华师大版七年级上册4.6.2角的比较和运算教案
华师大版初中数学七年级上册4.6.2角的比较和运算备课教案

B、∠A>∠B=∠C
C、∠B>∠C>∠A
D、∠B=∠C>∠A
三、计算:(1)102°43′32″+77°16′28″=___________ _;
4、 如 图 4, 若 ∠ AOB =∠ BOC =∠ COD, 则 OB 是
线,
1
1
= ∠AOC, ∠BOC = =
2
2
1
1
=
=
2
3
的平分 (2)87 o 2′36″—36o37′24″=________
3、如图 3,所示:⑴∠DAB =∠DAC+ ⑵∠ACB =∠DCB –
2、如图:OC 是 AOB 的平分线,OD 是 BOC 的平分线,那么下列各式中
正确的是:( )
A.COD 1 AOC 2
B.AOD 2 AOB 3
C.BOD 1 AOB 3
D.BOC 3 AOB 2
3、下面一些角中,可以只用一副三角尺(不用量角器)画出来的角是
∴∠AOC=∠BOC
(∠AOB=2∠
或∠AOB =2∠
:
1
或∠AOC= ∠
2
1
,∠BOC = ∠___ _)
2
2,利用作图工具,画出下面两个角的角平分线,
A
D
El
B
C
F
【二】展现提升 例 1、度分秒的计算 ⑴把一个周角 7 等分,每一份是多少度的角?(精确到分)
预习笔记
角平分线的尺规作图步骤: 1、以 O 为圆心,任意长为半 径画弧,分别交 OA、OB 于 C、D
求: AOD 。
C A
①运用重叠法进行两个角的大小比较:
D
得∠ABC
角的比较和运算(教案)

4.6.2角的比较和运算教学设计师:如何比较下面两条线段的长短?(1)测量法(2)叠合法师:类似地,你能比较两个角的大小吗?观察法1周角=360°;1平角=180°;钝角:90°<∠α<180°;1直角=90°;锐角:0°<∠β<90°。
1周角>1平角>钝角>1直角>锐角叠合法这时,角的大小关系就明显了,可以简单地记为∠AOB>∠DEF,或∠DEF<∠AOB.度量法量得∠AOB=60°,∠DEF=30°,所以∠AOB>∠DEF.小结:角的比较方法:观察法、叠合法、度量法想一想:在放大镜下,一个角变大了吗?二、画角——特殊角师:一副三角尺上的角是一些常用的角,除了用它们直接画出30°、45°、60°和90°的角之外,还可以画出其他的角吗?如图所示,用两种方法放置一副三角尺,可以画出75°和15°的角。
想一想:用一副三角尺,还可以画出哪些特殊的角?三、画角——一般角做一做:如图,∠AOB为已知角,试按下列步骤用圆规和直尺准确地画一个角等于∠AOB。
第一步:画射线O’A’;第二步:以点O为圆心,以适当长为半径画弧,交OA于点C,交OB于点D;第三步:以点O’为圆心,以OC长为半径画弧,交O’A’于点C’;第四步:以点C’为圆心,以CD为半径画弧,交前一条弧于点D’;第五步:经过点D’画射线O’B’.∠A’O’B’就是所要画的角.三、角的和差关系例1 我们可以对角进行简单的加减运算,如:(1)34°34′+24°51′=55°85′=56°25′;(2)180°-52°31′=179°60′-52°31′=127°29′.例2 观察下图中的∠AOC、∠COB和∠AOB,如何表示它们之间的关系呢?我们可以用熟悉的“和差”来表示:∠AOC +∠COB=∠AOB,或∠AOB - ∠AOC=∠COB,或∠AOB - ∠COB=∠AOC.可见,两个角相加或相减,得到的和或差也是角。
数学华东师大版七年级上册教案 4.6.2角的比较和运算(0002)

