华东师大版八年级上册数学全册复习试题

合集下载

初中数学华东师大版八年级上册复习题

初中数学华东师大版八年级上册复习题
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中, ∠C=90º,AB=c,AC=b,BC=a,
A
a2+b2=c2.
cb
B aC
1、勾股定理 直角三角形两条直角边的平方和
等于斜边的平方。
∵ △ABC中,∠C=90º,又 AB=c,AC=b,BC=a,
A1
42 22
B 2
3
C
= 20
18 20 26
最短路程为 18即3 2cm
概括:上述这类问题,一般按三个 步骤进行:
(1)把立体图形转换成平面图形; (2)寻找问题中隐藏的直角三角形; (3)利用勾股定理解答。
勾股定理在生活中的应用十分广泛, 利用勾股定理解决问题,关键是找出 问题中隐藏的直角三角形或自己构造 合适的直角三角形,尝试把立体图形 转换为平面图形
A’ r O
B
A’
B
h
侧面展
开图
A
A在Rt△Aຫໍສະໝຸດ ’B中,利用勾股定理可得,AB2 AA2 A' B2
其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)
若已知圆柱体高为12cm,底面半径 为3cm,π取3,则:
AB2 122 (3 3)2 AB 15
A3 O
B
A’ 3π
B
12 ’
侧面展 开图
1、本节课你有哪些收获? (在知识和学法上)
2、本节课中体现了什么 数学思想?
3、还有哪些疑惑?
如图,台阶A处的蚂蚁要爬到B处搬运食物, 它怎么走最近?并求出最近距离。
B
B
A
拓展2:如果盒子换成长为3cm,宽 为2cm,高为1cm的长方体(如下图) , 蚂蚁沿着表面需要爬行的最短路程又 是多少呢?

华东师大版八年级数学上册单元测试题全套(含答案)

华东师大版八年级数学上册单元测试题全套(含答案)

