小专题(一) 三角形三条重要线段的应用

合集下载

2012年中考数学一轮复习精品讲义 三角形

2012年中考数学一轮复习精品讲义 三角形

第七章三角形本章小结小结1 本章概述三角形是几何知识中的重要内容,也是几何学的基础.本章从三角形出发,先学习与三角形有关的线段和角再到多边形,其中包括三角形的内角和、外角和及多边形的内角和等知识,最后到多边形的实际应用.小结2 本章学习重难点【本章重点】了解三角形的有关概念(内角、外角、中线、高、角平分线);会画出任意三角形的角平分线、中线和高.【本章难点】通过探索平面图形的镶嵌,知道任意一个三角形、四边形或六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【学习本章应注意的问题】正确理解三角形的有关概念,掌握有关性质.在学习中,要注意观察,搜集资料,多交流,注重新旧知识的联系,学会将新知识转化到已学的知识上去,再进行归纳、整理、分析,要深刻理解并掌握归纳、类比的方法.学习中,还要多注意结合图形,理解用多边形镶嵌图案的道理,欣赏丰富多彩的图案,体验数学美,提高审美情趣.小结3 中考透视本章知识在中考中所占比重较大,一方面以填空题、选择题形式出现,以考查对基本概念、基本定理的理解为主;另一方面以综合题形式出现,主要考查对知识的灵活运用及综合运用的能力,利用本章知识解决实际问题的题目也越来越多地出现在中考试题中,还有平面图形的镶嵌内容也是近年来的热点考题,备受关注.由于镶嵌问题具有较强的实用性,对知识的运用要求灵活性较高,所以要得到这类问题的分数也不是太容易的,分值占3~4分.知识网络结构图专题总结及应用一、知识性专题专题1 三角形的三条重要线段【专题解读】三角形的中线、角平分线和高是三角形的三条重要线段,它们具有十分重要的性质,三角形的高构造了垂直的条件,三角形的中线隐含线段相等,通过三角形的中线可以把三角形的面积分成相等的两部分,三角形的角平分线提供了角相等的条件.掌握这些概念,对解与三角形有关的问题十分重要.例1 如图7-64所示,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△DEC的面积等于△ABC的面积的一半,求EB.分析已知△DEC的面积等于△ABC的面积的一半,在图形中, △DEC与△ABC既不同底也不等高,因此需寻找桥梁△AEC来建立二者之间的关系,因为△AEC既与△DEC等高也与△ABC等高.解:作EF⊥AC于F,则122132DECAECDC EFS DCS ACAC EF===,作CG⊥AB于点G,则12142AECABCAE CGS AE AES ABAB CG===,∴234DEC AECAEC ABCS S AES S=⨯,即6DECABCS AES=.又∵12DECABCSS=,∴162AE=,∴AE=3,∴BE=AB-AE=1,即BE的长为1.【解题策略】等高的两个三角形的面积比等于底边长的比,它是面积问题中常用的解题策略.专题2 多边形的内角和及外角和【专题解读】用三角形的内角和定理可以推出多边形的内角和定理及外角和定理,在推导的过程中体现了转化思想,在解有关多边形的问题时,如求多边形的内角、外角、边数及对角线等问题,这两个定理都很重要.例2 已知一个多边形的内角和与某个外角的度数的总和为1350°,求这个多边形的边数.分析应充分利用多边形每个外角在0°~180°间和等式的性质巧解此题.解:设这个多边形的这个外角为x,它的边数为n,则(n-2)·180°+x=1350°, ∴(n-2) ·180°=8×180°-(90°+x),由此可得90°+x是180°的倍数. ∵0°<x<180°,∴x=180°-90°=90°,∴(n-2) ·180°=7×180°,∴n=9.【解题策略】灵活运用多边形的内角和定理及外角和定理是解决此类问题的关键.二、规律方法专题专题3 用公式法解有关对角线的条数问题【专题解读】用n边形的对角线有(3)2n n-条来解决相关问题.例3 若一个多边形有77条对角线,求它的内角和.分析由(3)2n n-=77,求n.解:设这个多边形的边数为n,由题意,得(3)2n n-=77.解得n=14,即这个多边形是十四边形,十四边形的内角和为(14-2) ×180°=2160°,即内角和为2160°.【解题策略】根据对角线条数的公式(3)2n n -,即已知边数可求对角线的条数,反之已知对角线的条数,可求出边数.三、思想方法专题 专题4 转化思想 【专题解读】转化思想在本章中有很多的应用,主要体现在探索有关多边形的问题时经常转化为三角形的问题进行解决.例4 填表.分析 先由三角形的内角和为180°及外角和为360°逐一推广,将4,5,…,n 边形分割成若干个三角形,易得答案.解:填表如下.2011中考真题精选(2011陕西,12,3分)如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若︒=∠641, 则=∠2 .考点:平行线的性质。

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

专题训练(一)
类型二 证明两线垂直
3.如图1-ZT-3,在五边形ABCDE中,AB=AE,BC=ED, ∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.
图1-ZT-3
专题训练(一)
证明:如图,连接AC,AD. 在△ABC和△AED中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS), ∴AC=AD. 又∵AF是CD边上的中线, ∴AF⊥CD.
第一章 三角形的证明
专题训练(一) “三线合一”的灵活应用
第一章 三角形的证明
专题训练(一)
“三线合一”的灵活应用
专题训练(一)
等腰三角形“顶角的平分线、底边上的高线、底边上的中线”只 要知道其中“一线”,就可以说明是其他“两线”.运用等腰三 角形“三线合一”的性质证明角相等、线段相等或垂直关系,可 减少证全等的次数,简化解题过程.
类型一 证明线段相等或求线段的长
1.如图1-ZT-1,已知AD=AE,BD=CE,试探究AB和AC的 大小关系,并说明理由.
图1-ZT-1
专题训练(一)
解: AB=AC. 理由:∵AD=AE, ∴△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是 △ADE的中线,又是△ADE底边上的高,即AF⊥DE,DF=EF. 又∵BD=CE, ∴BD+DF=CE+EF,即BF=CF, ∴AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得 AB=AC.
谢 谢 观 看!
专题训练(一)
类型三 证明角度之间的关系
4.已知:如图 1-ZT-4,AB=AC,BD⊥AC 于点 D.求证:∠DBC =12∠B过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF, ∴∠DBC=12∠BAC.

专题01 三角形的三边、高线、中线及角平分线(解析版)八年级数学上册重难点专题提优训练(人教版)

专题01 三角形的三边、高线、中线及角平分线(解析版)八年级数学上册重难点专题提优训练(人教版)

