第一讲空间几何体

合集下载

第1课空间几何体.doc

第1课空间几何体.doc

第1课空间几何体【考点阐释】1、棱柱、棱锥、棱台的几何特征,它们的形成特点及平移的概念,简单作图方法。

2、圆柱、圆锥、圆台、球及简单几何体的几何特征,它们的形成特点和画法。

3、简单儿何体的形状,善于将复杂的儿何体转化为简单的儿何体。

解决棱台的有关问题时,注意联系棱锥的性质;在画棱柱、棱锥、棱台时,注意做到实虚分明。

4、识别一些复杂几何体的组成情况,注意球与球而,多而体与旋转体的区别。

了解处理旋转体的有关问题一般作出轴截而,然后在轴截面中去寻找各元素的关系。

1、投影,中心投影和平行投影的相关概念,并注意区分中心投影和平行投影。

5、简单组合图形三视图的画法,由三视图想象实物模型,并画模型草图。

6、用斜二测画法画直观图,掌握作图规则,了解平面图形的直观图与空间图形直观图的区别与联系。

7、掌握简单儿何体的三视图、直观图之间的相互转化,了解正投影主要用于绘制三视图,中心投影主要用于绘画,斜投影主要用来作几何体的直观图。

【高考体验】一、课前热身(1)填表底而形状侧面形状对角面形状平行底面的截面与底面关系三棱柱四棱柱五棱柱(2)在RtAABC中,ZC=90°, a = 3,b = 4,则以直角边或斜边所在直线为轴可得旋转体,所得旋转体的体积的最小值是o(3)用斜二测画法画边长为4的正三角形的直观图,则该直观图的面积为o(4)有一•根长为6cm,底而半径为0.5cm的圆柱型铁管,用一•段铁丝在铁管上缠绕4 圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为cm。

(5)半径为4的球面上有A, B, C, D四点,且AB, AC, AD两两垂直,则\ABC.\ACD.\ADB面积之和的最大值为。

(6)已知正三棱锥V-ABC的主视图、俯视图如图所示,其中VA = 4,AC = 2jL 则该三棱锥的左视图的面积为主视图俯视图第(6)题二、回归教材1.棱柱(1)一般地,由一个平面多边形沿某一方向形成的空间儿何体叫做棱柱。

高中数学必修空间几何体知识点精选全文完整版

高中数学必修空间几何体知识点精选全文完整版

可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

第一章 空间几何体 教学课件 PPT(全)`

第一章 空间几何体   教学课件 PPT(全)`

时 栏
[学法指导]
目 开
通过直观感受空间物体,从实物中概括出旋转体与简单组合


体的结构特征,提高观察、讨论、归纳、概括的能力;感受
空间几何体存在于现实生活中,增强学习的积极性,培养空
间想象力.
填一填·知识要点、记下疑难点
1.以矩形的一边所在直线为旋转轴,其余三边旋转形成的

面所围成的旋转体叫做 圆柱 . 旋转轴 叫做圆柱的轴;
A.1个 B.2个 C.3个 D.4个
【提升总结】 棱柱的结构特征: ①有两个面互相平行; ②其余各面是四边形; ③每相邻两个四边形的公共边都互相平行.
例2 判断下列几何体是不是棱台. 【解析】都不是棱台
【提升总结】 判断一个几何体是否为棱台: ①各侧棱的延长线是否相交于一点; ②截面是否平行于原棱锥的底面.
探究点1 多面体和旋转体 观察下面的图片,这些图片中的物体具有怎
样的形状?日常生活中,我们把这些物体的形状 叫做什么?我们如何描述它们的形状?
其中(2),(5),(7),(9),(13),(14), (15),(16)具有相同的特点:组成几何体的每个 面都是平面图形,并且都是平面多边形.
多面体:一般地,我们把由若干个平面多边形围成 的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面. 相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
顶点 侧 棱
侧 面
底面
这个多边形面叫做棱锥的底面或底;有公共顶点的 各个三角形面叫做棱锥的侧面;各侧面的公共顶点 叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧 棱. 底面是三角形、四边形、五边形……的棱锥分别叫 做三棱锥、四棱锥、五棱锥……棱锥也用表示顶点 和底面各顶点的字母表示,如五棱锥S-ABCDE.

