勾股定理教案
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
高中数学勾股定理教案

高中数学勾股定理教案
教学内容:勾股定理
教学目标:
1. 了解勾股定理的定义和原理
2. 掌握勾股定理的应用方法
3. 能够熟练使用勾股定理解决实际问题
教学重点:
1. 勾股定理的概念和原理
2. 勾股定理的推导方法
3. 勾股定理的应用
教学步骤:
一、导入(5分钟)
1. 引入勾股定理的概念,引导学生思考勾股定理的应用场景。
二、讲解(15分钟)
1. 讲解勾股定理的定义和原理,说明直角三角形中,直角边的平方等于两个直角边的平方和。
2. 示范勾股定理的推导方法,引导学生理解勾股定理的证明过程。
三、练习(20分钟)
1. 给学生分发练习题,让学生自行解题,并互相讨论交流。
2. 指导学生如何应用勾股定理解决实际问题,如测量建筑物的高度、距离等。
四、总结(10分钟)
1. 回顾勾股定理的定义和应用方法,强化学生对勾股定理的理解。
2. 提醒学生在日常学习和生活中多加应用勾股定理,提高解决问题的能力和应用能力。
五、作业布置(5分钟)
1. 布置勾股定理相关的作业,巩固学习内容。
2. 提醒学生课后多进行练习,加深对勾股定理的理解和掌握。
教学反思:
通过此次教学,学生对勾股定理的认识得到了加深,掌握了勾股定理的应用方法,提高了解决实际问题的能力。
下一步需要继续强化学生对勾股定理的理解和实际运用能力,拓展勾股定理的应用场景,激发学生对数学的兴趣。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
《勾股定理》教案

17。
1 勾股定理教学目标:知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.过程与方法1.经历用拼图的方法验证勾股定理,•培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,•借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点:经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点:经历用不同的拼图方法证明勾股定理.教具准备:方格纸、4个全等的三角形,多媒体课件演示.教学过程:一、知识回顾(活动1)上节课我们已经认识的勾股定理,请大家说说勾股定理的内容。
二、探索研究(活动2)我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c.求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明.其间让充分放手让学生自主完成探究过(2)程,进而得出结论。
⑵拼成如图所示,其等量关系为:1ab+(b-a)2=c2,化简可证。
4S△+S小正=S大正 4×2⑶发挥学生的想象能力拼出不同的图形,进行证明.⑷勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手.活动3图(3)这个图案和3世纪我国汉代的赵爽在注解《周髀算经》时给出的图案一模一样,人们称它为“赵爽弦图”,赵爽利用弦图证明命题1•(即勾股定理)的基本思路如下,如图(7)。
把边长为a,b的两个正方形连在一起,它的面积为a2+b2,另一方面这个图形由四个全等的直角三角形和一个正方形组成.把图(7)中左、右两个三角形移到图(9)所示的位置,就会形成一个c为边长的正方形.议一议:观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2.设计意图:前面已经讨论了直角三角形三边满足的关系,那么锐角三角形或钝角三角形三边是否也满足这一关系呢?学生通过数格子的方法可⑵若D为斜边中点,则斜边中线;⑶若∠B=30°,则∠B的对边和斜边: ;⑷三边之间的关系: .3、△ABC的三边a、b、c,若满足b2= a2+c2,则 =90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B 是角。
初中数学《勾股定理》整章教案共6个

三、例题讲解例1:如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?学生理解勾股定理的逆定理应用四、巩固新知师巡视学生做练习后评讲1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
完成练习,指名回答板书五、归纳小结教师强调,今天,我们共同探究了利用勾股定理的逆定理来求角度、求边长以及生活中的实际问题,课下要反复思索理解。
学生梳理并理解勾股定理的逆定理解决实际问题六、布置作业课本P34第4、5题板书设计17.2 勾股定理的逆定理(二)1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题教学反思工作单位姓名课题第十九章《勾股定理》小结复习课时第15课时教学目标1.复习勾股定理和勾股定理的逆定理2.能进行相应的计算,并能在实际问题中应用3.灵活应用勾股定理及逆定理解决实际问题重点难点重点:能熟练运用勾股定理进行计算和证明。
难点:灵活应用勾股定理及逆定理解决实际问题。
教法学法归纳法教学准备多媒体课件教学步骤教师活动学生活动二次备课一、导入新课问题 1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想?学生回答问题,叙述勾股定理及其逆定理二、巩固旧知一、理清脉络、构建框架知识1:已知两边求第三边知识2:利用方程求线段长知识3:判断一个三角形是否是直角三角形学生按知识点回顾知识,点名回答问题。
数学勾股定理教案优秀7篇

数学勾股定理教案优秀7篇篇一:《勾股定理》优秀教案篇一一、学生学问状况分析本节将利用勾股定理及其逆定理解决一些详细的实际问题,其中须要学生了解空间图形、对一些空间图形进行绽开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了肯定的相识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的学问基础和活动阅历基础。
二、教学任务分析本节是义务教化课程标准北师大版试验教科书八年级(上)第一章《勾股定理》第3节。
详细内容是运用勾股定理及其逆定理解决简洁的实际问题。