第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列4个数:9、227、π、(3)0,其中无理数是( )C .πD .(3)02.8的平方根是( )A .4B .±4 D .±83.与1+5最接近的整数是( )A .4B .3C .2D .14.下列算式中错误的是( )A .-错误!=-B .±错误!=±=±35 =-325.如图,数轴上点N 表示的数可能是( )(第5题)6.比较32,52,-63的大小,正确的是( )<52<-63 B .-63<32<52 <-63<52 D .-63<52<327.若a 2=4,b 2=9,且ab >0,则a +b 的值为( )A .-1B .±5C .5D .-58.如图,有一个数值转换器,原理如下:(第8题)当输入的x 为64时,输出的y 等于( )A .2B .89.已知2x -1的平方根是±3,3x +y -1的立方根是4,则y -x 2的平方根是( )A .5B .-5C .±5D .2510.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最接近的是( )(第10题) A.D.二、填空题(每题3分,共30分)11.实数3-2的相反数是________,绝对值是________.12.在35,π,-4,0这四个数中,最大的数是________.13.4+3的整数部分是________,小数部分是________.14.某个数的平方根分别是a+3和2a+15,则这个数为________.15.若2x-y3+|y3-8|=0,则yx是________理数.(填“有”或“无”)16.点P在数轴上和原点相距3个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P 的左边,则P,Q之间的距离为______________.(注:数轴的正方向向右)17.一个正方体盒子的棱长为6 cm,现要做一个体积比原正方体体积大127 cm3的新盒子,则新盒子的棱长为________ cm.18.对于任意两个不相等的实数a,b,定义运算※如下:a※b=a+ba-b,那么7※9=________.19.若20n是整数,则正整数n的最小值是________.20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答题(22题9分,26题7分,27,28题每题10分,其余每题6分,共60分) 21.求下列各式中x的值.(1)4x2=25;(2)(x-3=.22.计算:(1)⎝ ⎛⎭⎪⎫-122+38-|1-9|; (2)3-1+3(-1)3+3(-1)2+(-1)2;(3)⎝ ⎛⎭⎪⎫-132+89+(-3)2+(2-7-|7-3|).23.已知|3x -y -1|和2x +y -4互为相反数,求x +4y 的平方根.24.已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x +3y 的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+3|+|a-2|+|c-2|+2c.(第25题)26.某段公路规定汽车行驶速度不得超过80 km/h,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在一次交通事故中,已知d=16,f=.请你判断一下,肇事汽车当时的速度是否超出了规定的速度27.观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1,…(1)观察上面的规律,计算下面的式子:12+1+13+2+14+3+…+12 015+ 2 014;(2)利用上面的规律,试比较11-10与12-11的大小.28.李奶奶新买了一套两室一厅的住房,将原边长为1 m的方桌换成边长是m的方桌,为使新方桌有块桌布,且能利用原边长为1 m的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”(1)小刚的做法对吗为什么(2)你还有其他方法吗请画出图形.(第28题)答案一、10.B 点拨:由题意可得,正方形的边长为1,则圆的半径为12,阴影部分的面积为1-π4≈,故选B .二、-3;2- 3 12.π ;3-1 15.有 16.2-3或2+ 3 18.-2 20.111 111 111 三、21.解:(1)因为4x 2=25,所以x 2=254,所以x =±52;(2)因为(x -3=,所以x -=,所以x =1. 22.解:(1)原式=14+2-2=14.(2)原式=-1-1+1+1=0.(3)原式=19+89+3+(2-7-3+7)=1+3-1=3. 23. 解:根据题意得:||3x -y -1+2x +y -4=0,即⎩⎪⎨⎪⎧3x -y -1=0,2x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =2,所以x +4y =9.所以x +4y 的平方根是 ±3.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x+3y =16,其平方根为±4,立方根为316.25.解:由题图可知,a >2,c <2,b <-3,∴原式=-b -3+a -2+2-c +2c =-b -3+a +c.又|a|=|c|,∴a +c =0,∴原式=-b - 3.26.解:把d =16,f =代入v =16df ,得v =16×错误!=(km /h ),∵>80,∴肇事汽车当时的速度超出了规定的速度.27.解:(1)12+1+13+2+14+3+…+12 015+ 2 014=(2-1)+(3-2)+(4-3)+…+( 2 015- 2 014)= 2 015-1.(2)因为111-10=11+10,112-11=12+11,且11+10<12+11,所以111-10<112-11.又因为11-10>0,12-11>0,所以11-10>12-11.点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:(1)小刚的做法是对的,因为将边长为1 m 的两个正方形分别沿着一条对角线剪开,成为四个大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为2,而2>,故能铺满新方桌;(2)有.如图所示.(第28题)第12章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( )A .a 5B .-a 5C .a 6D .-a 62.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x=x 43.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)24.计算⎝ ⎛⎭⎪⎫232 013×⎝ ⎛⎭⎪⎫322 014×(-1)2 015的结果是( ) C .-23 D .-325.若a m=2,a n=3,a p=5,则a2m +n -p的值是( )A .B .2C .1D .06.下列各式中,不能用两数和(差)的平方公式分解因式的个数为( ) ①x 2-10x +25;②4a 2+4a -1;③x 2-2x -1;④-m 2+m -14;⑤4x 4-x 2+14.A .1B .2C .3D .47.已知a ,b 都是整数,则2(a 2+b 2)-(a +b)2的值必是( )A .正整数B .负整数C .非负整数D .4的整数倍8.已知一个长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( )A .2x 2y 3+y +3xyB .2x 2y 3-2y +3xyC .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy9.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .xy =8D .x 2+y 2=36二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________; (2)若a m=2,a n=3,则am +n=__________,am -n=__________.12.已知x +y =5,x -y =1,则代数式x 2-y 2的值是________.13.若x +p 与x +2的乘积中不含x 的一次项,则p 的值是________. 14.计算:2 015×2 017-2 0162=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=__________. 18.观察下列等式:1×32×5+4=72=(12+4×1+2)22×42×6+4=142=(22+4×2+2)23×52×7+4=232=(32+4×3+2)24×62×8+4=342=(42+4×4+2)2…根据你发现的规律:可知n(n +2)2(n +4)+4=________.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b cd ,定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,则可以得出22 014+22 013+22 012+…+23+22+2+1的末位数字是________.三、解答题(27题12分,其余每题8分,共60分) 21.计算:(1)[x(x 2-2x +3)-3x]÷12x 2; (2)x(4x +3y)-(2x +y)(2x -y);(3)5a 2b÷⎝ ⎛⎭⎪⎫-13ab ·(2ab 2)2; (4)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)(x +5)(x -1)+(x -2)2,其中x =-2;(2)(2015·随州)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)2x 2y -8xy +8y ;(3)a 2(x -y)+4b 2(y -x); (4)4m 2n 2-(m 2+n 2)2.24.已知x 3m=2,y 2m=3,求(x 2m )3+(y m )6-(x 2y)3m·y m的值.25.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC的形状吗请说明理由.26.因为(x+a)(x+b)=x2+(a+b)x+ab,所以x2+(a+b)x+ab=(x+a)(x+b).利用这个公式我们可将形如x2+(a+b)x+ab的二次三项式分解因式.例如:x2+6x+5=x2+(1+5)x+1×5=(x+1)(x+5),x2-6x+5=x2+(-1-5)x+(-1)×(-5)=(x-1)(x-5),x2-4x-5=x2+(-5+1)x+(-5)×1=(x-5)(x+1),x2+4x-5=x2+(5-1)x+5×(-1)=(x+5)(x-1).请你用上述方法把下列多项式分解因式:(1)y2+8y+15;(2)y2-8y+15;(3)y2-2y-15;(4)y2+2y-15.a≠0中的两项,配成完全平方式的过程叫配方.例27.(中考·达州)选取二次三项式ax2+bx+c ()如x-22-2;①选取二次项和一次项配方:x2-4x+2=()②选取二次项和常数项配方:x2-4x+2=()22-4x,x-22+()或x2-4x+2=()4+22x;x+22-()③选取一次项和常数项配方:x2-4x+2=()2x-22-x2.根据上述材料,解决下面的问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.答案一、二、11.(1)-24a 5(2)6;23 13.-2 14.-115.-2;-1 16.|4a +2| 17.(3x -3y +2)218.(n 2+4n +2)220.7 点拨:由题意可知22 014+22 013+22 012+…+23+22+2+1=(2-1)×(22 014+22 013+22 012+…+23+22+2+1)=22 015-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n(n 为正整数)的末位数字按2、4、8、6的顺序循环,而2 015÷4=503……3,所以22 015的末位数字是8,则22 015-1的末位数字是7.三、21.解:(1)原式=(x 3-2x 2+3x -3x)÷12x 2=(x 3-2x 2)÷12x 2=2x -4.(2)原式=4x 2+3xy -(4x 2-y 2)=4x 2+3xy -4x 2+y 2=3xy +y 2.(3)原式=5a 2b÷⎝ ⎛⎭⎪⎫-13ab ·4a 2b 4=-60a 3b 4.(4)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-a 2+a 2-5ab +3ab =4-2ab. 当ab =-12时,原式=4-2×⎝ ⎛⎭⎪⎫-12=5. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=2y(x 2-4x +4)=2y(x -2)2.(3)原式=a 2(x -y)-4b 2(x -y)=(x -y)(a 2-4b 2)=(x -y)(a +2b)(a -2b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2.24.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 25.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a-b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.26.解:(1)y 2+8y +15=y 2+(3+5)y +3×5=(y +3)(y +5). (2)y 2-8y +15=y 2+(-3-5)y +(-3)×(-5)=(y -3)(y -5). (3)y 2-2y -15=y 2+(-5+3)y +(-5)×3=(y -5)(y +3). (4)y 2+2y -15=y 2+(5-3)y +5×(-3)=(y +5)(y -3).27.解:解:(1)答案不唯一,例如:x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12或x 2-8x +4=(x -2)2-4x.(2)因为x 2+y 2+xy -3y +3=0,所以⎝ ⎛⎭⎪⎫x +y 22+34(y -2)2=0,即x +y2=0,y -2=0,所以y =2,x =-1,所以x y=(-1)2=1.第13章达标检测卷(120分,90分钟) 得 分一、选择题(每题3分,共30分) 1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等2.下列方法中,不能判定三角形全等的是( )A .B .C .D .3.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的是( )(第3题)A .甲、乙B .甲、丙C .乙、丙D .乙4.在△ABC 中,∠B=∠C,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这个100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C(第5题)5.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE6.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是( )A.BC=B′C′B.∠A=∠A′C.AC=A′C′ D.∠C=∠C′7.下列命题中,逆命题正确的是( )A.全等三角形的对应角相等B.全等三角形的周长相等C.全等三角形的面积相等D.全等三角形的对应边相等8.如图,在△ABC中,AB=m,AC=n,BC边的垂直平分线交AB于E,则△AEC的周长为( )A.m+n B.m-n C.2m-n D.2m-2n9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD∶CD=9∶7,则点D 到AB边的距离为( )A.18 B.32 C.28 D.24(第8题) (第9题) (第10题)10.如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ABD为等边三角形.其中正确的是( )A.①②③ B.①②④ C.②③④ D.①②③④二、填空题(每题3分,共30分)11.把命题“等边对等角”的逆命题写成“如果……,那么……”的形式为________________________________________________________________________.12.如图,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“.”说明Rt________≌Rt________得到AB=DC,再利用“________”证明△AOB≌△DOC得到OB=OC.13.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30 cm和20 cm,则AB=________ cm.(第12题) (第13题) (第14题) (第16题)14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.16.(2015·怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是______.17.(2015·永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.18.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m.点P从点B开始以1 m/min的速度向点A运动;点Q从点B开始以2 m/min的速度向点D运动.P,Q两点同时出发,运动________后,△CAP≌△PBQ.(第17题) (第18题) (第19题) (第20题)19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是________.20.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角的平分线相交于点D,DE⊥AC于E,DF⊥AB 交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠BAC =90°.其中正确的有____________.(填序号)三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).(第21题)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与相等的角;(2)若EF=cm,FH=cm,HM=cm,求MN和HG的长度.(第22题)23.如图,在△A BC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F,交BC于E.试判断△AGF的形状并加以证明.(第23题)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第25题)26.如图①,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,求证:BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立请说明理由.(第26题)27.