专题01三角形的三边、高线、中线及角平分线考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项,都含有三角形,故利用了三角形的稳定性;而B选项中,用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性,需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性,则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图,人字梯中间设计一“拉杆”,在使用梯子时,固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形,稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性,理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形,这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性,即可求解.【详解】解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具有稳定性,故答案为:稳定性.【点睛】本题考查的是三角形的性质,掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边,能构成三角形的是().A.1,2,3B.3,4,5C.4,5,11D.6,3,3【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3,不符合题意;B、3+4>5,符合题意;C、4+5<11,不符合题意;D、3+3=6,不符合题意;故选B.【点睛】本题考查构成三角形的条件,熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.10,7,3【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.【详解】解:A、3+4<8,不符合三角形三边关系,故不能构成三角形;B、5+6=11,不符合三角形三边关系,故不能构成三角形;C、5+6>10,符合三角形三边关系,故能构成三角形;D、3+7=10,不符合三角形三边关系,故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系,熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中,三条边长分别为3和6,第三边长为奇数,那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围,再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6,所以6-3<第三边<6+3,所以3<第三边<9,因为第三边长为奇数,∴第三边的长为5或7,故选:A.【点睛】本题考查了三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3,x,14,若x为正整数,则这样的三角形个数为()A.4B.5C.6D.7【答案】B【解析】【分析】直接根据三角形的三边关系求出x的取值范围,进而可得出结论.【详解】解:三角形三边长分别为3,x,14,x<<.x143143∴-<<+,即1117x为正整数,12x=,13,14,15,16,即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中,BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B中的线段BD是∴ABC的高,故选:B.【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图,CD ∴AB 于点D ,已知∴ABC 是钝角,则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线 C .线段AD 是ABC 的BC 边上的高线D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线,∴A 错误,不符合题意;∴ 线段CD 是ABC 的AB 边上的高线,∴B 正确,符合题意;∴ 线段AD 是ACD 的CD 边上的高线,∴C 错误,不符合题意;∴线段AD 是ACD 的CD 边上的高线,∴D 错误,不符合题意;故选B .【点睛】 本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图,在直角三角形ABC 中,90ACB ∠=︒,AC =3,BC =4,AB =5,则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中,90ACB ∠=︒, ∴1122AC BC AB CD ⨯=⨯, ∴AC =3,BC =4,AB =5, ∴1134522CD ⨯⨯=⨯⨯, ∴CD =125, 故答案为:125. 【点睛】本题考查求直角三角形斜边上的高,用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图,点A 、点B 是直线l 上两点,10AB =,点M 在直线l 外,6MB =,8MA =,90AMB ∠=︒,若点P 为直线l 上一动点,连接MP ,则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时,MP 有最小值,再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时,MP 有最小值,10AB =,6MB =,8MA =,90AMB ∠=︒,AB MP AM BM ∴⋅=⋅,即1068MP =⨯,解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短,三角形的面积,找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图,已知BD 是∴ABC 的中线,AB =5,BC =3,且∴ABD 的周长为12,则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD =,再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线,即点D 是线段AC 的中点,AD CD ∴=,5AB =,ABD △的周长为12,12AB BD AD ∴++=,即512BD AD ++=,解得:7BD AD +=,7BD CD ∴+=,则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点,掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中,BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm ,AB 与AC 的和为11cm ,则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD =,然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差,然后代入数据计算即可得解.【详解】如图1,图2,∴AD 是BC 边上的中线,∴BD CD =,∴中线AD 将ABC 分成的两个新三角形的周长差为5cm ,∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=,∴5AB AC -=或者5AC AB -=,∴AB 与AC 的和为11cm ,∴11AB AC +=,∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩, 故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线,熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键. 2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图,D ,E 分别是∴ABC 边AB ,BC 上的点,AD =2BD ,BE =CE ,设∴ADF 的面积为S 1,∴FCE 的面积为S 2,若S △ABC =16,则S 1-S 2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=16,就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE,∴BE=12BC,∴S△ABC=16,∴S△ABE=12S△ABC=8.∴AD=2BD,S△ABC=16,∴S△BCD=13S△ABC=163,∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=83,故答案为83.【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,据此可求出三角形的面积,然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图,AD 是∴ABC 的中线,BE 是∴ABD 的中线,EF ⊥BC于点F.若24ABCS=,BD =4,则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线,S △ABC =24,∴S △ABD =12S △ABC =12,同理,BE 是∴ABD 的中线,612BDE ABD SS ==,∴S △BDE =12BD •EF ,∴12BD •EF =6,即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.考点五 三角形的角平分线 例题:(2022·全国·八年级)如图,在ABC 中,90CAB ∠=︒,AD 是高,CF 是中线,BE 是角平分线,BE 交AD 于G ,交CF 于H ,下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90°,AD是高,可得∴AEG=90°−∴ABE,∴DGB=90°−∴DBG,又因为BE是角平分线,可得∴ABE=∴DBE,故能得到∴AEG=∴DGB,再根据对顶角相等,即可求证该说法正确;②因为CF是中线,BE是角平分线,得不到∴HCB=∴HBC,故该说法错误;③∴EAG+∴DAB=90°,∴DBA+∴DAB=90°,可得∴EAG=∴DBA,因为∴DBA=2∴EBC,故能得到该说法正确;④根据中线平分面积,可得该说法正确.【详解】解:①∴∴CAB=90°,AD是高,∴∴AEG=90°−∴ABE,∴DGB=90°−∴DBG,∴BE是角平分线,∴∴ABE=∴DBE,∴∴AEG=∴DGB,∴∴DGB=∴AGE,∴∴AEG=∴AGE,故该说法正确;②因为CF是中线,BE是角平分线,得不到∴HCB=∴HBC,故该说法错误;③∴∴EAG+∴DAB=90°,∴DBA+∴DAB=90°,∴∴EAG=∴DBA,∴∴DBA=2∴EBC,∴∴EAG=2∴EBC,故该说法正确;④根据中线平分面积,可得S△ACF=S△BCF,故该说法正确.故选:C.【点睛】本题考查了三角形的高,中线,角平分线的性质,解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图,在∴ABC中,∴C=90°,D,E是AC上两点,且AE=DE,BD平分∴EBC,那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE,∴BE是∴ABD的中线,故本选项不符合题意;B、∴BD平分∴EBC,∴BD是∴BCE的角平分线,故本选项不符合题意;C、∴BD平分∴EBC,∴∴2=∴3,但不能推出∴2、∴3和∴1相等,故本选项符合题意;D、∴S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线,所以AE =CE ,故本表达式正确;B 、AD 是△ABC 的高,所以∴ADC =90,故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE ,故本表达式错误;D 、CF 是△ABC 的角平分线,所以∴ACB =2∴ACF ,故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线,则2AB =______,BD =______,12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线,则1∠=______,132∠=______,2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点,进而得到答案.(2)根据角平分线定义,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线,∴AB =2AF =2BF ;∴AD 是BC 边上的中线,∴BD =CD ,∴BE 是AC 边上的中线,∴AE =12AC ,(2)∴AD 是BAC ∠的角平分线,∴12∠=∠ ,∴BE 是ABC ∠的角平分线, ∴132∠=ABC ∠, ∴CF 是ACB ∠的角平分线,∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线,解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高,正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高,即过点A作BC边的垂线.∴只有选项A符合题意,故选:A.【点睛】本题考查了三角形高线的画法,从三角形的一个顶点向对边作垂线,顶点与垂足间的线段,叫做三角形的高线,锐角三角形的三条高线都在三角形的内部,钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上,小亮经研究发现:在如图所示的ABC中,连接点A和BC上的一点D,线段AD等分ABC的面积,则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积,∴∴ABD的面积等于∴ACD的面积,∴两个三角形的高为同一条高,∴BD=CD,∴AD为∴ABC的中线,故选:B.【点睛】题目主要考查三角形中线的性质,理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识,即可一一判定【详解】解:A、利用的是“两点确定一条直线”,故该选项不符合题意;B、利用的是“两点之间线段最短”,故该选项不符合题意;C、窗户的支架是三角形,利用的是“三角形的稳定性”,故该选项符合题意;D、利用的是“垂线段最短”,故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用,结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图,BD是ABC的边AC上的中线,AE是ABD△的边BD上的中线,BF 是ABE△的边AE上的中线,若ABC的面积是32,则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线,∴11321622ABD BCD ABCS S S===⨯=△△,∴AE是ABD△的边BD上的中线,∴1116822ABE ADE ABDS S S===⨯=,又∴BF 是ABE △的边AE 上的中线,则CF 是ACE 的边AE 上的中线, ∴118422BEF ABF ABE S S S ===⨯=,182CEF ACF ADE CED ACE S S S S S =====,则4812BEF CEF S SS =+=+=阴影,故选:B .【点睛】 本题考查了中线的性质,清晰明确三角形之间的等量关系,进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC ,小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ,②BC 边上的角平分线AE ,③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中,所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线,角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠,其折痕即为BC 边上的中线,故①符合题意;折叠后使B 点在AC 边上,且折痕通过A 点,则其折痕即为BC 边上的角平分线,故②符合题意; 折叠后使B 点在BC 边上,且折痕通过A 点,则其折痕即为BC 边上的高,故③符合题意;故选D .【点睛】本题考查三角形中线,角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm ,xcm ,4cm ,则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”可得到4343x -<<+,∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系,熟记“三角形任意两边之和大于第三边,任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长,a b 、满足()2610a b -+-=,c 为偶数,则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是偶数求出c 的值.【详解】解:∴a ,b 满足()2610a b -+-=,∴a -6=0,b -1=0,解得a =6,b =1,∴6-1=5,6+1=7,∴5<c <7,又∴c 为偶数,∴c =6,故答案为:6【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高,手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点.为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图,AB∴BD 于点B,AC∴CD 于点C,且AC 与BD 交于点E,已知AE=10,DE=5,CD=4,则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高,然后利用三角形面积求解即可.【详解】解:∴AB∴BD,AC∴CD,∴AB是∴ADE的边DE上的高,CD是边AE上的高,∴S △AED =1122DE AB AE CD ⋅=⋅, ∴10485AE CD AB DE ⋅⨯===, 故答案为:8.【点睛】本题考查三角形高的定义,三角形的面积等知识,掌握基本概念是解题关键,学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图,在ABC 中,2AB AC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若ABC S =PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接APPE AB ⊥于点E ,PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC ==,ABC S ∴1122AB PE AC PF ⋅+⋅PE PF =+【点睛】本题考查了三角形的高,掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是∴ABC的中线,若∴ABD的周长为17,求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD,根据∴ABD的周长为17和AB=1得AD+BD=16,即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∴AC是整数,∴AC=8.(2)解:如图所示,∴BD是∴ABC的中线,∴AD=CD,∴∴ABD的周长为17,∴AB+AD+BD=17,∴AB =1,∴AD +BD =16,∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形,解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c +-=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a =5b =,c =(2)能构成三角形,周长为(51【解析】【分析】(1)根据非负数之和等于零,则每个非负数等于零,分别建立方程求解即可;(2)先比较长三边的大小,再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥0,0c -≥,a 、b 、c 满足(20a c -=,∴0a =,50b -=,0c -,解得a =5b =,c =;(2)解:∴81825<<,∴5,即a c b <<,∴5=>,∴能构成三角形,三角形的周长)5551a b c =++===. 【点睛】 本题考查了非负数的性质,二次根式有意义的条件和构成三角形的条件,解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm ,则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中,AB =AC ,周长为14cm ,BD 是AC 边上的中线,△ABD 比△BCD 周长长4cm ,求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6,AC =6,BC =2.【解析】【分析】(1)根据三角形三边关系,先求出三角形第三边长的范围,即可求出周长范围.(2)根据三角形中线的定义可得,AD CD =,从而可得4,AB BC -=再根据ABC 的周长是14,,以及,AB AC =,可得214AB BC +=进行计算即可解答.【详解】解:(1)设第三边长为x ,根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD 是AC 边上的中线,,AD CD ∴=∴△ABD比△BCD周长长4cm,()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是14,14,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图,在直角三角形ABC中,∴BAC=90°,AD是BC边上的高,CE 是AB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分,所以S△BCE=12S△ABC.【详解】解:(1)∴∴BAC =90°,AD 是BC 边上的高, ∴12AD •BC =12AB •AC ,∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线,∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图,在6×10的网格中,每一小格均为正方形且边长是1,已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D ,连接CD ,使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点,取格点D ,满足3BD AD =,则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图,AE 即为BC 上的高.(2)如图,利用网格特点,可得3BD AD =,∴D 即为所求作的点,满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高,三角形的面积的计算,熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图,在ABC 中,CD 、CE 分别是ABC 的高和角平分线,,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值,再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒,40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒,CE 是ACB ∠的平分线,∴1352ACE ACB ∠=∠=︒. CD 是高线,∴90ADC ∠=︒,∴9020ACD BAC ∠=︒-∠=︒,∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠=,B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+,CE 是ACB ∠的平分线,∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦. CD 是高线,∴90ADC ∠=︒,∴9090ACD BAC α∠=︒-∠=︒-, ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线,高线以及角的转换,掌握角平分线,高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图,∴ABC 中,∴BAC =60º,AD 平分∴BAC ,点E 在AB 上,EG ∴AD , EF ∴AD ,垂足为F .(1)求∴1和∴2的度数.(2)联结DE ,若S △ADE =S 梯形EFDG ,猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等,理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠,然后在直角三角形中利用两锐角互余即可求得∴2,再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG ,结合图形即可求解.(1)∴∴BAC =60º,AD 平分∴BAC , ∴1302BAD BAC ∠=∠=︒, 又∴EF ∴AD ,∴29060BAD ∠=︒-∠=︒, ∴EG ∴AD ,∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD ,∴S △ADE =12AD EF ⋅,S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG ,∴AD =AF +DF ,∴DF +EG =AF +DF ,即AF =EG .【点睛】本题考查了平行线的性质,角平分线的定义以及三角形和梯形的面积公式,熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图,AD 是∴ABC 的边BC 上的中线,已知AB =5,AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中,若AB 边上的高为2,求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h ,根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5,AC =3,∴5353BC -<<+,即28BC <<,故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++,∴ACD 的周长为AC AD CD ++,∴AD 是∴ABC 的边BC 上的中线,∴BD CD =,∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=,故答案为:2;(3)设AC 边上的高为h , 根据题意得:11222AB AC h ⨯=⨯, 即1152322h ⨯⨯=⨯⨯, 解得103h =. 【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.。