当然,在这些详细问题的解决过程中,须要经验几何图形的抽象过程,须要借助视察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题实力和应用意识;一些探究活动详细肯定的难度,须要学生相互间的合作沟通,有助于发展学生合作沟通的实力。
三、本节课的教学目标是:1、通过视察图形,探究图形间的关系,发展学生的空间观念。
2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的实力及渗透数学建模的思想。
3、在利用勾股定理解决实际问题的过程中,体验数学学习的好用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。
四、教法学法1、教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参加意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过学问再现,孕育教学过程;(2)从学生活动动身,顺势教学过程;(3)利用探究探讨手段,通过思维深化,领悟教学过程。
2、课前打算教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。
五、教学过程分析本节课设计了七个环节、第一环节:情境引入;其次环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:沟通小结;第七环节:布置作业。
八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。
它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。
2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。
通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A′
A 图1
O
第 5 页 共 6 页
20.如图,有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边 AC 沿直线 AD 折叠,使它 落在斜边 AB 上,且与 AE 重合,你能求出 CD 的长吗?
C D
B
E
A
21.已知:如图,△ABC中,AB>AC,AD是BC边上的高. 求证:AB2-AC2=BC(BD-DC).
第 3 页 共 6 页
3.作法:在数轴上找到点 A,使 OA=_____,作直线 l 垂直于 OA,在 l 上取点 B,使 AB=_____,以原 点 O 为圆心,以 OB 为半径作弧,弧与数轴的交点 C 即为表示 13 的点。
4.在数轴上画出表示 17 的点?(尺规作图)
二.课堂检测 1.已知直角三角形中 30°角所对的直角边长是 2 3 cm,则另一条直角边的长是( B. 4 3 cm C. 6cm D. 6 3 cm ) )A. 4cm
教学重点 教学难点 设计意图
【勾股定理】 一. 勾股定理的作用: (1)已知直角三角形的两边,求第三边; (2)在数轴上作出表示 n (n 为正整数)的点. 1 正方形 A、B 、C 的面积有什么数量关系? 2 以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么 关系?
B
C
A
7.一根 32 厘米的绳子被折成如图所示的形状钉在 P、Q 两点, PQ=16 厘米,且 RP⊥PQ,则 RQ= 厘米。
R
P
Q
【利用勾股定理在数轴上表示无理数】 1.我们知道数轴上的点有的表示有理数,有的表示无理数,怎么在数轴上画出表示 13 的点。 2.分析:如果能画出长为_______的线段,就能在数轴上画出表示 13 的点。容易知道,长为 2 的线 段是两条直角边都为______的直角边的斜边。 长为 13 的线段能是直角边为正整数的直角三角形的斜 边吗? 利用勾股定理,可以发现,长为 13 的线段是直角边为正整数_____、 ______的直角三角形的斜边。
)
D.60/13 cm
ቤተ መጻሕፍቲ ባይዱ
第 4 页 共 6 页
11.有两棵树,一棵高 6 米,另一棵高 3 米,两树相距 4 米.一只小鸟从一棵树的树梢飞到另一棵树 的树梢,至少飞了___米. 12.一座桥横跨一江,桥长 12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后, 发现已偏离桥南头 5m,则小船实际行驶___m. 13.一个三角形的三边的比为 5∶12∶13,它的周长为 60cm,则它的面积是___. 14.已知直角三角形一个锐角 60°,斜边长为 1,那么此直角三角形的周长是 .
22.如图 22,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部 8m 处,已知 旗杆原长 16m,你能求出旗杆在离底部什么位置断裂的吗?
8m 图 22
本节课教学计划完成情况:□照常完成 □提前完成 □延后完成,原因_________________________________ 学生的接受程度:□完全能接受 □部分能接受 □不能接受,原因________________________________________ 课后记 学生的课堂表现:□很积极 □比较积极 □一般 □不积极,原因___________________________________________ 学生上次作业完成情况:完成数量____% 已完成部分的质量____分(5 分制) 存在问题_______________________________________ 配合需求:家 长________________________________________________
c
的
a a b c b a
右边 S=_______________ 左边和右边面积相等,即化简可得。 方法三: 以 a、b 为直角边,以 c 为斜边作两个全等的直角三
b
c c a b b
c
b
a
a
b
角
1 形,则每个直角三角形的面积等于 ab. 把这两个直角三角形拼成如图所示形状,使 A、E、B 三点 2
3m
“路”
4m
4. 如图,学校有一块长方形花铺, 有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他 们仅仅少走了 步路(假设 2 步为 1 米) ,却踩伤了花草. ,面积为 . .