如图a,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图b,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图c,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F不重合),并说明理由.(第27题)答案一、二、11.如果一个三角形有两个角相等,那么这两个角所对的边相等12.△ABC;△DCB;°cm或5 cm16.90°18.4 min点拨:本题运用了方程思想,设未知数,利用全等三角形的性质列方程求解.设运动t min 后,△CAP≌△PBQ,由题意得AP=AB-BP=12-t,BQ=2t.当△CAP≌△PBQ时,AP=BQ,即12-t=2t,解得t=4.即运动4 min后,△CAP≌△PBQ.19.15 20.①②③三、21.解:如图.(第21题)22.解:(1)EF=MN,EG=HN,FG=MH,FH=MG,∠F=∠M,∠E=∠N,∠EGF=∠MHN,∠FHN=∠MGE.(2)∵△EFG≌△NMH,∴MN=EF=cm,GF=HM=cm,∵FH=cm,∴HG=GF-FH=-=cm.23.解:△AGF是等腰三角形.证明:∵AD平分∠BAC,∴∠BAD=∠DAC.∵GE∥AD,∴∠GFA=∠BAD,∠G=∠DAC.∴∠G=∠GFA.∴AF=GA.∴△AGF是等腰三角形.24.解:(1)∵DE垂直平分AC,∴AE=CE,∴∠E CD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.25.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB.),∴CF=EB.(2)由(1)可知DE=DC,又∵AD=AD,∴Rt△ADC≌Rt△ADE,∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得CD=DE.进而证得Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线的性质证明Rt△ADC≌Rt△ADE,得AC=AE,再将线段AB 进行转化.26.(1)证明:∵ED⊥AC,FB⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF≌Rt △CDE.).∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF=∠DGE,∠BFG=∠DEG,BF =DE ,∴△BFG≌△DEG,即BD 平分EF. (2)解:BD 平分EF 的结论仍然成立.理由:∵AE=CF ,FE =EF ,∴AF=CE.∵ED⊥AC,FB⊥AC,∴∠AFB=∠CED=90°.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF≌Rt △CDE.∴BF=DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF=∠DGE,∠BFG=∠DEG,BF =DE ,∴△BFG≌△DEG.∴GF=GE ,即BD 平分EF ,结论仍然成立.点拨:本题综合考查了三角形全等的判定方法.(1)先利用.判定Rt △ABF≌Rt △CDE,得出BF =DE ;再利用判定△BFG≌△DEG,从而得出FG =EG ,即BD 平分EF.(2)中结论仍然成立,证明过程同(1)类似.27.解:(1)①CF⊥BD;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由如下:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC ,∴△DAB≌△FAC,∴CF=BD ,∠ACF=∠ABD.∵∠BAC=90°,AB =AC ,∴△ABC 是等腰直角三角形,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(第27题)(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A 作AG⊥AC 交CB 的延长线于点G ,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°-∠ACB,∴∠A GC =90°-45°=45°,∴∠ACB=∠AGC=45°,∴△AGC 是等腰直角三角形,∴AC=AG.∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF =45°+45°=90°,即CF⊥BC .第14章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,62.用反证法证明“如果在△ABC中,∠C=90°,那么∠A,∠B中至少有一个角不大于45°”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°(第3题)3.如图,图中有一个正方形,此正方形的面积是( )A.16 B.8 C.4 D.24.满足下列条件的△ABC不是直角三角形的是( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=1∶1∶25.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC是( )A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰三角形或直角三角形(第6题)6.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处朝张大爷的房子方向折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗( ) A.一定不会B.可能会C.一定会D.以上答案都不对7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线AC上的D′点处.若AB=3,AD=4,则ED的长为( )B.3 C.1(第7题) (第8题) (第9题) (第10题) 8.如图,在△ABC中,AD是BC边的中线,AC=17,BC=16,AD=15,则△ABC的面积为( ) A.128 B.136 C.120 D.2409.如图,长方体的高为9 m,底面是边长为6 m的正方形,一只蚂蚁从顶点A开始,爬向顶点B.那么它爬行的最短路程为( )A.10 m B.12 m C.15 m D.20 m10.如图,是一种饮料的包装盒,长、宽、高分别为4 cm、3 cm、12 cm,现有一长为16 cm的吸管插入到盒的底部,则吸管露在盒外的部分h(cm)的取值范围为( )A.3<h<4 B.3≤h≤4 C.2≤h≤4 D.h=4二、填空题(每题3分,共30分)11.若用反证法证明“有两个内角不相等的三角形不是等边三角形”,可先假设这个三角形是________.12.在△ABC中,AC2-AB2=BC2,则∠B的度数为________.13.如图,∠OAB=∠OBC=90°,OA=2,AB=BC=1,则OC2=________.(第13题) (第14题) (第19题) (第20题) 14.如图,直角三角形三边上的半圆形面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是________.15.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线长为100 cm,则这个桌面________(填“合格”或“不合格”).16.若直角三角形的两边长分别为a、b,且满足(a-3)2+|b-4|=0,则该直角三角形的斜边长为________.17.等腰三角形ABC的腰AB为10 cm,底边BC为16 cm,则面积为________cm2.18.(2015·黄冈)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.19.《中华人民共和国道路管理条例》规定:小汽车在城市街道上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直道行驶时,某一时刻刚好行驶到路对面车速检测仪观测点A正前方50 m 的C处,过了6 s后,行驶到B处的小汽车与车速检测仪间的距离变为130 m,请你判断:这辆小汽车________(填“是”或“否”)超速了.20.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 015=________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.用反证法证明一个三角形中不能有两个角是直角.22.园丁住宅小区有一块草坪如图,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.(第22题)23.如图,将断落的电话线拉直,使其一端在电线杆顶端A处,另一端落在地面C处,这时测得BC =6米,再把电话线沿电线杆拉扯,使AD=AB,并量出电话线剩余部分(即CD)的长为2米,你能由此算出电线杆AB的高吗(第23题)24.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动,如果P,Q同时出发,问过3 s时,△BPQ的面积为多少(第24题)25.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有一学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长(第25题)26.图甲是任意一个直角三角形ABC ,它的两条直角边长分别为a 、b ,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为(a +b)的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为_______,图丙中③的面积为________; (3)图乙中①②的面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系为什么由此你能得到关于直角三角形三边长的关系吗(第26题)答案一、 二、11.等边三角形 ° 14.S 1+S 2=S 3 15.合格 或5 17.48 cm 2或66 cm 219.是点拨:由勾股定理得:OP 4=22+1=5,∵OP 1=2,OP 2=3,OP 3=4,OP 4=5,以此类推可得OP n =n +1,∴OP 2 015= 2 016.本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.三、21.证明:假设三角形ABC 的三个内角∠A、∠B、∠C 中有两个直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,所以∠A=∠B=90°不成立,所以一个三角形中不能有两个角是直角.22.解:连接AC.在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2, 所以AC 2=42+32=25,即AC =5米.在△ACD 中,因为AC 2+C D 2=52+122=169=AD 2. 所以△ACD 是直角三角形,且∠ACD=90°.所以S 草坪=S △ABC +S △ACD =12×3×4+12×5×12=36(平方米).答:这块草坪的面积是36平方米.23.解:设AB =x 米,则AC =AD +CD =AB +CD =(x +2)米.在Rt △ABC 中,AC 2=AB 2+BC 2,即(x +2)2=x 2+62,解得x =8.即电线杆AB 的高为8米.24.解:设AB =3x cm ,则BC =4x cm ,AC =5x cm , 因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm , 即3x +4x +5x =36,解得x =3, 所以AB =9 cm ,BC =12 cm ,AC =15 cm .因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B=90°. 过3 s 时,BP =9-3×1=6(cm ),BQ =2×3=6(cm ), 所以S △BPQ =12BP·BQ=12×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.(第25题)25.解:如图,设拖拉机行驶到C 处刚好开始受到噪音的影响,行驶到D 处时,结束了噪音的影响,连接AC ,AD ,则有CA =DA =100 m .在Rt △ABC 中,CB 2=1002-802=602. ∴CB=60 m .同理BD =60 m ,∴CD=120 m . ∵18 km /h =5 m /s ,∴该校受影响的时间为120÷5=24(s ).26.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)相等.理由:由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b)2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形,根据面积相等得(a +b)2=a 2+b 2+2ab ,由图丙可得(a +b)2=c 2+4×12ab.所以a 2+b 2=c 2.所以图乙中①②的面积之和与图丙中③的面积相等.于是得到直角三角形三边长的关系为a 2+b 2=c 2.第15章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要反映某市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .以上都可以2.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是( )A .B .C .D .(第2题) (第3题) (第4题) 3.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为( )A.℃ B.℃ C.℃ D.℃4.(中考·邵阳)如图是某班学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( )A.棋类组B.演唱组C.书法组D.美术组5.(中考·丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )B型人B.14人C.4人D.6人6.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是( )A.22,44% B.22,56% C.28,44% D.28,56%(第7题)7.某校图书馆整理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是( )A.90 B.144 C.200 D.808.如图是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是( )A.2015年三类农作物的产量比2014年都有增加B.小麦产量和杂粮产量增加的幅度大约是一样的C.2014年杂粮产量约是玉米产量的六分之一D.2014年和2015年的小麦产量变化幅度最小(第8题) (第9题)9.(中考·武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选一种喜好的书籍,如果没有喜好的书籍,则作“其他”类统计.图①和图②是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )A.由这两幅统计图可知喜好“科普常识”的学生有90人B.若该年级共有1 200名学生,则由这两幅统计图可估计喜好“科普常识”的学生约有360人C.由这两幅统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是( )(第10题)A.4 B.5 C.6 D.7二、填空题(每题3分,共24分)11.Lost time is never found again(岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是________.12.如图是根据某市2011年至2015年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是________年,比它的前一年增加________亿元.(第12题) (第14题) (第15题) 13.地球上山地面积、水域面积和陆地面积大体上可以用“三山六水一分田”来描述,则用扇形统计图来表示时,它们所占的百分比分别是________、________、________.14.调查机构对某地区1 000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如图,请根据图中信息,调查的 1 000名20~30岁年龄段观众选择观看《最强大脑》的人数约为________人.15.(中考·金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形的圆心角的度数是________.16.小张根据某媒体的报道中一幅条形统计图(如图所示),在随笔中写道:“……今年,我市中学生在艺术节上,参加合唱比赛的人数比去年激增……”小张说得对不对为什么请你用一句话对小张的说法作一个评价:________________________________________________________________________.(第16题) (第17题) (第18题)17.(2015·防城港)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图(如图),其中“其他”部分所对应的圆心角是36°,则“步行”部分所占的百分比是________.18.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有________名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有________名体尖生.三、解答题(19~21题每题12分,22,23题每题15分,共66分)19.某股票上周五的收盘价为3元,本周的收盘价分别是:周一元;周二元;周三元;周四元;周五元,根据以上信息完成下列各题:(1)填下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.(第20题)21.(改编·金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图解答下列问题.(1)第三次成绩的优秀率是多少(2)将条形及折线统计图补充完整.(第21题)22.(中考·黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积都相同),绘制了如图所示的两幅不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全条形统计图,并计算出喜好菠萝味牛奶的学生人数在扇形统计图中所占扇形的圆心角的度数;(3)该校共有1 200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒(第22题)23.“”是指大气中危害健康的直径小于微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行检测.某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别。