第1讲 空间几何体

第1讲 空间几何体

第1讲 空间几何体考情解读 (1)考查空间几何体表面积、体积的计算.(2)考查空间几何体的侧面展开图及简单的组合体问题.1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系2.球半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做球面,球面成的几何体叫做球体. 同一个平面截一个球,截面是圆面. 3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上,下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3(R 为球的半径).热点一 几何体的表面积和体积例1 (1)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为________.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积.思维启迪 (1)利用V (x )解析式观察对照;(2)作辅助线. (1)答案 ①解析 ①当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连结FI ,图1 图2由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI .∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x , FI =GH =2AH =22x ,∴五边形EFGHI 的面积S =FG ×GH +12FI ×EF 2-(12FI )2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,③④不对. ②当12≤x <1时,过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC 底面FGC 上的高h =22(1-x ), ∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间(12,1)上单调递增,∴V ′(x )<0,x ∈(12,1),∴函数V (x )=23(1-x )3在区间(12,1)上单调递减,且递减的速率越来越小,故②不对. 故由图象形状,可知V (x )的图象大致为①.(2)解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,得Rt △A ′AE ≌Rt △A ′AF ,∴A ′E =A ′F ,∴DE =DF ,∴AD 平分∠BAC , 又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′,而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2. 思维升华 (1)解几何体的表面积、体积,关键是确定几何体的相关数据;(2)求不规则几何体的体积,常用“割补”的思想.如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连结EF ,FB ,DE ,则几何体EFC 1-DBC 的体积为________.答案 66解析 如图,连结DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1-DBC 的体积为66. 热点二 多面体与球例2 如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为________.思维启迪 要求出球的体积就要求出球的半径,需要根据已知数据和空间位置关系确定球心的位置,由于△BCD 是直角三角形,根据直角三角形的性质:斜边的中点到三角形各个顶点的距离相等,只要再证明这个点到点A 的距离等于这个点到B ,C ,D 的距离即可确定球心,进而求出球的半径,根据体积公式求解即可. 答案32π 解析 如图,取BD 的中点E ,BC 的中点O , 连结AE ,OD ,EO ,AO .由题意,知AB =AD , 所以AE ⊥BD .由于平面ABD ⊥平面BCD , AE ⊥BD ,所以AE ⊥平面BCD .因为AB =AD =CD =1,BD =2, 所以AE =22,EO =12. 所以OA =32. 在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π(32)3=32π.思维升华 多面体与球接、切问题求解策略(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为___________________________________________________________________. 答案 73πa 2解析 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,设O ,O 1分别为下、上底面中心,且球心O 2为O 1O 的中点, 又AD =32a ,AO =33a ,OO 2=a 2,设球的半径为R ,则R 2=AO 22=13a 2+14a 2=712a 2. 所以S 球=4πR 2=4π×712a 2=73πa 2.热点三 几何体中的最值问题例3 (1)如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________cm.(2)已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为________________________________________________________________________.思维启迪 (1)几何体表面上两点间路线的最小值问题通常利用表面展开图.(2)将体积表示为未知棱的长度x 的函数. 答案 (1)13 (2)1解析 (1)将三棱柱沿AA 1剪开,可得一矩形,其长为6 cm ,宽为5 cm ,其最短路线为两相等线段之和,其长度等于2(52)2+62=13(cm).(2)如图所示,在四面体S -ABC 中,SB =SC =BC =AB =AC =2. 设SA =x ,点S 到面ABC 的距离为h ,则S △ABC =34×22= 3. V S -ABC =13×S △ABC ×h =33h .所以当h 取得最大值时,四面体的体积最大.取BC 的中点D ,连结SD ,则SD ⊥BC ,且SD =3,显然当SD ⊥平面ABC 时,h 取得最大值 3. 此时V S -ABC =33×3=1. 思维升华 (1)几何体表面的展开图是解决问题的有效方法,对柱体来说运用起来更方便.(2)函数方法是解决立体几何最值的基本方法,关键是选择影响目标的一个变量.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是________.答案 23c a 2-c 2-1解析 ∵AB +BD =AC +CD =2a >2c =AD , ∴B 、C 都在以AD 的中点O 为中心, 以A 、D 为焦点的两个椭圆上,∴B 、C 两点在椭圆两短轴端点时,到AD 距离最大,均为a 2-c 2,此时△BOC 为等腰三角形,且AD ⊥OC ,AD ⊥OB , ∴AD ⊥平面OBC .取BC 的中点E ,显然OE ⊥BC , OE max =a 2-c 2-1,∴(S △BOC )max =12×2×a 2-c 2-1=a 2-c 2-1.∴V D -ABC =V D -OBC +V A -OBC =13·OD ·S △OBC +13·OA ·S △OBC =13(OD +OA )S △OBC =13×2c a 2-c 2-1=23c a 2-c 2-1.1.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和. 2.在体积计算中都离不开空间几何体的“高”这个几何量(球除外),因此体积计算中的关键一环就是求出这个量.在计算这个几何量时要注意多面体中的“特征图”和旋转体中的轴截面.3.