八上同步跟踪复习专题1:三角形三边关系的应用

八上同步跟踪复习专题1:三角形三边关系的应用

八上同步跟踪复习专题1:三角形三边关系的应用我们知道:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边。

上面结论证明的依据是:两点之间,线段最短。

利用这两个关系有如下应用,现举例说明:一、基本应用(一)确定三条线段能否构成三角形(常用技巧:先确定最大边,看两短线段和是否大于较长线段)例1 下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、10cmB.7cm、10cm、13cmC.5cm、7cm、13cmD.5cm、10cm、13cm例2 已知五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中三条线段为边长可以组成个三角形。

例3 有下列长度的三条线段能否组成三角形?(1)a-3,a,3(其中a>3);(2)a,a+4,a+6(其中a>0);(3)a+1,a+1,2a(其中a>0)。

(二)已知两边,确定三角形第三边的取值范围(常用技巧:另两边的差<任一边<另两边的和)例4 用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3m和7m,问第三条绳子的长有什么限制?例5 (1)已知三角形的三边长分别是2,x,13,则这样的三角形个数为()A.2B.3C.5D.13(2)三角形的三边分别为3,a21 ,8,求a的取值范围。

(三)求三角形某一边的长度(或周长)问题(注意此类问题中往往有陷阱)例6 (1)一个等腰三角形的两边分别是2厘米和9厘米,则第三边长为厘米。

(2)已知等腰三角形的一边等于5,另一边等于6,则它的周长等于。

例7 已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长。

简析:如图1,设腰AB=xcm,底BC=ycm,D为AC边的中点.根据题意,得x+12x=12,且y+12x=21;或x+12x =21,且y+12x =12。

解得x =8,y =17;或x =14,y =5。

显然当x=8,y=17时,8+8<17不符合定理,应舍去。

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

期中考点专题01 三角形的基础重点突破三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

三角形特性三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。

三角形三边的关系(重点(1)三角形的随意两边之和大于第三边。

三角形的随意两边之差小于第三边。

(这两个条件满意其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b三角形的分类:三角形按边的关系分类如下:三角形按角的关系分类如下:三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