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.64的平方根为()A.8B.±8C.﹣8D.±42.若a x÷a n+1的运算的结果是a,则x为()A.3﹣n B.n+1C.n+2D.n+33.小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A.0.6B.6C.0.4D.44.下列命题中,是假命题的是()A.两点之间,线段最短B.3a3b的系数是3C.位似图形必定相似D.若|a|=|b|,则a=b5.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=7,b=25,c=24B.a=3,b=3,c=4C.a=6,b=8,c=10D.a=8,b=17,c=156.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36B.32C.28D.217.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB 于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF=2∠ECD;③S△AEC :S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤8.在△ABC中,∠A=∠B=∠C,则△ABC()A.是锐角三角形B.是直角三角形C.是钝角三角形D.形状不能确定二.填空题(共6小题,满分18分,每小题3分)9.比较大小:3.10.分解因式:8m2n﹣6mn2+2mn=.11.如图,在等腰三角形ABC中,AB=AC,∠A=50°,直线MN垂直平分边AC,分别交AB,AC于点D,E,则∠BCD=.12.计算:4x3y2÷2xy=.13.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=度,∠B=度,∠BAC=度.14.如图,在Rt△ACB中,∠ACB=90°,BC=6,AC=9.折叠△ACB,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF=.三.解答题(共10小题,满分78分)15.(6分)计算:(1)(2)16.(6分)计算(1)4y•(﹣2xy2)(2)(﹣x2)•(﹣4x)(3)(3m2)•(﹣2m3)2(4)(﹣ab2c3)2•(﹣a2b)317.(6分)先化简,再求值:x(x2﹣x﹣)+4(x2+1)﹣x(﹣3x2+6x﹣1),其中x=﹣2.18.(7分)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.19.(7分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长.(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长.写出每题的计算过程20.(8分)某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次随机抽取的市民中小于40岁的有人;(2)图2中D类区域对应圆心角的度数是度;(3)请补全条形统计图;(4)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?21.(8分)如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).22.(8分)如图,四边形ABCD中,AB∥CD,∠C=110°,E为BC的中点,直线FG 经过点E,DG⊥FG于点G,BF⊥FG于点F.(1)如图1,当∠BEF=70°时,求证:DG=BF;(2)如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;(3)当DG﹣BF的值最大时,直接写出∠BEF的度数.23.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.24.(12分)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P 在线段BC上以3cm/s的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C 是对应角,求t,a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵(±8)2=64,∴64的平方根是±8.故选:B.2.解:a x÷a n+1=a x﹣n﹣1=a,所以可得:x﹣n﹣1=1,x=2+n,故选:C.3.解:小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的有100﹣60=40次,所以反面朝上的频率为=0.4,故选:C.4.解:A、两点之间,线段最短,是真命题;B、3a3b的系数是3,是真命题;C、位似图形必定相似,是真命题;D、若|a|=|b|,则a=b或a=﹣b,原命题是假命题;故选:D.5.解:A、因为72+242=252,能构成直角三角形,此选项不符合题意;B、因为32+32≠42,不能构成直角三角形,此选项符合题意;C、因为62+82=102,能构成直角三角形,此选项不符合题意;D、因为82+152=172,能构成直角三角形,此选项不符合题意.故选:B.6.解:由题意得AB=BC,∠ABC=90°,AD⊥DE,CE⊥DE,∴∠ADB=∠BEC=90°,∴∠ABD+∠CBE=90°,∠BCE+∠CBE=90°,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD ≌△BCE (AAS );由题意得AD =BE =24cm ,DB =EC =12cm , ∴DE =DB +BE =36cm ,答:两堵木墙之间的距离为36cm . 故选:A .7.解:∵∠ACB =90°,CG ⊥AB ,∴∠ACE +∠BCG =90°,∠B +∠BCG =90°, ∴∠ACE =∠B .∵∠CED =∠CAE +∠ACE ,∠CDE =∠B +∠DAB ,AE 平分∠CAB , ∴∠CED =∠CDE ,①正确; ∴CE =CD ,又AE 平分∠CAB ,∠ACB =90°,DF ⊥AB 于F , ∴CD =DF .∵E 到AC 与AG 的距离相等, ∴S △AEC :S △AEG =AC :AG ,③正确; ∵CE =CD ,CD =DF , ∴CE =DF ,⑤正确.无法证明∠ADF =2∠FDB 以及S △CED =S △DFB . 故选:D .8.解:设∠A =x °,则∠B =x °,∠C =2x °, 根据三角形的内角和可得:x °+x °+2x °=180°, 解得:x =45,即∠A =45°,∠B =45°,∠C =90°, 所以△ABC 是直角三角形.故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:∵3=,∴<3.故答案为:<.10.解:原式=2mn(4m﹣3n+1),故答案为:2mn(4m﹣3n+1)11.解:∵AB=AC,∠A=50°,∴∠ACB=∠B=×(180°﹣∠A)=65°,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故答案为:15°.12.解:4x3y2÷2xy=2x2y故答案为2x2y.13.解:∵PQ=AP=AQ∴∠APQ=∠AQP=∠PAQ=60°.∵BP=QC=AP=AQ∴∠B=∠BAP=30°,∠C=∠CAQ=30°∴∠BAC=120°.故填60、30、120.14.解:∵D是BC的中点,BC=6,∴CD=3,∵折叠△ACB,使点A与BC的中点D重合,∴AF=FD,∵AC=9,设AF=x,则FC=9﹣x,DE=x,∵∠ACB=90°,在Rt△CDF中,x2=9+(9﹣x)2,∴x=5,∴CF=4,故答案为4.三.解答题(共10小题,满分78分)15.解:(1)==﹣(2)=﹣1+2×=﹣1+1=016.解:(1)原式=﹣8xy3.(2)原式=10x3.(3)原式=(3m2)•4m6=12m8.(4)原式=a2b4c6•(﹣a6b3)=﹣a8b7c6.17.解:原式=x3﹣x2﹣x+4x2+4+x3﹣2x2+x =2x3+x2+4,当x=﹣2时,原式=2×(﹣2)3+(﹣2)2+4=﹣16+4+4=﹣8.18.解:(1)△ABC≌△DEC,理由如下:∵DC⊥AE,∴∠ACB=∠DCE=90°,在△ABC与△DEC中,,∴△ABC≌△DEC(SAS);(2)∵△ABC≌△DEC,∴∠A=∠D=20°,∴∠E=90°﹣∠D=90°﹣20°=70°.19.解:(1)如图1所示:∵AB=3,BC=4,∴AC==5,故答案为:3,4,5(答案不唯一);(2)如图2所示:DF=DE==,EF==2,故答案为:,,2(答案不唯一).20.解:(1)本次随机抽取的市民中小于40岁的有20+20=40(人),故答案为:40;(2)根据题意可得,其他三类的百分比为1﹣25%=75%,其他三类的人数和为20+20+50=90(人),抽取的总数为90÷75%=120(人),图2中D类区域对应圆心角的度数是360°×=150°,故答案为:150;(3)抽取的C类市民有120×25%=30(人),补全条形统计图如下:(4)30÷25%÷5%=2400(人),答:估计该区已接种第一剂疫苗的市民有2400 人.21.解:∵∠ACB=90°,∴AC==≈109.7mm,答:两孔中心的垂直距离为109.7mm.22.(1)证明:若CH⊥FG,垂足为H,∵∠BEF=70°,∠BCD=110°,∴∠BEF+∠BCD=180°,∴FG∥CD,∵DG⊥HG,CH⊥HG,∴∠DGH+∠CHG=90°+90°=180°,∴DG∥CH,∴四边形CHGD是长方形,∴DG=CH,∵∠CHE=∠F,∠CEH=∠BEF,BE=CE,∴△BEF≌△CEH(AAS),∴BF=CH,∴DG=BF;(2)解:连接BD,∵DG=BF,DG∥BF,由平移的性质知得,BD∥FG,∴∠CBD=∠CEH,∵CB=CD,∠BCD=110°,∴∠CBD=(180°﹣110°)÷2=35°,∴∠BEF=∠CEH=∠CBD=35°;(3)解:由(2)知DG﹣CH≤CD,∴当DG﹣BF的值最大时,此时点D,C,G三点共线,∵∠BCD=110°,∴∠ECG=70°,∴∠CEG=20°,∴∠BEF=∠CEG=20°.23.解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.24.解:(1)CP的长为(8﹣3t)cm;(2)∵D为AB的中点,∴BD=5cm,∵AB=AC,∴∠B=∠C,∴当BD=CQ,BP=CP时,△BDP≌△CQP(SAS),即at=5,8﹣3t=3t,解得t=,a=;当BD=CP,BP=CQ时,△BDP≌△CPQ(SAS),即8﹣3t=5,3t=at,解得t=1,a=3;综上所述,t=,a=或t=1,a=3.。