一些不规则的几何体,求其体积多采用分割或补形的方法,从而转化为规则的几何体,而补形又分为对称补形(即某些不规则的几何体,若存在对称性,则可考虑用对称的方法进行补形)、还原补形(即还台为锥)和联系补形(某些空间几何体虽然也是规则几何体,不过几何量不易求解,可根据其所具有的特征,联系其他常见几何体,作为这个规则几何体的一部分来求解). 4.长方体的外接球(1)长、宽、高分别为a 、b 、c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R ;(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .真题感悟1.(2013·课标全国Ⅱ)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________. 答案 24π解析 设正四棱锥的高为h ,则13×(3)2h =322,解得高h =322.则底面正方形的对角线长为2×3=6,所以OA =⎝⎛⎭⎫3222+⎝⎛⎭⎫622=6, 所以球的表面积为4π(6)2=24π.2.(2014·江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2, 即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32.押题精练1.如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.答案3解析 将直三棱柱沿侧棱A 1A 剪开,得平面图形如图所示,A ′C 1为定长,当A ,M ,C 1共线时AM +MC 1最短,此时AM =2,MC 1=2 2.又在原图形中AC 1=14,易知∠AMC 1=120°, ∴S △AMC 1=12×2×22×sin 120°= 3.2.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案 6π解析如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的体对角线长. 据题意⎩⎪⎨⎪⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎪⎨⎪⎧AB =2,AC =1,AD =3,∴长方体的体对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.(推荐时间:50分钟)一、填空题1.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积VB 1-BCO =________.答案 23解析 VB 1-BCO =13S △BCO ·h =13×12×2×2×2=23.2.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm ,则圆锥的母线长为________cm. 答案403解析 作出圆锥的轴截面如图,设SA =y ,O ′A ′=x ,利用平行线截线段成比例,得SA ′∶SA =O ′A ′∶OA , 即(y -10)∶y =x ∶4x ,解得y =403.所以圆锥的母线长为403.3.如图,用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的容积是________.答案3π3解析 卷出的圆锥筒的母线是原半圆的半径,圆锥筒的底面周长是原半圆的弧长,所以可求得圆锥底面的半径为1,高为3,则其容积大小为3π3. 4.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.答案 13解析 将三棱柱沿侧棱AA 1展开得如下平面(两周):因为正三棱柱底面边长为2 cm ,高为5 cm ,所以AA 1=5 cm ,AA ″=12 cm ,由勾股定理可得A 1A ″=13 cm ,即最短路线为13 cm.5.(2013·湖北)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 天池盆中水的形状是以上底半径10寸,下底半径6寸,高9寸的圆台, ∴平均降雨量=13×9×π(102+10×6+62)π×142=3.6.(2014·大纲全国)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为____. 答案81π4解析 如图,设球心为O ,半径为r , 则Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.7.如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案 1∶24解析 V 1=12VA 1-ADE =18VA 1-ABC =124V 2,∴V 1∶V 2=1∶24.8.如图,侧棱长为23的正三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =40°,过A 作截面△AEF ,则截面△AEF 的周长的最小值为____________.答案 6解析 沿着侧棱VA 把正三棱锥V -ABC 展开在一个平面内,如图.则AA ′即为截面△AEF 周长的最小值,且∠AVA ′=3×40°=120°. 在△VAA ′中,由余弦定理可得AA ′=6,故答案为6.9.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为______.答案 16解析 VD 1-EDF =VF -DD 1E =13S △D 1DE ·AB=13×12×1×1×1=16. 10.已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球的表面积等于________. 答案 16π解析 设矩形的两邻边长度分别为a ,b ,则ab =8,此时2a +2b ≥4ab =82,当且仅当a =b =22时等号成立,此时四边形ABCD 为正方形,其中心到四个顶点的距离相等,均为2,无论怎样折叠,其四个顶点都在一个半径为2的球面上,这个球的表面积是4π×22=16π. 二、解答题11.如图,在四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求四棱锥P -ABCD 的体积.(1)证明 因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE .又因为△P AB 是等边三角形,E 是线段AB 的中点, 所以PE ⊥AB .因为AD ∩AB =A ,所以PE ⊥平面ABCD . 又CD ⊂平面ABCD ,所以PE ⊥CD . (2)解 由(1)知PE ⊥平面ABCD , 所以PE 是四棱锥P -ABCD 的高. 由DA =AB =2,BC =12AD ,可得BC =1.因为△P AB 是等边三角形, 所以可求得PE = 3.所以V P -ABCD =13S 四边形ABCD ·PE =13×12×(1+2)×2×3= 3.12.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB ,∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E , ∴EF ⊥平面PBE ,又PB ⊂平面PBE , ∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝ ⎛⎭⎪⎫x +y 22=1.当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2. 由(1)知EF ⊥平面PBE , ∴平面PBE ⊥平面EFCB ,在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB . 即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×12=1.S EFCB =12×(2+4)×2=6.∴V P —BCFE =13×6×1=2.。