考查题型考查题型一三角形的个数问题典例1.(2024·西林县期中)如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个【答案】D【提示】依据三角形的定义解答即可,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中的三角形有:△ABC,△BCD,△BCE,△ABE,△CDE共5个.故选D.【名师点拨】本题考查了三角形的概念,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边,相邻边的公共端点叫做三角形的顶点.相邻两条边组成的角,叫做三角形的内角,简称为三角形的角.变式1-1.(2024·秦皇岛市期中)图中三角形的个数是()A.3个B.4个C.5个D.6个【答案】D【解析】图中的三角形有: △ABD, △ADE, △AEC, △ABE, △ADC, △ABC,共6个.故选D.变式1-2.(2024·洛阳市期末)图中三角形的个数是()A.4个B.6个C.8个D.10个【答案】C【提示】依据三角形的定义即可得.【详解】图中的三角形是,共8个故选:C.【名师点拨】本题考查了三角形的定义,驾驭理解三角形的概念是解题关键.变式1-3.(2024·恩施市期中)如图,图中三角形的个数有()A.6个B.8个C.10个D.12个【答案】B【解析】试题解析:以O为一个顶点的有△CBO、△CDO、△ABO、△ADO,不以O为顶点的三角形有△CAD、△CBA、△BCD、△BAD,共有8个.故选B.考查题型二三角形的分类典例2(2024·石家庄市期末)在△ABC中,∠A=20°,∠B=60°,则△ABC的形态是()A.等边三角形 B.锐角三角形C.直角三角形 D.钝角三角形【答案】D【解析】试题提示:依据三角形的内角和定理求出∠C,即可判定△ABC的形态.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.变式2-1.(2024·黄冈市期中)一个三角形三个内角的度数之比为1:2:3,则这个三角形肯定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】试题提示:依据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形.故选B.变式2-2.(2024·深圳市期中)在△ABC中,若∠A:∠B:∠C=1:3:5,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形态不确定【答案】C【提示】依据∠A:∠B:∠C=1:3:5,可设∠A=x°,∠B=3x°,∠C=5x°,再依据三角形内角和为180°可得方程x+3x+5x=180,解方程算出x的值,即可推断出△ABC的形态.【详解】解:∵∠A:∠B:∠C=1:3:5,∴设∠A=x°,∠B=3x°,∠C=5x°,∴x+3x+5x=180,解得:x=20,∴∠C=5×20°=100°,∴△ABC是钝角三角形.故选:C.【名师点拨】本题考查三角形内角和定理,关键是利用方程思想列出三个角的关系式.变式2-3.(2024·石家庄市期末)下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.【答案】A【提示】依据三角形按角分类的方法一一推断即可.【详解】视察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型.故选A.【名师点拨】本题考查了三角形的分类,解题的关键是娴熟驾驭基本学问,属于中考常考题型.考查题型三构成三角形的条件典例3.(2024·宜兴市期末)下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm【答案】B【提示】依据三角形的随意两边之和大于第三边对各选项提示推断后利用解除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【名师点拨】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.变式3-1.(2024·太仓市)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18【答案】B【解析】试题提示:依据题意,要分状况探讨:①、3是腰;②、3是底.必需符合三角形三边的关系,随意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .变式3-2.(2024·兰州市期末)等腰三角形的一边长为4,另一边长为9,则这个三角形的周长为( )A .22B .17C .13D .17或22【答案】A【提示】分4是腰长和底边两种状况探讨求解即可.【详解】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选A .【名师点拨】本题主要考查了三角形三边关系,难点在于分状况探讨并利用三角形的三边关系推断是否能组成三角形.cm cm长的两根木棒首尾相接成一个三角形的变式3-3.(2024·哈尔滨市期中)下列长度的四根木棒中,能与49,是()A.4cm B.5cm C.9cm D.13cm【答案】C【提示】依据三角形三边关系:三角形随意两边之和大于第三边,逐一推断选项,即可.【详解】∵4+4<9,cm cm长的木棒首尾相接,不能组成三角形,∴4cm,49,∴A错误;∵5+4=9,cm cm长的木棒首尾相接,不能组成三角形,∴5cm,49,∴B错误;∵9+4>9,cm cm长的木棒能组成三角形,∴9cm,49,∴C正确;∵4+9=13,cm cm长的木棒,不能组成三角形,∴13cm,49,∴D错误;故选C.【名师点拨】本题主要考查三角形的三边关系,驾驭“三角形随意两边之和大于第三边”,是解题的关键.m-=,且m,n恰好是等腰△ABC的两条边的边长,变式3-4.(2024·濮阳市期末)若实数m,n满意20则△ABC的周长是( )A.12 B.8 C.10 D.10或8【答案】C【提示】依据非负数的性质求出,m n的值,依据等腰三角形的性质求解即可.m-=【详解】20m n∴==2,4,当三角形的腰长为2时,224+=,构不成三角形;++=.当三角形的腰长为4时,三角形的周长为:44210故答案选:C.【名师点拨】考查非负数的性质以及等腰三角形的性质,驾驭三角形的三边关系是解题的关键.考查题型四三角形第三边的取值范围典例4.(2024·三明市期末)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【答案】C【提示】依据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此依据选项即可推断. 【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,视察只有C选项符合,故选 C.【名师点拨】本题考查了三角形三边的关系,娴熟驾驭三角形三边之间的关系是解题的关键.a的三条线段能组成一个三角形,则a的值可以是()变式4-1.(2024·龙岩市期中)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【提示】依据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【名师点拨】本题考查了三角形三边关系,能依据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,留意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.变式4-2.(2024·齐齐哈尔市期末)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为A.2 B.3 C.5 D.13【答案】B【提示】依据“三角形两边之和大于第三边, 两边之差小于第三边”,可得x的取值范围,一一推断可得答案. 【详解】解:依据“三角形两边之和大于第三边, 两边之差小于第三边”可得:13-2<x<13+2,即11<x<15,因为取正整数,故x的取值为12、13、14,即这样的三角形共有3个.故本题正确答案为B.【名师点拨】本题主要考查构成三角形的三边的关系.变式4-3.(2024·广州市期中)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A .5或7B .7或9C .7D .9【答案】B 【详解】依据三角形三边关系可得:5<第三边<11,依据第三边长为奇数,则第三边长为7或9.故选B.考查题型五 三角形三边关系的应用典例5.(2024·德州市期末)已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A .7B .8C .9D .10【答案】C【提示】依据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再依据第三边是整数,从而求得周长.【详解】设第三边为x ,依据三角形的三边关系,得:4-1<x <4+1,即3<x <5,∵x 为整数,∴x 的值为4.三角形的周长为1+4+4=9.故选C.【名师点拨】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.变式5-1.(2024·汕头市期中)已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b - 【答案】B【提示】依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,得到a+b-c >0,b -a -c <0,再依据肯定值的性质进行化简计算.【详解】依据三角形的三边关系,得a+b-c>0,b -a -c <0.∴原式= a+b-c −(a +c −b)= 22b c -.故选择B 项.【名师点拨】本题考查三角形三边关系和肯定值,解题的关键是娴熟驾驭三角形三边关系.变式5-2.(2024·保定市期末)如图,为估计池塘岸边A ,B 的距离,小明在池塘的一侧选取一点O ,测得OA=15米,OB=10米,A ,B 间的距离可能是( )A.30米B.25米C.20米D.5米【答案】C【解析】设A,B间的距离为x.依据三角形的三边关系定理,得:15-10<x<15+10,解得:5<x<25,所以,A,B之间的距离可能是20m.故选C.变式5-3.(2024·滨州市期末)若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【提示】依据非负数的和为零,可得每个非负数同时为零,可得a、b的值,依据等腰三角形的判定,可得三角形的腰,依据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【名师点拨】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.变式5-4.(2024·南开区期末)假如一等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为()A.13 B.5 C.5或13 D.1【答案】A【详解】设等腰三角形的腰长为x,则底边长为x﹣12或x+12,当底边长为x﹣12时,依据题意,2x+x﹣12=27,解得x=13,∴腰长为13;当底边长为x+12时,依据题意,2x+x+12=27,解得x=5,因为5+5<17,所以构不成三角形,故这个等腰三角形的腰的长为13,故选A.考查题型六三角形的稳定性典例6.(2024·路北区期中)下列图形具有稳定性的是()A.B.C.D.【答案】A【提示】依据三角形具有稳定性,四边形具有不稳定性进行推断即可得.【详解】A、具有稳定性,符合题意;B、不具有稳定性,故不符合题意;C、不具有稳定性,故不符合题意;D、不具有稳定性,故不符合题意,故选A.【名师点拨】本题考查了三角形的稳定性和四边形的不稳定性,正确驾驭三角形的性质是解题关键.变式6-1.(2024·乌鲁木齐市期末)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等【答案】C【解析】试题提示:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形态就不会变更.解:这样做的道理是三角形具有稳定性.故选:C.变式6-2.(2024·安阳市期末)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B变式6-3.(2024·济南市期末)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是()A.三角形的稳定性B.垂线段最短C.两点确定一条直线D.两点之间,线段最短【答案】A【提示】依据点A、B、O组成一个三角形,利用三角形的稳定性解答.【详解】解:一扇窗户打开后,用窗钩将其固定,正好形成三角形的形态,所以,主要运用的几何原理是三角形的稳定性.故答案选A.【名师点拨】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.变式6-4.(2024·深圳市期末)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的依据是( )A.两点之间的线段最短B.长方形的四个角都是直角C.三角形有稳定性D.长方形是轴对称图形【答案】C【详解】用木条EF固定长方形门框ABCD,使其不变形的依据是三角形具有稳定性.故选:C.【名师点拨】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.变式6-5.(2024·抚顺市期中)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性【答案】D【提示】依据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选:D.【名师点拨】此题考查三角形的性质,关键是依据三角形的稳定性解答.。

专题4.6 认识三角形-三角形的三条重要线段(专项练习)七年级数学下册基础知识专项讲练(北师大版)

专题4.6 认识三角形-三角形的三条重要线段(专项练习)七年级数学下册基础知识专项讲练(北师大版)