华东师大版八年级数学上册期末考试题(完整版)

华东师大版八年级数学上册期末考试题(完整版)

华东师大版八年级数学上册期末考试题(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2x1有意义,则x的取值范围是▲.3.分解因式:3x-x=__________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。

华东师大版八年级上册初中数学全册单元测试卷(含期中期末试卷)

华东师大版八年级上册初中数学全册单元测试卷(含期中期末试卷)

第11章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)no1.(2015-泰州)下列4个数:仍、心(,)。

,其中无理数是()22A.仍B— C.7i D.(^3)°2.8的平方根是()A.4B.±4C瑚 D.瑚3.(2015-安徽)与1+S最接近的整数是()A.4B.3C.2D.14.下列算式中错误的是()A.—y/0.64=—0.8B.±^/1.96—±1.427325.如图,数轴上点N表示的数可能是()A.y[ldB.y[5C.^3D.也—I_____I_____I_____i_____以_i_____i_____i___-101234(第5题)6.比较平,一普的大小,正确的是(),3JI J6—巫<3〈垂a'223322「3〈—巫〈垂°_也<3323227.若a?=4,b2=9,且ab>0,则a+b的值为()A.—1B.±5C.5D.-58.如图,有一个数值转换器,原理如下:/^入多/»|取算术平方根是无、数丁所出'是有理数|(第8题)当输入的x为64时,输出的y等于()A.2B.8C.y[2D.yfs9.已知2x—1的平方根是±3,3x+y—1的立方根是4,则y-x2的平方根是()A.5B.-5C.±5D.2510.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最接近的是()(第10题)A.0.1B.VO04C.^/008D.0.3二、填空题(每题3分,共30分)11.实数,一2的相反数是,绝对值是.12.在志,曰-4,0这四个数中,最大的数是.13.4+S的整数部分是,小数部分是.14.某个数的平方根分别是a+3和2a+15,则这个数为.15.若廿2x—y3+|y3—8|=0,则版是理数,.(填“有”或“无”)16.点P在数轴上和原点相距3个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P,Q之间的距离为.(注:数轴的正方向向右)17.一个正方体盒子的棱长为6€777,现要做一个体积比原正方体体积大127cm3的新盒子,则新盒子的棱长为cm.18.对于任意两个不相等的实数a,b,定义运算※如下:那么7米9=a-b19.若皿房是整数,则正整数n的最小值是.20.请你认真观察、分析下列计算过程:(1)V112=121,.•.何i=ll;(2)L1112=12321,.♦.寸12321=111;(3)L1111.2=1234.321,;.小234321=1111;…由此可得:寸12345678987654321=三、解答题(22题9分,26题7分,27,28题每题10分,其余每题6分,共60分)21.求下列各式中x的值.(1)4x2=25;(2)(x—0.7)3=0.027.22.计算:2(1)(-£)+游-11-鹏|;(2)1+yj(—1)3+yj(—1)2+\l(—1)2;+|+-\/(—3)2+(2—^7—1^7—3|).23.已知|3x—y—1|禾叭/2x+y—4互为相反数,求x+4y的平方根.24.已知3既是x—1的算术平方根,又是x-2y+1的立方根,求4x+3y的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+Sl+|a—Sl+|c —^/5|+2c.b c a-2-1012(第25题)26..某段公路规定汽车行驶速度不得超过80km/h,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16据,其中v表示车速(单位:km/h),d表示刹车后.车轮滑过的距离(单位:m),f表示摩擦系数.在一次交通事故中,已知d=16,f=1.69,请你判断一下,.肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(V2+1)(V2-1)=1,(^3+例(瞻一单)=1,"+3)(0一寸)=1,(^5+^4)(^5―争)=1,…(1)观察上面的规律,计算下面的式子:1.1.1 (1)皿+1^3+^2a/4+^/3^2015+^2014'(2)利用上面的规律,试比较寸再一寸?5与寸正一而的大小.28.李奶奶新买了一套两室一厅的住房,将原边长为1m的方桌换成边长是1.3m的方桌,为使新方,桌有块桌布,且能利用原边长为1刀的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”⑴小刚的做法对吗?为什么?(2)你还有其他方法吗?请画出图形.①②(第28题)答案—、l.C 2.D 3.8 4.C 5.A 6.D7.B8.D9.C10.B点拨:由题意可得,正方形的边长为1,则圆的半径为阴影部分的面积为1一牌0.2,故选二、11.2—0;2-^312.7t13.5;^3-114.915.有16.2—皿或2+皿17.718.-219.520.Ill111111255三、21.解:(1)因为4x?=25,所以x2=^~,所以x=土万;(2)因为(x—0.7)3=0.027,所以x—0.7=0.3,所以x=l.22.解:(1)原式.=§+2—2=}(2)原式=—1一1+1+1=0.x+4y=9.所以x+4y的平方根是±3.24.解:根据题意得X—1=9且x—2y+l=27,解得x=10,y=—8.「.4x+3y=16,其平方根为±4,立方根为拆.25.解:由题图可知,a>«,cV«,b<「.原式=—b—S+a—皿+皿一c +2c=—b—^/3+a+c.X|a|=|cb.••原式=—b—yf3.26.解:把d=16,f=1.69代入v=16何,得v=16X/16X1.69=83.2(灿//?),V83.2>80,A肇事汽车当时的速度超出了规定的速度.27-解:⑴点+箱%+沽箱+…+向点而=(«—1)+5—')+(皿―疝---H(寸2015一寸2014)=寸2015一1.(2)因为‘且Vj-f+V^vV^+V^",所以—1一<―!—又因为寸T1一而>0,寸0一而>0,所以dH—V T o>V12-V h.点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:(1)小刚的做法是对的,因为将边长为1m的两个正方形分别沿着一条对角线剪开,成为四个大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为皿,而寸>1.3,故能铺满新方桌;(2)有.如图所示.(第28题)第12章达标检测卷(120分,90分钟)题号 一 二 三 总分得分一、选择题(每题3分,共30分)1. (2015-日照)计算(-a 3)的结果是()22 …3 2 八 3C. —D.5. 若 am=2, a n =3, a p =5,则 a 2m+n-p 的值是()A. 2.4 B. 2 C. 1 D. 06. 下列各式中,不能用两数和(差.)的平方公式分解因式的个数为()①亍一lQx+25;②4a?+4a —1; (3)x 2 —2x —1; m 2+m —(§)4x 4—x 2+^.A. 1B. 2C. 3D. 47. 已知a, b 都是整数,贝lj 2(a 2+b 2)-(a+b)2的值必是()A.正整数B.负整数 C.非负整数 D. 4的整数倍8. 已知一个长方形的面积为18x3y4+9xy2—27x2y2,长为9xy,则宽为()A. 2x 2y 3 + .y + 3xyB. 2x 2y 3—2y + 3xyC. 2x 2y 3+2y-3xyD. 2x 2y 3 + y-3xy 9. 因式分解x 2+ax+b,甲看错了 a 的值,分解的结果是(x+6)(x —1),乙看错了 b 的 值,分解的结果为(x —2)(x+l),那么x 2+ax+b 分解因式正确的结果为()A. (x-2)(x+3)B. (x+2)(x-3)A. a 5B. —a 5C. a 6D. —a 62. 下列运算正确的是()A. (a+l)2=a 2+lB. 3a 2b 2^a 2b 2=3abC. (~2ab 2)3=8a 3b 6D. x 3-x=x 43. 下列从左边到右边的变形,是因式分解的是()A. (3—x)(3+x)=9—x 2B. (y+l)(y —3) = —(3—y)(y+l)C. 4yz —2y2z+z = 2y(2z —yz)+zD. -8x 2+8x-2=-2(2x-l)2小 2 013 企、2 0144. 计算旬 x|jJ X( —1)2。