第1讲 空几何体

第1讲 空几何体

第1讲空间几何体1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.空间几何体的三视图(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线.3.直观图的斜二测画法空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 4. 空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3.考点一 三视图与直观图的转化例1(1)已知三棱柱的正视图与俯视图如图,那么该三棱锥的侧视图可能为()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()(1) 一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()(2) 某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()考点二几何体的表面积及体积例2(1)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.8 B.6 2 C.10 D.8 2(2) 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________ cm3.(1) 一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π(2) 一个几何体的三视图如图所示,则该几何体的表面积为________.考点三多面体与球例3如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体ABCD,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一个球面上,则该球的体积为()A.32πB.3π C.23πD.2π(1)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是()A.12πB.24πC.32πD.48π(2)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.4.长方体的外接球(1)长、宽、高分别为a、b、c的长方体的体对角线长等于外接球的直径,即a2+b2+c2=2R;(2)棱长为a的正方体的体对角线长等于外接球的直径,即3a=2R.1.从一个正方体中截去部分几何体,得到一个以原正方体的部分顶点为顶点的凸多面体,其三视图如图,则该几何体体积的值为()A.5 2 B.6 2C.9 D.102.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为22,32,62,则三棱锥A-BCD的外接球体积为()A.6πB.26πC.36πD.46π(推荐时间:60分钟)一、选择题1.一梯形的直观图是一个如右图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为()A.2 B. 2C.2 2 D.42.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()A.32B.1 C.2+12 D. 23.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π4.一个几何体的三视图如图所示,则这个几何体的体积为()A.3(8+π)6 B.3(8+2π)6 C.3(6+π)6 D.3(9+2π)65.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 5 B.30+6 5C.56+12 5 D.60+12 56.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为()A.33π B.36π C.32π D.3π7.已知正方形ABCD的边长为22,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如右图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是()二、填空题8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.9.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F -ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.10.已知矩形ABCD的面积为8,当矩形周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的表面积等于________.11.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.三、解答题12. 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P —ABCD 的正视 图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D —PBC 的体积.13.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.。

第一章空间几何体.ppt

第一章空间几何体.ppt

题型三
例3
多面体的侧面(表面)展开图
(本题满分10分)根据下图所给
的几何体的表面展开图, 画出立体图形.
【思路点拨】使图中相同的点重合, 沿虚线 折叠成立体图形. 【解】(1)ABCD为四边形, 其余面为共顶点P 的三角形, 符合棱锥特征. 是以ABCD为底面, P为顶点的四棱锥.3分
(2)共有六个正四边形, 符合棱柱特征. 是以
取AA1的中点D, 连接VD,
则VD⊥AA1, ∠AVD=60°.
在Rt△VAD中, AD=VA· sin60°=3, ∴AA1=2AD=6, 即△AEF周长的最小值为6.
方法感悟
方法技巧
对几何体的识别与判断, 要紧扣其定义和
特征. 如例1、例2. 2. 对于几何体的表面展开图, 为了解题的方 便, 常常给多面体的顶点标上字母, 先把多面 体的底面画出来, 然后依次画出各侧面, 便可
为棱锥, 排除C.对于D, 只要这个平面与底面
平行就能够得到两个棱柱.
题型二
例2
多面体的识别 根据下列关于几何体的描述,
说出几何体的名称: (1)由八个面围成, 其中两个面是互相平 行且全等的正六边形, 其他各面都是矩 形; (2)由五个面围成, 其中一个面是正方形, 其他各面都是有一个公共顶点的全等
变式训练 2. 如图, 四棱柱ABCD-A1B1C1D1被平面 BCEF所截得的两部分分别是怎样的几何体? 若几何体ABCD-A1FED1是棱柱, 指出它的 底面和侧面.
解: 所截两部分分别是四棱柱和三棱柱. 几何
体ABCD-A1FED1是四棱柱, 它的底面是平 面ABFA1和平面DCED1, 侧面为平面ABCD, 平面BCEF, 平面ADD1A1和平面A1D1EF, 侧 面均为平行四边形.