专题4.6 认识三角形-三角形的三条重要线段(专项练习)一、单选题1.(2021·黑龙江哈尔滨市·八年级期末)如图,在下列图形中,最具有稳定性的是()A.B.C.D.的高是()2.(2021·宁夏固原市·八年级期末)下列图形中,线段BE是ABCA.B.C.D.3.(2020·湖北孝感市·八年级月考)如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD 4.(2020·黑龙江牡丹江市·八年级期中)如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A.2B.3C.4D.5 5.(2020·安岳县石羊镇初级中学七年级期中)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 6.(2020·辽宁抚顺市·)如图,CE 是ABC 的外角ACD ∠的平分线,若30B ∠=︒,50ACE ∠=︒,则A ∠=( )A .40︒B .50︒C .60︒D .70︒7.(2021·上海崇明区·九年级一模)已知点G 是ABC 的重心,如果连接AG ,并延长AG 交边BC 于点D ,那么下列说法中错误的是( )A .BD CD =B .AG GD =C .2AG GD = D .2BC BD = 8.(2020·安徽阜阳市·八年级月考)如图,在ABC 中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC 的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .209.(2019·山东临沂市·八年级期中)如图,在△ABC 中,点D ,E ,F 分别是BC ,AD ,CE 的中点,若S △ABC =16,则S △BEF 的值为( )A .1B .4C .6D .810.(2020·内蒙古赤峰市·八年级期中)如图所示,在ABC 中,AD BC ⊥于D ,E 是BC 边上的一点,连结AE ,则线段AD 是( )个三角形的高A.3B.4C.5D.6 11.(2020·广西八年级月考)如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A.两点之间线段最短B.长方形的对称性C.长方形四个角都是直角D.三角形的稳定性的边AC上的高是()12.(2021·北京丰台区·八年级期末)如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA 13.(2021·湖南娄底市·八年级期末)如图,在△ABC中,AD是BC边上的中线,BE是△ABD 中AD边上的中线,若△ABC的面积是40,则△ABE的面积是( )A.25B.20C.15D.10 14.(2020·浙江省开化县第三初级中学八年级期中)如图,工人师傅砌门时,常用一根木条EF来固定长方形门框ABCD,使其不变形,这样做的根据是()A .两点之间线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形具有稳定性15.(2020·四川绵阳市·东辰国际学校八年级月考)如图,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且23S cm =阴影,则△ABC 的面积为( )平方厘米A .9B .12C .15D .18二、填空题 16.(2020·广西柳州市·八年级期中)如图,BE 、CF 是ABC 的角平分线,80,60ABC ACB ︒︒∠=∠=,BE 、CF 相交于D ,则CDE ∠的度数是_____________.17.(2020·安徽合肥市五十中学西校八年级期中)如图所示,AD 、CE 、BF 是△ABC 的三条高,AB =6,BC =5,AD =4,则CE =_____.18.(2020·湖北孝感市·八年级月考)如图所示,则α=__________.19.(2021·全国九年级专题练习)如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积________.20.(2020·甘州中学七年级月考)OB是△AOC内部的一条射线,把三角形的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分△AOB,三角尺的另一边OE也正好平分△BOC,则△AOC的度数为________21.(2019·广东广州市白云区六中珠江学校八年级期中)如图,在ABC中,AD、AE分AE=,ABC的面积为25,则CD的长为________.别是边BC上的中线与高,522.(2021·肥东县第四中学七年级期末)如图,已知AD 是ABC 的中线,CE 是ADC 的中线,ABC 的面积为8,则CDE △的面积为______.23.(2020·吉林吉林市·八年级期末)大桥钢架、索道支架等为了坚固,都采用三角形结构.这样做的根据是__________________.24.(2021·河南商丘市·八年级期末)如图,在△ABC 中,△ABC 和△ACB 的角平分线交于点O ,延长BO 与△ACB 的外角平分线交于点D ,若△BOC =130°,则△D =_____25.(2021·上海九年级专题练习)已知点G 是ABC ∆的重心,连接BG 、GC ,那么BGC ABCS S ∆∆=_________. 26.(2021·全国九年级专题练习)如图,、、A B C 分别是线段1A B 、1B C 、1C A 的中点,若ABC 的面积是1,那么111A B C △的面积为____.27.(2020·东营市实验中学七年级月考)如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.28.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,△A=64°,△ABC 与△ACD 的平分线交于点A 1,△A 1BC 与△A 1CD 的平分线相交于点A 2,得△A 2;…;△A n -1BC 与△A n -1CD 的平分线相交于点A n ,要使△A n 的度数为整数,则n 的值最大为______.29.(2020·天津市河西区新华圣功学校八年级月考)如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .30.(2020·宜春市宜阳学校八年级月考)如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.31.(2021·全国八年级)如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGD AGE G BD DC S S ===,,,则ABC 的面积是________.32.(2021·全国八年级)如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________.33.(2020·上海宝山区·九年级月考)如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.34.(2021·菏泽市定陶区第一实验中学八年级月考)如图,在△ABC 中,△A =θ,△ABC 和△ACD 的平分线交于点A 1,得△A 1,△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2020BC 和△A 2020CD 的平分线交于点A 2021,则△A 2021=________.(用θ表示)35.(2021·庆云县第二中学八年级期末)如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.36.(2020·黑龙江牡丹江市·八年级期中)如图,点D,E,F分别是边BC,AD,AC上的中点,若图中阴影部分的面积为3,则ABC的面积是________.37.(2020·龙湾区永中中学九年级月考)如图1,ABC纸片面积为24,G为ABC纸片)连结CG,DG,并将纸片剪去GDC,的重心,D为BC边上的一个四等分点(BD CD则剩下纸片(如图2)的面积为__________.38.(2021·四川绵阳市·八年级期末)如图,在△ABC中E是BC上的一点,BC=3BE,点D 是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=____.三、解答题39.(2020·贵州省施秉县第二中学八年级期末)如图,在△ABC中,BE△AC,BC=5cm,AC=8cm,BE=3cm.(1)求△ABC的面积;(2)画出△ABC中BC边上的高AD,并求出AD的长.40.(2021·福建三明市·八年级期末)如图,在△ABC中,△A=30°,△ACB=80°,△ABC 的外角△CBD的平分线BE交AC的延长线于点E.(1)求△CBE的度数;DF BE,交AC的延长线于点F,求△F的度数.(2)过点D作//41.(2021·全国八年级)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若△ABE=20°,请求出△BEC的度数.42.(2021·山东济南市·八年级期末)△ABC中,AD是△BAC的角平分线,AE是△ABC的高.(1)如图1,若△B=40°,△C=60°,求△DAE的度数;(2)如图2,△B<△C,则DAE、△B,△C之间的数量关系为___________;(3)如图3,延长AC到点F,△CAE和△BCF的角平分线交于点G,求△G的度数.43.(2021·四川绵阳市·东辰国际学校七年级期末)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图△放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD 均可绕点P逆时针旋转(1)试说明△DPC=90°;(2)如图△,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF 平分△APD,PE平分△CPD,求△EPF;(3)如图△.在图△基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.参考答案1.D【分析】根据三角形的稳定性进行解答即可.【详解】解:根据三角形具有稳定性可得选项D具有稳定性,其余的都具有不稳定性,故选:D.【点拨】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.D【分析】根据三角形高的定义可得结论【详解】在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高.故选:D【点拨】熟记三角形高的定义是解决本题的关键.3.A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】CG解:ABC中,AB边上的高为:.故选:.A【点拨】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.4.B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B【点拨】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键5.C【分析】直接根据钝角三角形的三条高线交于三角形的外部解答即可.【详解】解:钝角三角形的三条高线交于三角形的外部,故选:C .【点拨】本题考查了三角形的三条高线交点的位置与三角形的形状的关系,即:锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.6.D【分析】根据角平分线的定义以及三角形外角的性质,即可求解.【详解】△CE 是ABC 的外角ACD ∠的平分线,50ACE ∠=︒,△△ACD =2△ACE=100°,△△A=△ACD -△B=100°-30°=70°,故选D【点拨】本题主要考查角平分线的定义以及三角形外角的性质,熟练掌握“三角形的外角等于不相邻的两个内角之和”是解题的关键.7.B【分析】根据三角形重心的定义和性质解答即可.【详解】解:△点G 是ABC 的重心,△BD CD =,2AG GD =,2BC BD =,△A 、C 、D 正确,B 错误,故选B .【点拨】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.8.C【分析】要求四边形面积,可以转化为两个三角形面积之和,把三角形面积计算中的底与高转化为大三角形ABC 的底与高即可求解.【详解】△ABC 的面积是40, △1402BC h ⨯⨯=, △D 、E 、F 分别是BC 、AC 、AD 的中点,△EF 平行且等于12CD ,CD BD =, 以BD 为底,设BDF 的高为h ',以EF 为底,DEF 的高为h '', △//BC EF ,△h h '''=, 11=22BDF DEF BDEF S S S BD h EF h ''+=⨯⨯+⨯⨯四边形, △F 是AD 的中点,△12h h '=, △111111=10515222422BDEF S BC h BC h ⨯⨯⨯+⨯⨯⨯=+=四边形, 故选:C .【点拨】本题主要考查的是三角形中线的性质求面积问题,熟练掌握三角形中线求面积的性质是解答本题的关键.9.B【分析】根据三角形中线把三角形分成面积相等的两部分可以得解.【详解】解:由题意可得:BEC BED DEC SS S =+=()12ABD ACD S S + =12ABC S =8, △142BEF BEC S S ==, 故选:B .【点拨】本题考查三角形中线的应用,熟练掌握三角形中线把三角形分成面积相等的两部分的性质是解题关键 .10.D【分析】由AD BC ⊥,结合线段BC (包括端点)共有4个已知点,从而可得线段AD 是三角形以,,,,,BE BD BC ED EC DC 为边上的高,于是可得答案.【详解】解:,AD BE ⊥AD ∴是ABE △的高,,AD BD ⊥AD ∴是ABD △的高,AD BC ⊥,AD ∴是ABC 的高,AD DE ⊥,AD ∴是ADE 的高,,AD CE ⊥AD ∴是ACE △的高,,AD CD ⊥AD ∴是ACD △的高,∴ 线段AD 是6个三角形的高故选:.D【点拨】本题考查的是三角形高的含义,分类讨论的数学思想,掌握以上要点是解题的关键. 11.D【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D 正确.故答案选D .【点拨】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.12.C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点拨】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.13.D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:△AD是BC上的中线,△12ABD ACD ABCS S S==△△△,△BE是△ABD中AD边上的中线,△12ABE BED ABDS S S==△△△,△14ABE ABCS S=△△,△△ABC的面积是40,△144010ABES,故选:D.【点拨】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.14.D【分析】根据三角形具有稳定性解答.用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是三角形具有稳定性, 故选:D .【点拨】此题考查三角形的稳定性,正确理解题意即可解决实际问题.15.B【分析】由点D 为BC 的中点,可得△ABD 、△ACD 与△ABC 的面积之比,继而由点E 为AD 的中点,可得△ABC 与△BCE 的面积之比,同理可得△BCE 和△EFB 的面积之比,据此可解答.【详解】解:如图,△D 为BC 的中点,△S △ABD = S △ACD = 12S △ABC , △E 为AD 的中点, △S △BDE =12 S △ABD ,S △CDE = 12S △ACD , △S △BDE + S △CDE = 12S △ABD + 12 S △ACD = 12 S △ABC , △S △BEC = 12 S △ABC , △F 为EC 的中点,△S △BEF = 12 S △BEC = 14S △ABC , △S △BEF =3,△S △ABC =12.故选:B .【点拨】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分.16.70【分析】利用角平分线的定义求得CBE FCB ∠∠、的度数,然后利用三角形外角的性质求解【详解】解:△BE 、CF 是ABC 的角平分线,80,60ABCACB ∠=∠=, △1140,3022CBE ABC FCB ACB ∠=∠=∠=∠=, △70CDE CBE FCB ∠=∠+∠=. 故答案为:70.【点拨】本题考查三角形外角的性质,掌握三角形外角等于不相邻的两个内角和是解题关键. 17.103【分析】 利用三角形面积公式得到12×AB ×CE =12×BC ×AD ,然后将已知条件代入求解即可. 【详解】解:△S △ABC =12×AB ×CE =12×BC ×AD , △CE =BC AD AB⨯=546⨯=103. 故答案为103. 【点拨】本题主要考查了三角形面积公式,利用三角形的面积公式列出方程是解答本题的关键. 18.114︒【分析】根据三角形外角性质解答即可.【详解】如图所示:由三角形外角性质可得:1245882︒︒∠=+︒=1328232114α︒︒︒︒=∠+=+=故答案为: 114︒.