优质资料---欢迎下载角的比较与运算(1)教学目标:1.理解角的大小,角的和、差、倍、分的意义及数量关系,并会用文字语言,图形语言,符号语言进行描述,并会进行度、分、秒的角度的计算;2.类比线段的大小,和与差,学习角的比较,角的和与差,体会类比的思想。
教学重点:角的大小比较,角的和、差、倍、分的意义和计算方法教学难点:度、分、秒的角度的计算教学过程一.情景引入有一天学生张亮和王帅各带了一把折扇(如图所示),下面是他们的一段对话:张:我的折扇张开大一些,所以我的折扇的角也大一些.王:我的折扇长一些,所以我的折扇的角也大一些.同学们你们有办法帮他们判断吗?怎样比较∠ABC和∠DEF的大小?二. 解读目标三.新课讲解1.温故知新问题1:前面我们研究了线段,学习了线段的比较与运算。
你能回忆一下,在这一节我们学习了哪些知识?师生活动:学生回顾所学内容,教师归纳2.探究新知问题2:类比线段大小的比较,你认为该如何比较两个角的大小?在练习本画两个角,比较它们的大小,并说明你是怎么比较的?师生活动:学生讨论解决问题的方法,学生代表交流学生展示交流后提问:比较角的大小的方法有几种?每种方法应注意什么?(1) 度量法(2) 叠合法(叠合两角时注意:两角顶点重合;一边重合;另一边落在重合边的同旁)你能用图形和几何语言,说明两个角的大小关系吗?(1)''B O 落在B A 0∠的外部,''OB A ∠大于B A 0∠,记作''OB A ∠>B A 0∠(2)''B O 与OB 重合,''OB A ∠等于B A 0∠,记作''OB A ∠=B A 0∠(3)''B O 落在B A 0∠的内部,''OB A ∠小于B A 0∠,记作''OB A ∠<B A 0∠问题3:如图,图中共几个角?它们之间有什么关系?师生活动:学生确定角的个数,明确角的和差关系教师关注:学生是否能发现角的和差关系,若学生仅说出它们的大小关系,教师可引导学生进一步观察图形,类比线段的和与差,发现角的和差关系提问:你能用符号表示这些角之间的和差关系吗?AOC ∠是AOB ∠与BOC ∠的和,记作AOC ∠=AOB ∠+BOC ∠AOB ∠是AOC ∠与BOC ∠的差,记作AOB ∠=AOC ∠-BOC ∠类似地,AOC ∠-AOB ∠=BOC ∠问题4:利用一副三角尺,你能画出哪些度数的角?师生归纳:一副三角尺上的角都是常用的角,它们是30°,45°,60°,90°的角,利用这些角可以很方便地画出这些角的一些特殊角,如:15°,30°,45°,60°,90°,105°,120°,135°等问题5:在前面我们已经说过一个角的大小可以用度、分、秒来表示,会进行度、分、秒来表示,会进行度、分、秒的转换,还需要会进行加、减运算。
新华师大版七年级上册初中数学 4-6-2角的比较和运算 教学课件

新课讲解
归纳
用叠合法比较角的大小时,一定要将两个角的另一 边落在重合边的同侧.有一边重合且另一边在重合边的 同侧的两角,通过观察法就可以比较大小;两边都不重 合,或有一边重合但另一边在重合边的异侧的两角,可 通过度量法比较大小 .
新课讲解
知识点2 角的运算 一副三角尺上的角是一些常用的角,除了可以用 它们直接画出30°、45°、60°和90°的角之外,还可 以画出其他一些特殊的角.如图所示,用两种方法放置一 副三角尺,可以画出75°和15°的角.
新课讲解
定义:从一个角的顶点引出的一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线.