【名师精品】华东师大版八年级数学上册经典最新复习试题(超值).doc

【名师精品】华东师大版八年级数学上册经典最新复习试题(超值).doc

1八年级数学上册复习最新复习试题一、选择题1.计算(﹣a )3•(a 2)3•(﹣a )2的结果正确的是( )A .a 11 B .﹣a 11 C .﹣a 10 D .a 13 2.下列计算正确的是( )A .R 2(m+1)÷R m+1=R 2 B .(RR )8÷(RR )4=(RR )2 C .R 10÷(R 7÷R 2)=R 5 D .R 4n ÷R 2n •R 2n =13.已知(R+a )(R+b )=R 2﹣13R+36,则ab 的值是( )A .36 B .13 C .﹣13 D .﹣36 4.若(aR+2R )(R ﹣R )展开式中,不含RR 项,则a 的值为( )A .﹣2 B .0 C .1D .25.已知R+R=1,RR=﹣2,则(2﹣R )(2﹣R )的值为( )A .﹣2B .0C .2D .46.若(R+a )(R+b )=R 2+pR+q ,且p >0,q <0,那么a 、b 必须满足的条件是( )A .a 、b 都是正数B .a 、b 异号,且正数的绝对值较大C .a 、b 都是负数D .a 、b 异号,且负数的绝对值较大 7.一个长方体的长、宽、高分别是3R ﹣4、2R ﹣1和R ,则它的体积是( ) A .6R 3﹣5R 2+4R B .6R 3﹣11R 2+4R C .6R 3﹣4R 2 D .6R 3﹣4R 2+R+4 8.观察下列多项式的乘法计算:(1)(R+3)(R+4)=R 2+7R+12;(2)(R+3)(R ﹣4)=R 2﹣R ﹣12; (3)(R ﹣3)(R+4)=R 2+R ﹣12;(4)(R ﹣3)(R ﹣4)=R 2﹣7R+12根据你发现的规律,若(R+p )(R+q )=R 2﹣8R+15,则p+q 的值为( )A .﹣8 B .﹣2 C .2 D .89.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b )(m+n ); ②2a (m+n )+b (m+n );③m (2a+b )+n (2a+b ); ④2am+2an+bm+bn , 你认为其中正确的有( )A .①② B .③④ C .①②③ D .①②③④ 10、4的平方根是()A 、2B 、-2C 、±2,D 、±4 11、27的立方根是()A 、3B 、-3C 、±3D 、27±12、下列实数中,是无理数的是()A 、9±B 、38-C 、3πD 、0.101001 13、32a a ∙的结果是()A 、a 6B 、5a C 、6a D 、26a 14、32)2(x -的结果是()A 、58x B 、58x -C 、68x D 、68x - 15、99100)2()2(-+-的结果是()A 、2-B 、2C 、992-D 、99216、36)()(a b b a -÷-的结果是()A 、22b a -B 、22a b -C 、3)(b a -D 、3)(b a -- 17、2-x 有意义的条件是()A 、2≠x B 、2≥x C 、2>x D 、2<x 18、101100)5.0(2-⨯-的结果是()A 、5.0-B 、0.5C 、1D 、1-19、在223344555,4,3,2,四个数中,最大的数是()A 、552B 、443C 、334D 、225 20、下列整式相乘,不能运用公式的是()A 、)1)(1(-+x xB 、2)2(+x C 、)2)(2(-+t s D 、))((y x y x --+-21、已知)2)(2(2K x x x --+的结果中,不含R 的一次项,则K 的值是()A 、4B 、—4C 、2D 、—22 第10题图②①aa bbb baa22、若2139273mm=••,则m 的值为()A.3B.4C.5D.62123、要使多项式2(2)()x px x q ++-不含关于x 的二次项,则p 与q 的关系是() A.相等B.互为相反数C.互为倒数D.乘积为124、若1x y ++与()22x y --互为相反数,则3(3)x y -值为()A.1B.9C.–9D.2725、若229x kxy y -+是一个两数和(差)的平方公式,则k 的值为()A.3B.6C.±6D.±81 26、已知多项式22(1734)()x x ax bx c -+-++能被5x 整除,且商式为21x +,则a b c -+=() A.12B.13C.14D.19 27、下列运算正确的是()A.a b ab +=B.235•a a a =C.2222()a ab b a b +-=-D.321a a -=28、若44225a b a b ++=,2ab =,则22a b +的值是()A.-2B.3C.±3D.2 29、下列因式分解中,正确的是()A.2222()()x y z x y z y z -=+-B.2245()45x y xy y y x x -+-=-++C.2()(5()9)21x x x +-=+-D.22()912432a a a -+=--30、在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()A.222()2a b a ab b +=++B.222()2a b a ab b -=-+C.22()()a b a b a b -=+- D.22(2)()2a b a b a ab b +-=+- 31、不满足△ABC 是等腰三角形的条件是[]。

华东师大版八年级数学上册期末试卷及答案【完整版】

华东师大版八年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D5、A6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、2x(x﹣1)(x﹣2).415、26、15.三、解答题(本大题共6小题,共72分)x=1、22、3.3、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)略;(2)45°;(3)略.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD 时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=12BE=1.7. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O 为角平分线的交点,∠AOC =180°-12(∠BAC +∠BCA )=135°. 14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF 的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF =x ,EF =y ,则有x +1+3=x +y +2=3+3+2=8所以x =4,y =2,六边形ABCDEF 的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4).三.解答题17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ).∴ ∠EOA =∠FOA .∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°) =120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°,∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC .∴AD 平分∠BAC .∴∠2=21∠BAC = 3021⨯=15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°,∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE .∴DN =NM .∴BN -DN =NE -NM ,即 BD =ME .∵DB =DC ,∴ME =DC .19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ;第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G ,过点F 作DH⊥DE 交DE 的延长线于点H ,∵∠B=∠E,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL ),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS ).20.【解析】证明:问题1:21,2 ; 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图) ∵AD 平分∠BAC ,∴∠1=∠2.在△AGD 和△ACD 中,AG AC 12 A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD ≌△ACD .∴DG =DC .∵△BGD 中,BD -DG <BG ,∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC .(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°. ∴∠5 =∠3.在△BGD 和△ECD 中,53DB DE DG DC =⎧⎪∠∠⎨⎪=⎩=,∴△BGD ≌△ECD .∴∠B =∠6.∵△BFC 中,∠BFC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°.。

华东师大版八年级数学(上册)同步练习题与答案

A. -1B.1- C.2- D. -2
2、设a是实数,则|a|-a 的值( )
A.可以是负数B.不可能是负数C.必是正数D.可以是整数也可以是负数
二、填空
3、写出一个3和4之间的无理数
4、下列实数 , ,0, , , ,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m个有理数,n个无理数,则 =
A、4~5cm之间 B、5~6cm之间 C、6~7 cm之间D、7~8cm之间
12.2实数与数轴
◆随堂检测
1、下列各数: , , , , , , , 中,无理数有个,有理数有个,负数有个,整数有个.
2、 的相反数是,| |=
的相反数是, 的绝对值=
3、设 对应数轴上的点A, 对应数轴上的点B,则A、B间的距离为
●体验中考
.(2009年山东潍坊)一个自然数的算术平方根为 ,则和这个自然数相邻的下一个自然数是( )
A. B. C. D.
2、(08年泰安市) 的整数部分是;若a< <b,(a、b为连续整数),则a=,
b=
3、(08年广州)如图,实数 、 在数轴上的位置,
化简 =
4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.
(1)125 =343 (2)
6、已知: ,且 ,求 的值
●体验中考
1、(09宁波)实数8的立方根是
2、(08泰州市)已知 , , 互为相反数,则下列各组数中,不是互为相反数的一组是( )
A、3a与3b B、 +2与 +2 C、 与 D、 与
3、(08益阳市)一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )

八年级数学上册第11章数的开方练习题新版华东师大版(含答案)