【点拨】此题考查三角形外角性质,关键是根据三角形外角性质解答.19.6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:△AD是BC上的中线,△ABC的面积是24,△S△ABD=S△ACD=12S△ABC=12,△BE是△ABD中AD边上的中线,△S△ABE=S△BED=12S△ABD=6,故答案为:6.【点拨】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.20.120°【分析】根据角平分线是定义得到△BOD=12△AOB,△BOE=12△COB,则△DOE=12△AOB+12△COB=12△AOC,然后把△DOE=60°代入计算即可.【详解】△OD平分△AOB,OE平分△COB,△△BOD1=2△AOB,△BOE=12△COB,△△DOE=12△AOB+12△COB=12△AOC,△△DOE=60°,△△AOC=260=120⨯.故答案为:120°【点拨】本题主要考查了角之间的和差关系及角平分线的定义.正确理解角的和差倍分关系是解题的关键.21.5.【分析】由三角形的面积为:25,求解,BC 再利用三角形的中线的概念求解CD 即可得到答案. 【详解】 解: AD 、AE 分别是边BC 上的中线与高,1,,2BD CD BC AE BC ∴==⊥ 1252BC AE ∴=, 5AE =,550BC ∴=,10BC ∴=,152CD BC ∴==, 故答案为:5.【点拨】本题考查的是三角形的中线,高的含义,三角形的面积,掌握以上知识是解题的关键. 22.2【分析】根据三角形的中线把三角形的面积分成相等的两部分直接进行求解即可.【详解】 解:AD 是ABC 的中线,ABC 的面积为8, ∴142ADC ABC S S ==△△, CE 是ADC 的中线, ∴122CDE ADC S S △△;故答案为:2.【点拨】本题主要考查三角形的中线,熟练掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.23.三角形具有稳定性【分析】三角形的形状是固定的,三角形的这个性质叫三角形的稳定性,利用三角形的稳定性即可解释.【详解】△三角形具有稳定性,△大桥钢架、索道支架等为了坚固,都采用三角形结构.这样做的根据是三角形的稳定性.故答案为:三角形的稳定性.【点拨】本题考查三角形的稳定性,掌握三角形是固定不变的,不会变形,即三角形的稳定性,生活中需要稳定的东西一般都制成三角形的形状.24.40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【详解】解:△△ABC和△ACB的角平分线交于点O,△△ACO=12△ACB,△CD平分△ACE,△△ACD=12△ACE,△△ACB+△ACE=180°,△△OCD=△ACO+△ACD=12(△ACB+△ACE)=12×180°=90°,△△BOC=130°,△△D=△BOC-△OCD=130°-90°=40°,故答案为:40°.【点拨】本题考查了三角形的外角性质,角平分线的定义,熟练掌握相关性质和概念正确推理计算是解题的关键.25.13【分析】直接根据三角形重心的性质进行解答即可.【详解】解:连接AG 并延长交BC 于D△点G 为△ABC 的重心,△AG=2DG ,△△DGC 的面积等于△ADC 面积的13, △DGB 的面积等于△ADB 面积的13, △△DGC 的面积+△DGB 的面积=13(△ADC 的面积+△ADB 的面积) △△BCG 的面积=13△ABC 的面积 △13∆∆=BGC ABC S S 故答案为:13【点拨】本题考查的是三角形的重心,熟知三角形的重心是三角形三边中线的交点是解答此题的关键.26.7【分析】连接111,,AB BC CA ,根据等底等高的三角形的面积相等求出1ABB △,11A AB △的面积,从而求出11A BB 的面积,同理可求11B CC 的面积,11A AC △的面积,然后相加即可得解.【详解】解:如下图,连接111,,AC B A C B ,△B 是线段1B C 的中点,△1B B BC =, ABC 和1AB B 等底同高,△根据等底同高的两个三角形面积相等可得11B AB ABC S S ==△△;同理可得:1111A B A AB B S S ==△△;△11111112A B B A B A AB B S S S =+=+=;同理可得112C CB S =△,112C AA S =△,△11111111122217A B C A BB C CB C AA ABC S S S S S =+++=+++=.故答案为:7.【点拨】本题考查了与三角形中线有关的面积计算,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.27.45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得△ABE +△EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,△AB △CD ,△△ABE =△4,△1=△2,△△BED=90°,△BED=△4+△EDC,△△ABE+△EDC=90°,△BF平分△ABE,DF平分△CDE,△△1+△3=12△ABE+12△EDC=45°,△△5=△2+△3,△△5=△1+△3=45°,即△BFD=45°,故答案为:45°.【点拨】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.28.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到△A=2△A1,同理可得△A1=2△A2,即△A=22△A2,因此找出规律.【详解】由三角形的外角性质得,△ACD=△A+△ABC,△A1CD=△A1+△A1BC,△△ABC的平分线与△ACD的平分线交于点A1,△△A1BC=12△ABC,△A1CD=12△ACD,△△A1+△A1BC=12(△A+△ABC)=12△A+△A1BC,△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△A,△△A=2△A1,△△A1=12△A,同理可得△A1=2△A2,△△A2=14△A,△△A=2n△A n,△△A n=(12)n△A=642n,△△A n的度数为整数,△n=6.故答案为:6.【点拨】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.29.10【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:△AE是△ABC的边BC上的中线,△CE=BE,又△AE=AE,△ACE的周长比△AEB的周长多2cm,△AC-AB=2cm,即AC-8=2cm,△AC=10cm,故答案为:10;【点拨】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.30.3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:△BD=DC ,△S △ABD =S △ADC =12×6=3(cm 2), △AE=DE ,△S △AEB =S △AEC =12×3=32(cm 2), △S △BEC =6-3=3(cm 2),△EF=FC ,△S △BEF =12×3=32(cm 2), 故答案为32. 【点拨】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.30【分析】根据部分三角形的高相等,由这些三角形面积与底边的比例关系可求三角形ABC 的面积.【详解】解:在BDG 和GDC 中,△2BD DC =,△2BDG GDC SS =,8BGD S =△, △4GDC S =,△点E 是AC 的中点,3AGE S = △ 3.GEC AGE SS == △84315BEC BDG GDC GEC SS S S =++=++=, △230.ABC BEC S S ==故答案为:30.【点拨】本题中由于部分三角形的高相等,可根据这些三角形面积的比等于底边的比例关系来求三角形ABC的面积是解题关键.32.4【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】解:△△ABC的三条中线AD、BE,CF交于点G,AG:GD=2:1,△AE=CE,△S△CGE=S△AGE=13S△ACF,S△BGF=S△BGD=13S△BCF,△S△ACF=S△BCF=12S△ABC=12×12=6,△S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,△S阴影=S△CGE+S△BGF=4.故阴影部分的面积为4.故答案为:4.【点拨】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.33.6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD =AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:△△ABC的两条中线AD、BE相交于点G,△2GD=AG,△S△ABG=2,△S△ABD=3,△AD是△ABC的中线,△S△ABC=2S△ABD=6.故答案为:6.此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.34.20212θ【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,可得ACD A ABC ∠=∠+∠,111ACD A A BC ∠=∠+∠,根据角平分线的定义可得112A BC ABC ∠=∠,112ACD ACD ∠=∠,然后整理得到112A A ∠=∠,同理可得2112A A ∠=∠,⋯从而判断出后一个角是前一个角的一半,然后表示出n A ∠即可.【详解】解:1A B 平分ABC ∠,1A C 平分ACD ∠,112A BC ABC ∴∠=∠,112ACA ACD ∠=∠, 111ACD A A BC ∠=∠+∠, ∴11122ACD A ABC ∠=∠+∠, 11()2A ACD ABC ∴∠=∠-∠, A ABC ACD ∠+∠=∠,A ACD ABC ∴∠=∠-∠,112A A ∴∠=∠, 1221122A A A ∠=∠=∠,⋯, 以此类推,12n n A A ∠=∠, 202120212021122A A θ∴∠=∠=. 故答案为:20202θ.本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的一半是解题的关键.35.4θ 2n θ 【分析】根据三角形的外角性质可得△ACD=△A+△ABC ,△A 1CD=△A 1+△A 1BC ,根据角平分线的定义可得△A 1BC=12△ABC ,△A 1CD=12△ACD ,整理得到△A 1=12△A ,同理可得△A 2=12△A 1,从而判断出后一个角是前一个角的12,然后表示出△A n 即可得答案. 【详解】△ACD ∠是ABC 的外角,△A 1CD 是△A 1BC 的外角,△△ACD=△A+△ABC ,△A 1CD=△A 1+△A 1BC ,△ABC ∠的平分线与ACD ∠的平分线交于点1A ,△△A 1BC=12△ABC ,△A 1CD=12△ACD , △△A 1=12△A , 同理可得△A 2=12△A 1=14△A , △△A=θ,△△A 2=4θ, 同理:△A 3=12△A 2=382θθ=, △A 4=12△A 3=4162θθ= ……△△A n =2n θ. 故答案为:4θ,2nθ 【点拨】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.36.8【分析】利用三角形的中线将三角形分成面积相等的两部分,S△ABD=S△ACD=12S△ABC,S△BDE=12S△ABD,S△ADF=12S△ADC,再得到S△BDE=14S△ABC,S△DEF=18S△ABC,所以S△ABC=83S阴影部分.【详解】解:△D为BC的中点,△12ABD ACD ABCS S S==△△△,△E,F分别是边,AD AC上的中点,△111,,222 BDE ABD ADF ADC DEF ADFS S S S S S===,△111,448 BDE ABC DEF ADC ABCS S S S S===,△113488BDE DEF ABC ABC ABCS S S S S S=+=+=阴影部分,△888333ABCS S⨯===阴影部分,故答案为:8.【点拨】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.三角形的中线将三角形分成面积相等的两部分.37.18【分析】连接BG,根据重心的性质得到△BGC的面积,再根据D点是BC的四等分点得到△GDC的面积,故可求解.【详解】连接BG,△G为ABC纸片的重心,△S△BGC=13S△ABC=8△D为BC边上的一个四等分点(BD CD)△S△DGC=34S△BGC=6△剪去GDC,则剩下纸片的面积为24-6=18故答案为:18.【点拨】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.38.2【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为BC=3BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE 的面积.【详解】解:△点D是AC的中点,△AD=12 AC,△S△ABC=12,△S△ABD=12S△ABC=12×12=6.△BC=3BE,△S△ABE=13S△ABC=13×12=4,△S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点拨】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.39.(1)212cm ;(2)作图见解析,245cm 【分析】(1)结合题意,根据三角形面积计算公式分析,即可得到答案;(2)过点A 作AD BC ⊥交BC 于点D ,结合三角形面积公式计算,即可得到答案.【详解】(1)△BE△AC , AC =8cm ,BE =3cm △211=831222ABC S AC BE cm ⨯=⨯⨯=△ (2)如图,过点A 作AD BC ⊥交BC 于点D△211=1222ABC S AC BE BC AD cm ⨯=⨯=△ △22122455ABC S AD BC ⨯===△cm . 【点拨】本题考查了三角形的知识;解题的关键是熟练掌握三角形高的性质,从而完成求解. 40.(1)55CBE ∠=︒;(2)25.F ∠=︒【分析】(1)由30,80,A ACB ∠=︒∠=︒ 利用三角形的外角的性质求解,CBD ∠ 再利用角平分线的含义求解CBE ∠即可得到答案;(2)先由三角形的外角的性质求解,CEB ∠ 再利用平行线的性质求解F ∠即可得到答案.【详解】解:(1)30,80,A ACB ∠=︒∠=︒3080110,CBD A ACB ∴∠=∠+∠=︒+︒=︒ BE 平分,CBD ∠1111055.22CBE CBD ∴∠=∠=⨯︒=︒ (2)80,55,ACB CBE ∠=︒∠=︒805525,CEB ACB CBE ∴∠=∠-∠=︒-︒=︒//,BE DF25.F CEB ∴∠=∠=︒【点拨】本题考查的是三角形的外角的性质,平行线的性质,掌握以上知识是解题的关键.41.(1)见解析;(2)60°.【分析】(1)连接DE ,根据垂直定义得到△ADC =△BDC =90°,根据直角三角形的性质可得DE =CE ,根据线段垂直平分线的性质可得结论;(2)根据等边对等角的性质和三角形外角的性质及角的和差倍数关系即可求证结论.【详解】(1)证明:连接DE ,△CD 是AB 边上的高,△△ADC =△BDC =90°,△BE 是AC 边上的中线,△AE =CE ,△DE =CE ,△BD =CE ,△BD =DE ,△点D 在BE 的垂直平分线上;(2)解:△DE =AE ,△△A =△ADE ,△△ADE =△DBE+△DEB ,△BD =DE ,△△DBE =△DEB ,△△A =△ADE =2△ABE ,△△BEC =△A+△ABE ,△△BEC=3△ABE,△△ABE=20°,△△BEC=60°.【点拨】本题考查线段垂直平分线的性质、直角三角形斜边中线定理、等边对等角的性质、三角形外角和性质,解题的关键是熟练掌握上述所学知识.42.(1)10°;(2)△DAE=12(△C−△B);(3)45°.【分析】(1)根据三角形的内角和定理可求得△BAC=80°,由角平分线的定义可得△CAD 的度数,利用三角形的高线可求△CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解△DAE、△B、△C的数量关系;(3)设△ACB=α,根据角平分线的定义得△CAG=12△EAC=12(90°−α)=45°−12α,△FCG=12△BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)△△B=40°,△C=60°,△BAC+△B+△C=180°,△△BAC=80°,△AD平分△BAC,△△CAD=△BAD=12△BAC=40°,△AE是△ABC的高,△△AEC=90°,△△C=60°,△△CAE=90°−60°=30°,△△DAE=△CAD−△CAE=10°;(2)△△BAC+△B+△C=180°,△△BAC=180°−△B−△C,△AD平分△BAC,。