5. 等腰△ABC 的腰长 AB=10cm,底 BC 为 16cm,则底边上的高为 6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 7.已知△ABC 中,∠A= ∠B= ∠C,则它的三条边之比为( ) . A.1:1:1 B.1:1 :2 C.1:2 :3 D.1:4:1
8.下列各组线段中,能够组成直角三角形的是( ) . A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5
9.若等边△ABC 的边长为 2cm,那么△ABC 的面积为( ) . A. 3 cm
2
B.2 cm
2
C.3 cm
2
D.4cm
2
10.直角三角形的两直角边分别为 5cm,12cm,其中斜边上的高为( A.6cm B.8.5cm C.30/13cm
15.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出 1 尺,斜放就恰 好等于门的对角线长,已知门宽 4 尺.求竹竿高与门高. 16.如图:在一个高 6 米,长 10 米的楼梯表面铺地毯, 则该地毯的长度至少是 米。
17.已知:如图,四边形 ABCD 中,AD∥BC,AD⊥DC, AB⊥AC,∠B=60°,CD=1cm,求 BC 的长。
A
教学 过程
B
C
二.猜想指教哦三角形的边的关系 方法一; 如图,让学生剪 4 个全等的直角三角形,拼成如图图形,利用面积证明。 S 正方形=_______________=____________________
D C
b A c
a
B
第 1 页 共 6 页
方法二; 已知:在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边为 a、b、c。 求证:a2+b2=c2。 分析:左右两边的正方形边长相等,则两个正方形 b a 面积相等。 a 左边 S=______________ c
O C B 图2 D
B
O
O
D
2 题图 6. 如图,原计划从 A 地经 C 地到 B 地修建一条高速公路,后因技术攻关,可以打隧道由 A 地到 B 地直接修建, 已知高速公路一公里造价为 300 万元, 隧道总长为 2 公里, 隧道造价为 500 万元, AC=80 公里,BC=60 公里,则改建后可省工程费用是多少?
E
B
1 2 c. 2
又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD∥BC. ∴ ABCD 是一个直角梯形,它的面积等于_________________ 归纳:勾股定理的具体内容是:直角三角形的两直角边的平方和等于斜边的平方。 三.随堂练习 1.如图,直角△ABC 的主要性质是:∠C=90°, (用几何语言表示) ⑴两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边: (3)三边之间的关系: 四.课堂检测 1.在 Rt△ABC 中,∠C=90° ①若 a=5,b=12,则 c=___________; ②若 a=15,c=25,则 b=___________; ③若 a∶b=3∶4,c=10 则 SRt△ABC =________。 2.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为__________。 3.已知一个 Rt△的两边长分别为 3 和 4,则第三边长的平方是( A、25 B、14 C、7 ) ; ;
在一条直线上. ∵ RtΔ EAD ≌ RtΔ CBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ Δ DEC 是一个等腰直角三角形, 它的面积等于
C D a A c b c b a
2.△ABC 中,AB=15,AC=13,高 AD=12,则△ABC 的周长为( A.42 B.32 C.42 或 32
D.37 或 33
3.一架 25 分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端 7 分米.如果梯子的顶端沿墙 下滑 4 分米,那么梯足将滑动( A. 9 分米 B. 15 分米 ) C. 5 分米 D. 8 分米
B
A
D
C
18.已知:如图△ABC 中,AB=AC=10,BC=16,点 D 在 BC 上,DA⊥CA 于 A. 求:BD 的长.
19.如图 1 所示,梯子 AB 靠在墙上,梯子的底端 A 到墙根 O 的距离为 2m,梯子的顶端 B 到地面的 距离为 7m.现将梯子的底端 A 向外移动到 A′,使梯子的底端 A′到墙根 O 的距离为 3m,同时梯子的顶 端 B 下降到 B′,那么 BB′也等于 1m 吗? B B′
学管师________________________________________________ 提交时 间 教研组长审批 注:此表用作每次课的教学设计方案
第 6 页 共 6 页
教研主任审批
C A D
B
D、7 或 25 )
4.等腰三角形底边上的高为 8,周长为 32,则三角形的面积为( A、56 B、48 C、40
第 2 页 共 6 页
D、32
5:如图 2,一个 3 米长的梯子 AB,斜着靠在竖直的墙 AO 上,这时 AO 的距离为 2.5 米. ①求梯子的底端 B 距墙角 O 多少米? ②如果梯的顶端 A 沿墙下滑 0.5 米至 C. 算一算,底端滑动的距离近似值(结果保留两位小数) . A A C C