八年级数学上册:第11章 数的开方类型之一 平方根、立方根的概念和性质 1.[2020·桂林] 若√x -1=0,则x 的值是( ) A .-1B .0C .1D .22.[2019·通辽] √16的平方根是( ) A .±4B .4C .±2D .23.[2019·济宁] 下列计算正确的是( ) A .√(-3)2=-3 B .√-53=√53C .√36=±6D .-√0.36=-0.64.已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值. 类型之二 算术平方根的性质与应用5.a 2的算术平方根一定是( ) A .aB .|a|C .√aD .-a6.下列计算正确的是( ) A .√22=2 B .√22=±2 C .√42=2D .√42=±27.[2019·杭州西湖区月考] 若实数x 满足√x -2·|x+1|≤0,则x 的值为( ) A .2或-1 B .2≥x ≥-1 C .2D .-18.[2019·资中月考] 若(2x+8)2与√y -2的值互为相反数,则√x y = . 类型之三 实数的分类、大小比较及运算 9.[2019·日照] 在实数√83,π3,√12,43中,有理数有( ) A .1个B .2个C .3个D .4个10.下面四个选项中,结果比-5小的是( ) A .-8的绝对值 B .√2的相反数 C .-5的倒数D .-4与-3的和11.[2019·绵阳] 已知x 是整数,当|x-√30|取最小值时,x 的值是( )A.5B.6C.7D.83-√(-2)2+|1-√3|.12.计算:√9+√813.(1)计算:①2的平方根;②-27的立方根;③√16的算术平方根.(2)将(1)中求出的各个数表示在图1中的数轴上;(3)将(1)中求出的各个数按从小到大的顺序排列,并用“<”号连接.图114.已知√8+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与√5的大小.类型之四数轴上的点与实数的一一对应关系15.[2020·福建]如图2,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.3图2 图316.[2019·济南]实数a,b在数轴上的对应点的位置如图3所示,下列关系式不成立的是()A.a-5>b-5B.6a>6bC.-a>-bD.a-b>017.[2019·南京]实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()图418.如图5,在一条不完整的数轴上,从左向右有两个点A,B,其中点A表示的数为m,点B表示的数为4,C也为数轴上一点,且AB=2AC.(1)若m为整数,求m的最大值;(2)若点C表示的数为-2,求m的值.图5类型之五 数学活动19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚非常迅速地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚有条理地讲述了计算过程:①因为103=1000,1003=1000000,1000<59319<1000000,所以10<√593193<100,所以√593193是两位数;②因为59319的个位上的数字是9,只有个位上的数字是9的数的立方的个位上的数字依然是9,所以√593193的个位上的数字是9;③如果划去59319后三位只剩下59,因为33=27,43=64,而27<59<64,所以30<√593193<40,所以√593193的十位上的数字是3,所以59319的立方根是39. 根据上面的材料,请你解答问题: 求50653的立方根.20.对非负实数x 四舍五入到个位的值记为[x ],即当n 为非负整数时,若n-12≤x<n+12,则[x ]=n.如:[2.9]=3;[2.4]=2;…. 根据以上材料,解决下列问题:(1)填空:[1.8]= ,[√5]= ; (2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x ]=32x-1的所有非负实数x 的值.答案1.C [解析] 因为√x -1=0, 所以x-1=0, 解得x=1, 则x 的值是1. 故选C .2.C [解析] 因为√16=4,±√4=±2,所以√16的平方根是±2,故选C .3.D [解析] A .√(-3)2=√9=3,故A 项错误;B .√-53=-√53,故B 项错误; C .√36=6,故C 项错误; D .-√0.36=-0.6,故D 项正确. 故选D .4.解:根据题意,得2a=4,3a+b=27, 解得a=2,b=21, 则a-2b=2-42=-40.5.B6.A [解析] √22=2,故A 项正确,B 项错误; √42=4,故C 项,D 项均错误. 故选A .7.C [解析] 根据算术平方根的性质,得√x -2≥0,x-2≥0,所以x ≥2,所以|x+1|>0.又因为√x -2·|x+1|≤0,所以√x -2=0,所以x=2.故选C . 8.4 [解析] 由题意,得(2x+8)2+√y -2=0,则2x+8=0,y-2=0,解得x=-4,y=2,则√x y =√(-4)2=4. 故答案为4.9.B [解析] 在实数√83,π3,√12,43中,√83=2,有理数有√83,43,共2个.故选B . 10.D [解析] -8的绝对值是8,8>-5,故A 选项不符合题意; √2的相反数是-√2,-√2>-5,故B 选项不符合题意; -5的倒数是-15=-0.2,-0.2>-5,故C 选项不符合题意; -4+(-3)=-7,-7<-5,故D 选项符合题意.故选D .11.A [解析] 因为√25<√30<√36,所以5<√30<6,且与√30最接近的整数是5,所以当|x-√30|取最小值时,整数x 的值是5.故选A . 12.解:原式=3+2-2+√3-1=2+√3. 13.解:(1)①2的平方根是±√2;②-27的立方根是-3;③√16=4,4的算术平方根是2.(2)如图所示:(3)-3<-√2<√2<2.14.解:(1)因为4<8<9,所以2<√8<3.又因为√8+1在两个连续的自然数a 和a+1之间,所以a=3. 因为1是b 的一个平方根,所以b=1. (2)由(1)知,a=3,b=1,所以a+b=3+1=4, 所以a+b 的算术平方根是2. 因为4<5,所以2<√5.15.C [解析] 因为M ,N 所对应的实数分别为m ,n ,所以-2<n<-1<0<m<1, 所以m-n 的结果可能是2.故选C .16.C [解析] 由图可知,b<0<a ,且|b|<|a|,所以a-5>b-5,6a>6b ,-a<-b ,a-b>0,所以关系式不成立的是选项C .故选C .17.A [解析] 因为a>b 且ac<bc ,所以c<0.选项A 符合a>b ,c<0的条件,故满足条件的对应点位置可以是A .选项B,C 不满足a>b ,选项C,D 不满足c<0,故满足条件的对应点位置不可以是B,C,D .故选A .18.解:(1)由题意可得m<4.因为m 为整数,所以m 的最大值为3. (2)因为点C 表示的数为-2,点B 表示的数为4, 所以点C 在点B 的左侧.①当点C 在线段AB 上时,因为AB=2AC ,所以4-m=2(-2-m ),解得m=-8.②当点C 在线段BA 的延长线上时,因为AB=2AC ,所以4-m=2(m+2),解得m=0. 综上所述,m 的值是-8或0.19.解:因为103=1000,1003=1000000,1000<50653<1000000, 所以10<√506533<100,所以√506533是两位数.因为50653的个位上的数字是3,只有个位上的数字是7的数的立方的个位上的数字是3, 所以√506533的个位上的数字是7. 如果划去50653后三位只剩下50,因为33=27,43=64,而27<50<64, 所以30<√506533<40,所以√506533的十位上的数字是3, 所以50653的立方根是37. 20.解:(1)2 2(2)因为[2x+1]=4,所以72≤2x+1<92,所以54≤x<74.故答案为54≤x<74. (3)设32x-1=m ,则x=2m+23,所以2m+23=m ,所以m-12≤2m+23<m+12,解得12<m ≤72.因为m 为整数,所以m=1或m=2或m=3, 所以x=43或x=2或x=83.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 题图NDAB M C华师大版八年级上册数学全册复习试题时间:100分钟 姓名:____________ 总分____________一、选择题(每小题3分,共24分)1. 81的算术平方根是 【 】 (A )9± (B )9 (C )3± (D )32. 实数14.3,1010010001.0,6,27,0,33−π中无理数的个数是 【 】(A )1 (B )2 (C )3 (D )43. 若5233=⋅m ,则m 的值是 【 】 (A )2 (B )9 (C )15 (D )274. 若()()n mx x x x −+=−+234,则n m ,的值分别是 【 】 (A )12,1=−=n m (B )12,1−=−=n m (C )12,1−==n m (D )12,1==n m5. 某校八(3)班有50名学生,他们上学的方式有三种:①步行;②骑车;③乘公共汽车.根据表中信息,下列结论错误的是 【 】(A )12,18==b a (B )%12,18==c a (C )%40,12==d b (D )%40%,24==d c 6. 如图,若NDC MBA ND MB ∠=∠=,,则添加下列 条件后不能判定△ABM ≌ △CDN 的是 【 】 (A )CN AM // (B )N M ∠=∠ (C )DB AC = (D )CN AM =7. 直角三角形的斜边长为20 cm,两条直角边长之比为3 : 4 ,那么这个直角三角形的周长为 【 】 (A )27 cm (B )30 cm (C )40 cm (D )48 cm8. 如图,在Rt △ABC 中,︒=∠90C ,按如下步骤作图:①分别以A 、B 为圆心,以大于AB 21的长为半径画弧,两弧交于M 、N ;②作直线MN ,交BC 于点D ;③连结AD .若︒=∠64ADE ,则CAD ∠的度数为 【 】 (A )︒32 (B )︒34 (C )︒36 (D )︒38第 8 题图C第 13 题图优良28%及格36%16%不及格二、填空题(每小题3分,共21分)9. 