三角形三边关系的常见应用

三角形三边关系的常见应用

专题一 三角形三边关系的常见应用一. 专题目标1.了解和掌握三角形的定义和三角形的三边关系 2.通过例题学习,学会用三边关系解决“能否构成三角形”类型的题目 3.通过例题学习,学会用三边关系解决“第求三边长或可能性”类型的题目 4.通过例题学习,学会用三边关系解决“三角形中和边长之间的关系”类型的题目 5.通过例题学习,学会用三边关系解决“绝对值化简”类型的题目 二. 专题环节三角形的三边关系:1. 在一个三角形中,任意两边之和大于第三边2. 在一个三角形中,任意两边之差小于第三边三角形的定义:由不在同一直线上的三条线段首尾依次连结所组成的图形叫做三角形。

一. 能否构成三角形例1,1、若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.分析:根据线段MN 平行于Y 轴,MN=M N y y -,分别讲M 点所在二次函数解析式和N 点所在AB 直线解析式求得代入即可得到MN 关于x 的函数关系式。

详解:设直线AB 的解析式为y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1 b =3.∴直线AB 的解析式为y 2=-x +3.∵MN ∥y 轴,M (x,-x 2+2x +3),N(x,-x +3)∴MN=M N y y -=-x 2+2x +3-(-x +3)=-x 2+3x=-(x-32)2 +94(0≤x ≤3)∵a=-1<0 ∴当x=32时,线段MN 最大值为94关键词:二次函数表示线段长一 图形问题:周长例2,如图,已知二次函数245y x x =--的图像与坐标轴交于点A (-1,0)和B (0,-5)对称轴存在一点P ,使得△ABP 的周长最小,请求出P 的坐标分析:二次函数中的周长最小值,往往是用利用轴对称求线段最值的办法来获得的:即:△ABP 周长为AB+BP+AP ,由于AB 是定线段,所以周长最小值转化为PA+PB 最小,所以可以做A 关于对称轴的对称点C ,连接BC,和对称轴的交点P .此时PA+PB 获得最小值BC , 此时只需要将对称轴的横坐标代入BC 所在直线解析式,就可以求出P 点坐标。

专题02_三角形的高、中线、角平分线_(知识点串讲)(解析版)

专题02_三角形的高、中线、角平分线_(知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线重点突破知识点一三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

知识点二三角形的中线概念:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形三条中线的交于一点,这一点叫做“三角形的重心”。

