系统单位阶跃响应输出曲线图。

洗衣机模糊控制建模

洗衣机模糊控制建模

智能控制课程作业模糊控制理论实验报告题目洗衣机系统模糊控制建模与仿真班级姓名学号2014年3月13日一.实验目的通过设计洗衣机洗涤时间的模糊控制系统,理解模糊控制的基本原理。

掌握模糊控制系统MATLAB建模与仿真的方法。

二.实验原理洗衣机洗涤时间的模糊控制是一个开环模糊决策过程,其基本原理框图如图1-1所示。

它的核心部分是模糊控制器,模糊控制器的控制律由计算机程序来实现。

图1-1 系统原理框图系统选用两输入单输出的模糊控制器。

控制器的输入为衣物的污泥量x和油脂量y,输出为洗涤时间z。

将污泥分为3个模糊集:SD(污泥少),MD(污泥中),LD(污泥多);将油脂分为3个模糊集:NG(油脂少),MG(油脂中),LG(油脂多);将洗涤时间分为5个模糊集:VS(很短),S(短),M(中等),L(长),VL很长。

首先,定义输入x,y变量,输出z变量的隶属函数。

根据“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”的规律建立洗衣机模糊规则表。

然后,根据模糊规则进行模糊推理并得到洗涤时间的模糊集合。

最终,利用重心法对模糊系统反模糊化,将洗涤时间的推理结果转化成精确值z输出。

三.实验内容利用MATLAB软件实现上述洗衣机系统模糊控制的建模与仿真。

1.建立x,y,z的隶属函数洗衣机系统变量x,y,z的隶属函数分段表达式,如式1-1所示。

()()()()()()()()()()()()()()()()SD MD LD NG MG LGVS 50/50050/50050100/505010050/505010050/50050/5005011100/505010050/505010010/10010Sx x x x x x x x x x x y y y y y y y y y y y z z z z μμμμμμμμμμμ=-≤≤⎧⎪≤≤⎧⎪⎪==⎨⎨-<≤⎪⎩⎪⎪=-<≤⎩=-≤≤⎧⎪≤≤⎧⎪⎪==-⎨⎨-<≤⎪⎩⎪⎪=-<≤⎩=-≤≤=污泥油脂洗涤时间()()()()()()()()()VL /1001025/15102510/15102540/15254025/15254060/20406040/204060M L z z z z z z z z z z z z z z z z z μμμ⎧⎪≤≤⎪⎧⎪=⎨⎪-<≤⎪⎩⎪⎪-≤≤⎧⎪⎪=⎨⎨-<≤⎪⎪⎩⎪-≤≤⎧⎪⎪=⎨⎪-<≤⎪⎩⎪⎪=-≤≤⎩在MATLAB 中,定义本系统为一个Mamdani (普通)型模糊控制系统,命名为a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1假设一个双输入/单输出系统,输入X∈[-5,5]和Y ∈[-10,10]模糊化成三级:负、零、正,输出Z ∈[-5,5]模糊化成五级:负大、负小、零、正小、正大。

模糊规则表如下所示。

适当选择隶属度函数后,设计一个基于Mamdani模型的模糊推理系统,绘制出输入/输出曲线,并计算当X和Y分别为-3和5以及-2和-7时输出Z的大小。

图1:输入变量X范围及隶属度函数曲线
图2:输入变量Y范围及隶属度函数曲线
图3:输出变量Z范围及隶属度函数曲线
图4:输入输出变量三维曲面图
图5:输入变量X=-3,Y=5时输出变量Z值
图6:输入变量X=-5,Y=-9时输出变量Z 值
2.查找相关文献,设计能跟踪给定输入的模糊控制器,假设系统模型如下:
其中K=30, T1=10, T2=40, Td=2。

(用simulink 搭建系统,对系统进行仿真,给
出系统的阶跃响应曲线)
图7:模糊控制经验规则
)
1)(1()(21s T s T Ke s G s
T d ++=
-
图8:E和EC的范围及隶属度函数曲线
图9:输出变量u的范围及隶属度函数
图10:模糊控制规则
图10:模糊控制规则观察表
图11:输入输出变量三维曲面图
图12:simulink仿真电路图
其中,经过多次试探,当K1=2.4,K2=0.65,K3=1.15时,仿真效果较好。

图13:系统单位阶跃响应输出曲线图。

相关文档
最新文档