两个连续整数y x ,满足y x <+<23,则=+y x __________. 10. 若()(),11,1722=−=+b a b a 则=+22b a __________.11. 因式分解:=−+−y xy y x 271832________________.12. 等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________cm. 13. 期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优等生人数为__________.14. 如图,直线l 上有三个正方形c b a 、、,若c a 、的面积分别为5和11,则b 的面积为__________.15. 如图,长方形ABCD 中,,4,10==AD AB E 为AB 的中点,在线段CD 上找一点P ,使△APE 为一个腰长为5的等腰三角形,则线段DP 的长为__________.l 第 14 题图cba第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712−−−+−;(2)()()()213229−−−+x x x .17. (12分)化简求值:(1)()()()()21122+−−++−x x x x x ,其中1=x .(2)已知0322=+−x x ,求值:()()()x x x +−+−3322.18. (8分)如图,△ACB和△ECD都是等腰直角三角形,︒ECDACB,D∠90==∠为AB边上一点.(1)求证: △ACE≌△BCD;(2)若12AD,求DE的长.=BD,5=ADEC B19. (8分)如图,在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠∠,.ABP==CQBPACQ(1)求证: △ABP≌△ACQ;(2)请判断△APQ的形状,并说明理由.AQPB C20. (9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行了体能测试,测试结果分为A 、B 、C 、D 四个等级,并绘制了两幅不完整的统计图,请根据图中的信息解答下列问题:等级D 等级C 等级B 等级A 等级 20%(1)本次调查一共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形统计图;(3)若该校八年级共有700名学生,请你估计该校八年级学生中体能测试结果为D 等级的学生有多少名.21. (9分)如图,在Rt △ABC 中,8,6,90==︒=∠BC AC C ,将△ABC 沿直线AD 折叠,使点C 落在AB 边上的点E 处,求CD 的长.22. (9分)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN的延长线相交于点F.(1)若△CMN的周长为15 cm,求AB的长;(2)若︒∠的度数.MFN,求MCN=∠7023. (12分)问题情景: 如图1,在等边三角形ABC 内有一点P ,,4,5==PB PA3=PC ,求BPC ∠的度数.(1)问题解决: 小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转︒60,得到了△A BP '(如图2),然后连结'PP ,请你参考小明同学的思路,求BPC ∠的度数;(3)类比迁移: 如图3,在正方形ABCD 内有一点P ,1,2,5===PC PB PA ,求BPC ∠的度数.图 1ABCP图 2图 3PCABD新华师大版八年级上册数学全册复习试题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共21分)9. 7 10. 14 11. ()233−−x y 12. 8或6 13. 1014.16 15. 3或2或8(注意:答错一个或少答一个均不给分)部分题目答案提示:15. 如图,长方形ABCD 中,,4,10==AD AB E 为AB 的中点,在线段CD 上找一点P ,使△APE 为一个腰长为5的等腰三角形,则线段DP 的长为__________.第 15 题图解析:根据题意分类讨论如下图所示:第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712−−−+−解:原式()312−−+= 33+=6=…………………………4分 (2)()()()213229−−−+x x x解:原式()()1694922+−−−=x x x 16936922−+−−=x x x 376−=x …………………8分 17. (12分)化简求值:(1)()()()()21122+−−++−x x x x x ,其中1=x .解: ()()()()21122+−−++−x x x x x()2122222−+−+++−=x x x x x x21222+−−+=x x x32+−=x x ………………………4分当1=x 时 原式3112+−=3=……………………………6分(2)已知0322=+−x x ,求值:()()()x x x +−+−3322.解: ()()()x x x +−+−3322()()()3322+−+−=x x x94422−++−=x x x5422−−=x x ……………………10分∵0322=+−x x ∴322−=−x x ∴原式()5222−−=x x ()532−−⨯=11−= ……………………12分 18. (8分)(1)证明: ∵△ACB 和△ECD 都是等腰直角三角形 ∴CB CA CD CE ==,︒=∠=∠90ACB DCE︒=∠=∠45BAC B ………………1分∴ACD ACB ACD DCE ∠−∠=∠−∠ ∴21∠=∠…………………………2分 在△ACE 和△BCD 中∵⎪⎩⎪⎨⎧=∠=∠=CD CE CB CA 21 ∴△ACE ≌△BCD (SAS ); ……………………………………5分 (2)由(1)可知:△ACE 和△BCD∴︒=∠=∠==453,12B BD AE ∴︒=︒+︒=∠+∠=∠9045453BAC DAE∴△ADE 是直角三角形……………………………………6分 在Rt △ADE 中,由勾股定理得:222DE AE AD =+∴131252222=+=+=AE AD DE……………………………………8分 19. (8分)(1)证明: ∵△ABC 是等边三角形 ∴︒=∠=60,BAC AC AB……………………………………1分 在△ABP 和△ACQ 中∵⎪⎩⎪⎨⎧=∠=∠=CQ BP ACQ ABP AC AB ∴△ABP ≌△ACQ (SAS ); ……………………………………4分 (2)△APQ 是等边三角形……………………………………5分 理由如下: 由(1)可知:△ABP ≌△ACQ∴AQ AP =∠=∠,21……………6分 ∵︒=∠=∠+∠601BAC PAC ∴︒=∠+∠602PAC∴︒=∠60PAQ ……………………7分 在△APQ 中,∵︒=∠=60,PAQ AQ AP ∴△APQ 是等边三角形.……………………………………8分 20. (9分)解:(1)50%2010=÷(人)答:本次调查一共抽取了50名学生; ……………………………………3分 (2)164201050=−−−(人) ……………………………………4分补全条形统计图如图所示; ………6分 答:测试结果为C 等级的学生有16人;等级(说明:不标注数字“16”扣1分) (3)56504700=⨯(名) 答:估计D 等级的学生有56名. ……………………………………9分21. (9分)解: 由折叠可知:△ACD ≌△AED∴6,===AE AC ED CD︒=∠=∠=∠90BED AED C∴△BDE 是直角三角形……………………………………3分 在Rt △ABC 中,由勾股定理得:222AB BC AC =+∴10862222=+=+=BC AC AB∴4610=−=−=AE AB BE ……………………………………5分 设x CD =,则x DE x BD =−=,8 ……………………………………6分 在Rt △BDE 中,由勾股定理得:222BD DE BE =+∴()22284x x −=+解之得:3=x∴3=CD …………………………9分 22. (9分)解: (1)∵DM 、EN 分别垂直平分AC 和BC∴CN BN CM AM ==,……………………………………2分 ∵15=++=∆CN MN CM C CMN cm ∴15=++BN MN AM∴15=AB cm;……………………4分(2)在△ACM 和△BCN 中 ∵CN BN CM AM ==, ∴2,1∠=∠∠=∠B A……………………………………5分 在四边形DCEF 中 ∵︒=∠70MFN ∴︒=︒−︒−︒−︒=∠110907090360DCE∴︒=∠110ACB……………………………………7分 ∴︒=︒−︒=∠+∠70110180B A ∴︒=∠+∠7021…………………8分 ∴︒=︒−︒=∠4070110MCN ……………………………………9分 23. (12分) 解: (1)由旋转可知: △BPC ≌△BP′A ,︒=∠60'PBP ∴3',4'====A P PC B P PB ……………………………………2分∵︒=∠=60','PBP B P PB ∴△'PBP 是等边三角形∴4'',60'===︒=∠PB P P B P B PP ……………………………………3分 在△'APP 中,∵3',4',5===A P P P PA∴222222543''PA P P A P ==+=+ ∴△'APP 是直角三角形∴︒=∠90'P AP ……………………5分 ∴︒=︒+︒=∠1509060'A BP ∵△BPC ≌△BP′A ∴︒=∠=∠150'A BP BPC ;……………………………………6分图 2图 3D(2)如图所示,将△BPC 绕点B 逆时针旋转︒90,得到△A BP ',连结P P '. ……………………………………8分要点:可证:△P BP '为等腰直角三角形,△P AP '为直角三角形 ∴︒=︒+︒=∠1359045'A BP……………………………………11分 ∵△BPC ≌△BP′A ∴︒=∠=∠135'A BP BPC .……………………………………12分。

相关文档
最新文档