重心到顶点的距离是它到对边中点距离的2倍。

(选学)三角形的中线可以将三角形分为面积相等的两个小三角形。

知识点三三角形的角平分线概念:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

考查题型考查题型一画三角形的高典例1(2020·泉州市期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A【提示】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.变式1-1.(2018·梁平区期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个【答案】D【解析】试题解析:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选D.变式1-2.(2020·海淀区期末)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【答案】D【解析】详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.变式1-3.(2020·苏州市期中)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD【答案】B【解析】试题提示:根据图形,BE是△ABC中AC边上的高.故选B.变式1-4.(2019·杭州市期中)如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A.3 B.4 C.5 D.6【答案】D【解析】结合三角形高的定义可知,以AD为高的三角形有:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC,共6个.故选D考查题型二与三角形高有关的计算典例2.(2019·济南市期中)如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大【答案】C【提示】根据三角形的面积公式、角和线段大小的比较以及三角形高的定义进行解答即可.【详解】解:A、在直角三角形ABC中,S△ABC=12BC•AC,点B沿CB所在直线远离C点移动时BC增大,则该三角形的面积越大.故A正确;B、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、BC边上的高是AC,线段AC的长度是不变的.故C错误.D、如图,随着点B的移动,边AB的长度随之增大.故D正确;故选:C.【名师点拨】本题考查了三角形的面积,角和线段大小的比较以及三角形高的定义,解题时要注意“数形结合”数学思想的应用.变式2-1.(2020·毕节市期末)如图,△ABC 中,D ,E 分别是BC 上两点,且BD=DE=EC ,则图中面积相等的三角形有( )A .4对B .5对C .6对D .7对【答案】A 【提示】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD ,△ADE ,△ACE ,3个三角形的面积都相等,组成了3对,还有△ABE 和△ACD 的面积相等,共4对.故选A.【名师点拨】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用.变式2-2.(2020·龙岩市期中)如图,AD ,CE 是△ABC 的两条高,已知AD=10,CE=9,AB=12,则BC 的长是( )A .10B .10.8C .12D .15【答案】B 【解析】∵AD ,CE 是△ABC 的两条高,AD=10,CE=9,AB=12,∴△ABC 的面积=12×12×9=12BC ⋅AD=54, 即12BC ⋅10=54,解得BC=10.8.故选B.变式2-3.(2018·合肥市期中)如图所示,AD CE BF 、、是ABC ∆的三条高,654AB BC AD ===,,,则CE =( )A .245B .152C .103D .3【答案】C【提示】根据三角形的面积公式解答即可. 【详解】解:因为AD 、CE 、BF 是△ABC 的三条高,654AB BC AD ===,,,所以可得:12BC•AD=12AB•CE , 可得:CE=•BC AD AB =546⨯=103. 故选C .【名师点拨】此题考查三角形的面积,关键是根据同一三角形面积相等来提示.变式2-4.(2018·烟台市期末)如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则∠BPC 等于( )A .90°B .130°C .270°D .315°【答案】B 【详解】根据∠A=50°可得∠ABC+∠ACB=130°,根据CD ⊥AB ,BE ⊥AC 可得∠ABE=40°,∠ACD=40°,则∠PBC+∠PCB=130°-40°-40°=50°,则∠BPC=180°-50°=130°. 故选:B.变式2-5.(2019·荆门市期末)如图,三角形ABC ,∠BAC =90︒,AD 是三角形ABC 的高,图中相等的是( ).A .∠B =∠CB .∠BAD=∠BC .∠C =∠BAD D .∠DAC=∠C【答案】C 【提示】根据直角三角形的性质可得∠B +∠C =90︒,由AD 是三角形ABC 的高,可得∠BDA=∠ADC =90︒,再运用三角形内角和定理依次判断即可.【详解】∵∠BAC =90︒,∴∠B +∠C =90︒,故选项A 错误;∵AD 是三角形ABC 的高,∴∠BDA=90︒,∴∠BAD+∠B=90︒,故选项B 错误;∵∠BAC =90︒,∴∠BAD+ ∠DAC=90︒,又∵∠ADC =90︒,∴∠DAC+ ∠C=90︒,∴∠C=∠BAD,故选项C正确,选项D错误.故选C.【名师点拨】本题考查了三角形的高线以及三角形的内角和定理,属于基础题型.变式2-6.(2019·济南市期中)如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )A.12 B.14 C.16 D.18【答案】D【提示】连接AE和CD,要求三角形DEF的面积,可以分成三部分(△FCD+△FCE+△DCE)来分别计算,三角形ABC是一个重要的条件,抓住图形中与它同高的三角形进行提示计算,即可解得△DEF的面积.【详解】解:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S△FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.故选:D.【名师点拨】本题考查三角形面积及等积变换的知识,注意高相等时三角形的面积与底成正比的关系,并在实际问题中的灵活应用,有一定难度.考查题型三三角形中线有关的长度计算典例3.(2018·秦皇岛市期中)如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D .6【答案】A【解析】试题解析:∵AE 是△ABC 的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE-DE=4-2=2.故选A .变式3-1.(2019·肇庆市期中)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为( ) A .2cm B .3cm C .4cm D .6cm【答案】B【提示】根据三角形中线的定义可得BD=CD ,然后根据三角形的周长公式列式计算即可得解.【详解】解:∵AD 是△ABC 的中线,∴BD=DC ,∴△ABD 与△ACD 的周长之差=(AB+AD+BD )-(AC+AD+CD )=AB-AC ,∵△ABD 比△ACD 的周长大3cm ,∴AB 与AC 的差为3cm .故选B .【名师点拨】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC 是解题的关键.变式3-2.(2020·哈尔滨市期中)如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定【答案】C【解析】解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.变式3-3.(2019·临清市期末)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB 与AC的和为13cm,那么AC的长为()A.8cm B.9cm C.10cm D.11cm【答案】B【提示】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=13cm.易求AC的长度.【详解】∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9cm.故选B.【名师点拨】本题考查了三角形的中线,根据周长的差表示出AC-AB=5cm,是解题的关键.考查题型四三角形中线有关的面积计算典例4.(2020·渠县期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2B.1cm2C.0.5 cm2D.0.25 cm2【答案】B【提示】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEF ABC SS ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 1111,,,2222ABD ABC BDE ABD CDE ADC BEF BEC S S S S S S S S ∆∆∆∆∆∆∆∆∴==== 14BEF ABC S S ∆∆∴= ∵△ABC 的面积是4,∴S △BEF =1.故选:B【名师点拨】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S=12×底×高,得出等底同高的两个三角形的面积相等.变式4-1.(2018·鄂尔多斯市期中)如图,△ABC 的面积为12cm 2,点D 在BC 边上,E 是AD 的中点,则△BCE 的面积是( )A .4cm 2B .6cm 2C .8cm 2D .6cm 2【答案】B 【解析】∵E 是AD 的中点,∴S △BDE =12S △ABD ,S △DEC =12S △ADC , ∴△BCE 的面积=S △BDE +S △DEC =12×(S △ABD +S △ADC )=12×△ABC 的面积=6, 故选B .名师点拨:本题考查的是三角形的面积的计算,掌握三角形的一条中线把三角形分为面积相等的两部分是解题的关键.变式4-2.(2019·沧州市期末)如图,D ,E ,F 分别是边BC ,AD ,AC 上的中点,若S 阴影的面积为3,则△ABC 的面积是( )A .5B .6C .7D .8【答案】D【提示】利用三角形中线将三角形分成面积相等的两部分,111222ABD ACD ABC BDE ABD ADF ADC SS S S S S S ====,,,再得到1148BDE ABC DEF ABC S S S S ==,,所以83ABC S S =阴影部分即可得出. 【详解】∵D 为BC 的中点 ∴1122BDE ABD ADF ADC S S S S ==,,12DEF ADF S S =∴1148BDE ABC DEF ABC S S S S ==, ∴BDE S △+DEF S △=14ABC S +18ABC S =38ABC S ∴ABC S =83S 阴影部分=83×3=8 故选:D【名师点拨】三角形的中线将三角形分成两个面积相等的三角形,根据中线找出图中三角形的面积关系是解决本题的关键.变式4-3.(2019·温州市期中)如图,在△ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S △CEF =5,则△ABC 的面积为( )A .15B .20C .25D .30【答案】B 【提示】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F 是BE 的中点,S △CFE =S △CFB =5,∴S △CEB =S △CEF +S △CBF =10,∵E 是AD 的中点,∴S △AEB =S △DBE ,S △AEC =S △DEC ,∵S △CEB =S △BDE +S △CDE∴S △BDE +S △CDE =10∴S △AEB +S △AEC =10∴S △ABC =S △BDE +S △CDE +S △AEB +S △AEC =20故选:B.【名师点拨】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用. 考查题型五三角形重心的有关性质典例5.(2019·北京市期中)如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点【答案】D【提示】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【详解】解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选D.【名师点拨】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.变式5-1.(2019·泉州市期中)如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A.2 B.3 C.4 D.5【答案】C【提示】根据D、E分别是边BC,AC的中点,AD、BF相交于G,即可得出G为三角形的重心,利用重心的性质得出AG的长即可.【详解】∵D、E分别是边BC,AC的中点,AD、BF相交于G∴G为△ABC的重心∴AG=2DG∵AD=6∴AG=4故选C.【名师点拨】本题考查的是三角形的重心性质,能够判断出点G 是三角形的重心是解题的关键.考查题型六 三角形的角平分线典例6.(2019·滨州市期末)如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°【答案】A 【详解】根据题意可得,在△ABC 中,70,48︒︒∠=∠=C ABC ,则62︒∠=CAB ,又AD 为△ABC 的角平分线,1262231︒︒∴∠=∠=÷=又在△AEF 中,BE 为△ABC 的高∴90159359︒︒︒∠=-∠=∴∠=∠=EFA EFA变式6-1.(2019·宁德市期末)如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°【答案】C 【提示】由三角形的内角和定理,可求∠BAC=82°,又由AE 是∠BAC 的平分线,可求∠BAE=41°,再由AD 是BC 边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE ,问题得解.【详解】在△ABC 中,∵∠ABC=34°,∠ACB=64°, ∴∠BAC=180°−∠B−∠C=82°,∵AE 是∠BAC 的平分线,∴∠BAE=∠CAE=41°. 又∵AD 是BC 边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【名师点拨】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.变式6-2.(2019·信阳市期中)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.5【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.变式6-3.(2019·合肥市期中)如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE 等于()A.20°B.18°C.45°D.30°【答案】A【提示】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAD=14°,∠CAD=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故选:A .【名师点拨】此题主要考查了高线以及角平分线的性质,得出∠DAE 的度数是解题关键.变式6-4.(2020·泰兴市期中)如图,BE 、CF 是△ABC 的角平分线,∠A=50°,BE 、CF 相交于D ,则∠BDC 的度数是( )A .115°B .110°C .100°D .90°【答案】A【提示】由于∠A=50°,根据三角形的内角和定理,得∠ABC 与∠ACB 的度数和,再由角平分线的定义,得∠DBC+∠DCB 的度数,进而求出∠BDC 的度数.【详解】∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE 、CF 是△ABC 的角平分线,∴1122EBC ABC FCB ACB ∠=∠∠=∠,,∴()1652EBC FCB ABC ACB ∠+∠=⨯∠+∠=︒,∴∠BDC=180°﹣65°=115°,故选A .【名师点拨】考查三角形内角和定理以及角平分线的性质,熟练掌握角平分线的性质是解题的关键.变式6-5.(2019·西安市期末)如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为()A .135°B .120°C .90°D .60°【答案】B【提示】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.【详解】∵O到三边的距离相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【名师点拨】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档