新课讲解
例4 如图,∠1=∠2,∠3=∠4,则下列结论:①
AD平分∠BAF;②AF平分∠DAC;③AE平分 ∠DAF;④AF平分∠BAC;⑤AE平分∠BAC,
其中正确的有( C ) A.4个 B.3个 C.2个 D.1个 导引: 由角的平分线的几何表示可知:当∠1=∠2时,
新课讲解
例3 如图,∠AOB=48°,∠1=32°24′,求
∠2的度数. 导引: 要求∠2的度数,就是要把它转化为用已知角的
关系式来表示.根据图形可知,∠1+∠2=
∠AOB,因此∠2=∠AOB-∠1. 解: 因为∠AOB=48°,∠1=32°24′,
所以∠2=48°-32°24′=47°60′- 32°24′=15°36′.
第四步:以ቤተ መጻሕፍቲ ባይዱC′为圆心,以CD长为半径画弧,交前一条 弧于点D ′;
第五步:经过点D′画射线O′B′. ∠ A′ O′B′ 就是所
要画的角.
新课讲解
例2 用一副三角尺不能全部画出的一组角的度 数是( D ) A.15°、30°、45° B.45°、60°、75° C.90°、105°、120° D.100°、135°、150°
华师版七年级数学上册教案4.6.2 角的比较和运算

4.6角4.6.2 角的比较和运算一、基本目标【知识与技能】1.使学生通过联想线段大小的比较方法,找到角的大小的比较方法.2.使学生通过联想线段和、差、倍、分的作法,掌握角的和、差、倍、分的作法和计算.3.使学生掌握角的平分线的定义以及数学表达式.4.培养学生类比联想的思维能力和对知识的迁移能力.二、重难点目标【教学重点】角的两种比较方法、角的和、差、倍、分的作法和计算、角的平分线定义.【教学难点】角平分线定义的各种数学表达式.一:创设情境,提出问题,引入新课(动)从实际生活中建立角的概念1.类比联想,提出问题前面学习了线段的概念之后,紧接着就学习了比较线段的大小以及线段的和、差、倍、分的画法问题.上节课我们已经学习了角的概念,类似的,今天我们也要学习如何比较角的大小,以及角的和、差、倍、分的画法问题.(板书课题)2.类比联想,探索解决问题的方法(1)师生共同回忆线段大小比较的方法,以及和、差、倍、分的画法.(2)分组讨论,发现方法.提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.1.习角的有关概念二:引入新课(动)三:新课:((板书))角的大小可以有两种比较方法:重叠比较法和度量法.(1)重叠比较法:由线段的重叠比较法知,将要比较的两条线段一端重合,再看另一端的位置.角的比较也类似,提问谁能用两个三角板演示一下,然后总结,在比较角的大小的过程中,要让角的顶点和角的一条边都重合,看另一条边落在角内还是角外.(让学生自己总结出三种不同的结论,并让学生在黑板上画出图形,量角器可起移角的作用,先测量的度数,然后以的顶点为顶点,其中一边为边作一个角等于.)记作:∠AOB=∠COD记作:∠AOB>∠COD记作:∠AOB<∠COD(2)度量法:因为角可以用量角器来量出度数,度数大的角大于度数小的角,通过角的度数来比较角的大小.(注意写法)例1如图4.6.8,比较∠AOB与∠CGH的大小.(书上的149页的图)因为量得∠AOB=35°,∠CGH=65°.所以∠CGH>∠AOB.(当然,书上的角不能剪下来,我们可以把一个角画到一张描图纸上,放在另一个角上面比较比较角的大小,也可以用量角器分别量出角的度数,然后加以比较.1:画角(做一做)2:画特殊的角30;45;60;75 ;15;105;(角的运算的一种)提出问题:如图,试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.角的运算(和差)我们可以对角进行简单的加减运算,如:(1) 34°34′+21°51′=55°85′=56°25′(2) 180°-52°31′=179°60′-52°31′=127°29′角的和、差、倍、分也可以有两种方法:作图法和度量计算法.(1)作图法:在图中作出两个角的和、差、倍、分.例2已知∠AOB,∠CED且∠AOB>∠CED,如图.求作(i)∠AOB与∠CED的和;(ii)∠AOB与∠CED的差;(iii)∠CED的二倍.