专题4 第1讲 空间几何体(教师版)

专题4   第1讲 空间几何体(教师版)

第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。

2.2第一章 空间几何体

2.2第一章    空间几何体

第一章 空间几何体(一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a 22的正方体问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲空间几何体
一、多面体的结构特征
1.棱柱的侧棱都互相平行,上下底面是全等的多边形.
2.棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.
3.棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.
(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形.侧棱垂直于底面,侧面是矩形.
(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥,特别地,各棱均相等的正三棱锥叫正四面体.反之,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.
二、旋转体
1、形成
几何

旋转图形旋转轴
圆柱矩形任一边所在的直线
圆锥直角三角

任一直角边所在的直
线
圆台直角梯形垂直于底边的腰所在
的直线
球半圆直径所在的直线2、旋转体的表(侧)面积
名称侧面积表面积圆柱(底面半径2πrl 2πr(l+r)
r ,母线长l ) 圆锥(底面半径
r ,母线长l ) πrl πr (l +r )
圆台(上、下底面
半径r ,母线长l )
π(r 1+r 2)l π(r 1+r 2)l +π(r 2
1+r 22)
球(半径为R )
4πR 2 3、 空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1).V 柱体=Sh .
(2).V 锥体=1
3Sh .
(3).V 台体=1
3h (S +SS ′+S ′).
(4).V 球=4
3πR 3(球半径是R ).
求几何体体积的两种重要方法
1.割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决. 2.等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.
三、空间几何体的三视图 1.三视图的名称
几何体的三视图包括:正视图、侧视图、俯视图. 2.三视图的画法
①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.
四、空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其规则是
1.原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.
2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中长度为原来的一半.
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:
S 直观图=2
4S 原图形,S 原图形=22S 直观图.
基础自测
1.(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )
A.3
2 B .1 C.2+12 D. 2 【解析】 由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2. 【答案】 D
2.(2013·陕西高考)某几何体的三视图如图7-2-2所示,则其表面积为________.
图7-2-2
【解析】 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面
面积与截面面积的和,即1
2×4π+π=3π.
【答案】 3π 3.(2013·辽宁高考)某几何体的三视图如图7-2-3所示,则该几何体的体积是________.
图7-2-3
【解析】 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为 16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为 16π-16.
考点一 空间几何体的三视图
例 (2013·四川高考)一个几何体的三视图如图7-1-4所示,则该几何体的直观图可以是( )
图7-1-4
【解析】由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D.
【答案】 D
空间几何体的三视图问题的求解关键
(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.
(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.
考点二空间几何体的表面积与体积
例1、如图7-2-4是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()
图7-2-4
A.9πB.10πC.11πD.12π
【尝试解答】从题中三视图可以看出该几何体是由一个球和一个圆柱体组合而成的,其表面积为S=4π×12+π×12×2+2π×1×3=12π.故选D.
【答案】D
方法与技巧 1.解答本题的关键是根据三视图得到几何体的直观图,弄清几何体的组成.
2.在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.
3.以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.
2、[2014·辽宁卷] 某几何体三视图如图1-2所示,则该几何体的体积为( )
图1-2
A .8-π4
B .8-π
2 C .8-π D .8-2π
答案:C [解析] 根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的
四分之一后余下的部分,故该几何体体积V =23
-12×π×12×2=8-π.
跟踪练习 [2014·天津卷] 一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m 3.
答案:20π
3 [解析] 由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =
π×12×4+13π×22
×2=20π3.
考点三 多面体与球
例 [2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.81π4 B .16π C .9π D.27π4
10.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =1
2AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R .又因为△AOE 为直角三角形,所以
OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =9
4,所以该球的表面积S =4πR 2=4π⎝ ⎛⎭

⎫942
=81π4.
跟踪练习(2010新课标全国,5分)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )
A .πa 2 B.73πa 2 C.11
3πa 2 D .5πa 2 解析:三棱柱如图所示,由题意可知:
球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处, 连接O
1B 、O 1O 、OB ,其中OB 即为球的半径R ,
由题意知:O 1B =23×3a 2=3a
3,
所以半径R 2=(a 2)2+(3a 3)2=7a
2
12,
所以球的表面积是S =4πR 2
=7πa 2
3.
答案:B。

相关文档
最新文档