教师在黑板上以草图的形式为学生演示,依照线段的和、差、倍、分的作法,从而发现作图中的问题,怎样做一个角等于已知角.由于这个基本作图没学,因此作图法暂时不能具体操作,所以目前切实可行的方法只有度量计算法.(2)度量计算法.依然选用例2,解法如下解:量得∠AOB=50°,∠CED=20°,∠AOB 与∠CED的和是70°.∠AOB与∠CED的差是30°.∠CED的二倍是40°.例子练习(1)如图,∠AOB=130°,∠AOE=50°,∠OEA=60°,求∠BOE,∠OEB.(2)如图,已知∠A=∠B=25°,若∠A+∠B+∠BCA=180°,求∠ACE.2.如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC,∠AOB.角平分线的概念(由)教师提问:1.回忆怎样求线段的中点.2.怎样平分一个角.总结:在现阶段只能用度量法解决这两个问题,由于在求一个角的几分之几的情况中,最特殊的就是求一个角的二分之一,它的地位相当于求线段的中点,因此我们下面重点研究角的二等分.将线段二等分的点,叫做线段的中点,由此,我们得一个新的概念——角平分线.(由4的和差引入一个特殊关系;做一做)角平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.对这个定义的理解要注意以下几点:1.角平分线是一条射线,不是一条直线,也不是一条线段.如图1-32,它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.2.当一个角有角平分线时,可以产生几个数学表达式.如图1-32,可写成因为 OC是∠AOB的角平分线,所以∠AOB=2∠AOC=2∠COB(1)∠AOC=∠COB(2)反过来,只要具备上述的式子之一,就能得到OC为∠AOB的角平分线.这一点学生要给以充分的注意. (在角的比较中有一个好题)练习:1.画一个三角形ABC,然后作出这三个角的平分线.观察它们是否交于一点,如果交于一点,则交点的位置在哪里?2.如图1-33,若∠AOB=∠COB=∠DOC,进行下列填空.(1)∠AOD=( )+( )+( );(2)∠AOB=( )∠AOD;(3)∠AOD=( )∠COB;(4)∠DOB=( )=( )+( ).2.如图1-37,OC是∠AOB的角平分线,∠CAO=90°,∠CBO=90°,比较∠ACO与∠BCO 的大小.(三)总结教师提问:这节课我们都学习了哪些内容和主要的思维方法?学生的回答可能不够全面,或者比较零散,教师最后给以归纳.1.学习的内容有三个:(1)比较角的大小.(2)角的和、差、倍、分.(3)角平分线的概念.2.学习了类比联想的思维方法.请完成本课时对应练习!。
华师大版数学七年级上册教案4.6_角2

教学过程设计
分析备注
第四章图形的初步认识
§4.6角
角的比较和运算
教学目的:
1、使学生掌握分别用测量与重叠来比较角大小的方法;
2、能学生充分理解两个角大小比较所隐含的意义,能从“量”与“形”上进行转化;
3、角平分线的性质及其简单运算。
教学分析:
重点:运用叠合法来比较两个角的大小;
难点:如何引导学生从“数量”的角度,引入到从“形”的角度来分析两个角的大小比较。
、 、 、 。
(2)作一个角等已知角:
在前面的学习中,我们已经知道如何作一条线段等于已知线段,同样,我们也可以利用圆规来作一个角等于已知角。
(3)角平分线:
如果我们把一个角的两边对折,让两边互相重合,这时,我们将看到这个角的中间有一条射线,它将这个角分成两个相等的角,这时,我们把这条射线称为这个角的角平分线。
在画时,如何画应是老师必须给予提示与讲解的,特别是如何放角的顶点与边。
作图应作为一个补充知识,不必强求知识的记忆。
角平分线的知识是一个几何中的重要知识点,虽然在此不是重点,但在教学中,老师不能放松,而是要加强讲解。
例题的讲解是本题的重点,几何题的分析是一个几何学习的重点与难点,必须使学生在学习中有一个渐进的过程。另外在例题的讲解中,如何书写几何题的过程也是一个非常难的步骤。
五、家庭作业:
P159 A:exc3、8
六、每日预题:
1、角与角有哪些特殊的关系?
2、请每位学生先准备一个可活动的角,并剪出一个直角三角形。
七、教学反馈:
首先在知识的过程中,必须对旧的知识进行适当的复习,使学生能能角的知识有一个更深的记忆。
在角的形象比较中,要努力引导学生的思维方向。
华师大版数学七年级上册《角的比较和运算》教学设计

华师大版数学七年级上册《角的比较和运算》教学设计一. 教材分析华师大版数学七年级上册《角的比较和运算》是学生在小学阶段对角的概念和简单的角的大小比较的基础上进行进一步学习的。
本节课的主要内容是角的大小比较,角的加减运算,以及角的度量单位。
教材通过生活中的实例引入角的概念,使学生能够更好地理解和掌握角的概念和运算方法。
二. 学情分析学生在小学阶段已经学习了角的概念和简单的角的大小比较,但对角的运算还比较陌生。
因此,在教学过程中,需要通过具体的实例和操作活动,让学生理解和掌握角的运算方法。
同时,学生对华师大的教材还比较陌生,需要教师在教学过程中给予引导和帮助。
三. 教学目标1.了解角的概念和角的运算方法。
2.能够进行角的加减运算,并能正确判断角的大小关系。
3.能够运用角的概念和运算方法解决实际问题。
四. 教学重难点1.角的加减运算方法。
2.角的度量单位及换算。
五. 教学方法1.实例引入:通过生活中的实例引入角的概念,使学生能够更好地理解和掌握角的概念和运算方法。
2.操作活动:让学生通过实际操作,体验角的运算方法,提高学生的动手能力和实际操作能力。
3.小组合作:让学生通过小组合作,共同探讨和解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于教学过程中的演示和讲解。
2.教具:准备一些角的模型和量角器等教具,以便于学生直观地了解角的概念和运算方法。
3.练习题:准备一些相关的练习题,以便于学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如折纸活动,引入角的概念。
让学生观察和描述折纸活动中的角,并引导学生思考:如何比较两个角的大小?2.呈现(10分钟)讲解角的大小比较方法,如使用量角器进行测量,以及角的加减运算方法。
通过PPT演示和教具展示,让学生直观地了解角的大小比较和运算方法。
3.操练(10分钟)让学生分组进行实际操作,使用量角器和直尺进行角的测量和加减运算。
华师版七年级上册数学4.6.2【教案】角的比较和运算

角的比较和运算【教学目标】知识与技能:会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.过程与方法:经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣,实际观察、操作,体会角的大小,培养学生的观察思维能力.情感态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益.【教学重难点】重点:角的比较与角平分线概念.难点:用尺规画一个角等于已知角.【教学过程】一、创设情境,导入新课设计意图:通过对线段大小比较的类比,探究角的大小的比较方法,既巩固了新知识,又引入了新知识.教师提出问题:1.角的表示方法有几种?2.怎样比较两条线段的大小?学生思考后回答.二、探究新知设计意图:通过出示两张角的纸片,提出问题,激发学生的求知欲,引导学生主动探索解决问题的方法,自然而然地引入本节课新内容的探究.(一)角的比较如图,已知∠ABC和∠DEF.请大家讨论一下,用什么方法可以比较这两个角的大小?1.分组讨论角的比较方法.在学生讨论的过程中,教师深入学生中间巡视,观察并听取他们解决问题的方法和建议,可适当组织交流或分组汇报,师生共同归纳角的比较方法.(1)度量法:用量角器量出角的度数,然后比较它们的大小.(2)叠合法:把两个角叠合在一起比较大小 .2.观察右图形,图中共有几个角?它们之间有什么关系?师生共同探讨后得出结论.问题:用一副三角尺,你能画出哪些度数的角?让学生动手做一做,试一试,然后师生共同归纳看一看都可以得到哪几个角.(二)角的计算教师出示例题:如图,O是直线AB上一点,∠AOC=53°17',求∠BOC的度数.分析:(1)AB是直线,∠AOB是什么角?它是多少度?(2)∠BOC,∠AOC,∠AOB之间是什么关系?学生讨论完以上两个问题,然后师生共同解决问题,过程中教师应当关注学生能否准确叙述求角的过程,同时关注学生求值是否正确.(三)角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合,想想看,折痕与角两边所成的两个角的大小有什么关系?让学生多想一想,做一做,通过观察和思考,然后师生共同归纳结论,引出角的平分线定义及其几何表达式,类似的还有角的四等分线、三等分线等.如图,OC是∠AOB的平分线,根据图形填空:∠AOB= ∠AOC= ∠COB,∠AOC=∠COB= ∠AOB.三、综合运用设计意图:通过对练习的解决,进一步巩固所学的知识,培养学生的几何语言的使用能力,进一步掌握角的有关计算,加深对角平分线的理解,渗透数形结合的数学思想.教师出示练习:1.如果一个角是另一个角的3倍,且这两个角的和是90°,求这两个角的度数.2.如图,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.学生练习后交流结果,教师应当关注第2个题,一是问题的分析,二是解答过程的叙述.四、课后作业1.如图所示,比较下列四个角的大小,并用“>”连接.【答案】∠D>∠B>∠A>∠C.2.将一副三角板如图放置:(1)按图填空:∠ACB=∠ACE+ ,∠ABD=∠CBD- .(2)你能算出∠ACE与∠ABD的度数吗?【答案】(1)∠ECD ∠ABC (2)60°135°【板书设计】一、创设情境,导入新课二、探究新知(一)角的比较(二)角的计算(三)角平分线三、综合运用四、课后作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的比较和运算
官岭镇鹅院学校:吴肇永
一、教材分析
本节课所学的知识既是对“角的测量”内容的拓展,也是今后几何学习的重要基础。
教学中从实际出发,注重学生的合作交流,从活动中积累经验和知识。
二、教学目标
【知识与技能】
1.在现实情境中,进一步丰富锐角、钝角、直角及大小的认识;
2.学会比较角的大小,能估计一个角的大小;
3.在操作活动中认识角平分线,能画出一个角的平分线。
4.认识度、分、秒,并会进行简单的换算。
【情感态度与价值观】
1.能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段。
2.通过实际观察、操作体会角的大小,发展几何直觉。
3.能用符号语言叙述角的大小关系,解决实际问题。
三、教学重点与难点
教学重点:角的大小的比较方法
教学难点:从图形中观察角的和、差关系。
四、教学设计
(一)引入:
1、请同学们回忆,比较两条线段的大小关系有哪几种方法?
(测量法和叠合法---为新课的学习做铺垫)类比联想,探索解决问题的
方法
2、[展示公园示意图或引导学生观看图并回答]
(1)请同学们把图中的五大景点中的任何两个之间都用线段连接。
(2)教师任选其中的两个角并提问:你能比较出这两个角的大小吗?你是怎样比较的?
说明:由学生探讨出角的大小比较的一种方法———测量法。
(二)新课
1、今天我们就来学习角的大小的比较。
刚才同学们已经探讨出一种方法:测量法(板书)现在请大家看老师手中的一副三角板(各指出每个三角板的一个锐角),你还能想出其它的方法比较出这两个角的大小吗?
说明:由学生动手操作探讨出叠合法的比较过程,教师总结并板书出此方法的名称
若两个角能完全重合,你们说说这两个角的大小有何关系?(相等)
2、利用三角板提问:你们能告诉老师这三个内角各属于什么角?(锐角、锐角、直角)
在小学里大家还学过哪些角?(钝角、平角、周角)谁能告诉我这5种角是怎样判别的吗?
说明:由学生根据小学的知识进行回顾总结,然后教师利用多媒体显示下列内容:
3、重新展示公园示意图。
请同学们猜想一下刚才图中得到的角,它们分别⎪⎪⎪⎩⎪⎪⎪⎨⎧︒=∠︒=∠︒
<∠<︒︒=∠︒<∠<︒3601801809090900ααααα周角:平角:钝角:直角:锐角:角的分类
属于什么角?你能比较出这些角的大小吗?[由学生小组合作完成]
4、例题讲解:P148/例1 根据图4-16 ,求解下列问题:
(1) 比较∠AOB 、∠AOC 、∠AOD 、∠AOE 的大小,并指出其中
的锐角、直角、钝角、平角;
(2) 写出∠AOB 、∠AOC 、∠BOC 、∠AOE 中某些角之间的两个等
量关系。
5、下面请大家各自在纸上任意画一个∠BOA ,再完成书上的做一做。
你们发现了什么?(∠AOC=∠BOC )
像刚才这条折痕,它是由角的顶点出发,把原来的角分成两个相等的角。
那么这条射线叫做这个角的角平分线。
(板书定义)
对这个定义的理解要注意以下几点:
1.角平分线是一条射线,不是一条直线,也不是一条线段.它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.
2.当一个角有角平分线时,可以产生几个数学表达式.可写成
因为 OC 是∠AOB 的角平分线,
所以 ∠AOB=2∠AOC=2∠COB , (1)
∠AOC=∠COB , (2)
反过来,只要具备上述(1)、(2)、中的式子之一,就能得到OC 为∠AOB 的角平分线.这一点学生要给以充分的注意.
问:你们能用量角器画出一个角的角平分线吗? 下面请大家完成课本P150页的随堂练习1(学生板演)
6、合作学习:
观察课本P149页图4-18中的量角器,并讨论下列问题:
(1)量角器上的平角被分成多少个1°的角?
D C P
(2)先估计下图中,∠A和∠B的度数,再用量角器量一量,在测量中,你遇到哪些问题?
A B
在测量角时,有时以度为单位还不够,我们需要用比1°更小的单位,称之为分和秒,把1°的角等分成60份,每一份是1分,记做1',把1分的角再等
1)°1周角=360°1'=60" 分成60份,每份就是1秒,记做1",即1°=60' 1'=(
60
1"=(601)' 1平角=180°
7、例1:(1)1.450等于多少分?等于多少秒?
(2)1800〃等于多少分?等于多少度?
例2:(补充)(1)用度、分、秒表示:48.32°(2)用度表示:30°9'36"
例3:(补充)计算:180°-(45°17'+52°57')
8、做一做:
(1)(观看课本P148页的图4-16)根据图形填空:
①∠DOB=∠DOC+
②∠BOC=∠DOB- =∠COA-
③∠DOB+∠AOB-∠AOC=
(2)随堂练习P150/第2、3、
9、探究活动:利用一副三角板,你能画出哪些度数的角?
说明:学生小组合作学习后,教师再总结结论:15 º、30 º、45 º、60 º、75 º、90 º、105 º、135 º、150 º、180 º。
(三)知识小结
通过本节课的学习,你学到了哪些知识?(学生回答)学生的回答可能不够全面,或者比较零散,教师最后给以归纳.
1.学习的内容有三个:
(1)比较角的大小.(2)角的分类及角的和差倍分.(3)角平分线的概念.2.学习了类比联想的思维方法.
(四)布置作业:课本P150
知识技能1、2、3
问题解决1。