matlab数据拟合
matlab麦夸特法数据拟合

MATLAB麦夸特法数据拟合一、背景介绍MATLAB是一种强大的数学分析工具,广泛应用于科学计算、工程设计和数据分析等领域。
在数据拟合方面,MATLAB提供了多种方法来处理实验数据,其中麦夸特法(Marquardt Method)是一种常用的非线性最小二乘拟合方法。
通过使用麦夸特法,我们可以将实验数据与理论模型进行拟合,找到最优的参数,从而更好地理解数据背后的规律。
二、麦夸特法原理1. 麦夸特法是一种迭代算法,用于最小化误差函数,其核心思想是通过不断调整参数的值,使得误差函数的值逐渐趋近于最小值。
2. 在每一次迭代中,麦夸特法将误差函数在当前参数值处进行线性化,然后求解线性化函数的最小二乘解,从而得到新的参数值。
3. 通过不断迭代,可以逐步逼近最优的参数值,使得拟合效果得到改善。
三、使用MATLAB进行麦夸特法数据拟合的步骤1. 准备实验数据:首先需要准备好实验数据,将实验数据存储在MATLAB中的数组或矩阵中。
2. 构建拟合模型:根据实验数据的特点和拟合的需求,选择合适的拟合模型,并用函数的形式表示出来。
3. 初值设定:对拟合模型的参数进行初值设定,这些初值将作为麦夸特法的起始点。
4. 调用麦夸特法函数:MATLAB提供了专门的函数来实现麦夸特法数据拟合,例如“lsqnonlin”函数。
需要将实验数据、拟合模型、初值等作为输入参数传入该函数。
5. 获取拟合参数:调用麦夸特法函数后,可以得到拟合的最优参数值,以及拟合的误差值。
6. 拟合效果评估:通过对比实验数据与拟合模型预测值的差异,评估拟合效果的好坏。
四、实例演示假设我们有以下实验数据,需要使用麦夸特法进行数据拟合:x = [1, 2, 3, 4, 5];y = [2.1, 3.9, 6.2, 8.3, 10.5];我们选择使用二次多项式模型进行拟合,即y = ax^2 + bx + c。
接下来,我们将演示如何使用MATLAB进行数据拟合。
步骤1:准备实验数据x = [1, 2, 3, 4, 5];y = [2.1, 3.9, 6.2, 8.3, 10.5];步骤2:构建拟合模型fun = (p,x) p(1)*x.^2 + p(2)*x + p(3);步骤3:初值设定p0 = [1, 1, 1];步骤4:调用麦夸特法函数p = lsqnonlin((p) fun(p,x) - y, p0);步骤5:获取拟合参数a = p(1);b = p(2);c = p(3);步骤6:拟合效果评估x_fit = linspace(1,5,100);y_fit = a*x_fit.^2 + b*x_fit + c;plot(x, y, 'o', x_fit, y_fit);通过以上MATLAB代码演示,我们成功使用麦夸特法对实验数据进行了二次多项式拟合,并获得了最优的拟合参数。
MATLAB函数拟合指令MATLAB拟合函数使用说明

MATLAB函数拟合指令MATLAB拟合函数使用说明一维数据拟合:在MATLAB中,可以使用polyfit和fit函数进行一维数据的拟合。
1. polyfit函数:polyfit函数用于将数据集拟合到一个多项式模型。
语法如下:```[p, S] = polyfit(x, y, n)```其中,x和y表示数据集的x轴和y轴值,n是一个整数,表示拟合的多项式阶数。
p是一个包含多项式系数的向量,S是一个结构体,包含了拟合误差和其他信息。
2. fit函数:fit函数用于将数据集拟合到自定义的非线性函数模型。
语法如下:```f = fit(x, y, model)```其中,x和y表示数据集的x轴和y轴值,model表示自定义的非线性函数模型。
可以使用fittype函数创建一个函数模型对象,例如:```model = fittype('a * exp(b * x)');```然后,将这个函数模型传递给fit函数即可。
多维数据拟合:在MATLAB中,可以使用fit函数进行多维数据的拟合。
1. fit函数:fit函数也可以用于多维数据的拟合,只需将数据集转换为table格式。
语法如下:```f = fit(x, y, model)```其中,x和y表示多维数据集的自变量和因变量,model表示自定义的非线性函数模型。
自定义函数模型的建立:除了使用内置的多项式模型和其他简单模型,也可以自定义非线性函数模型。
需要定义一个函数句柄,例如:``````然后,将这个函数句柄传递给fittype函数,创建一个函数模型对象,例如:```model = fittype(func);```最后将这个函数模型对象传递给fit函数。
拟合结果的可视化:拟合结果可以通过绘制原始数据和拟合函数来进行可视化。
可以使用plot函数绘制原始数据点,使用plot函数、plotfit函数或者ezplot函数绘制拟合函数曲线。
总结:MATLAB提供了多种函数拟合方法,可以用于一维和多维数据拟合。
matlab数据拟合,有图有例子,一看就会

Matlab CFTool使用简介:单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[你的X轴数据];》y=[你的Y轴数据];》cftool可以将上面三个行建立一个M文件,以便后面进行数据拟合时可以直接使用,点击运行即可进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:•Custom Equations:用户自定义的函数类型•Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) •Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) •Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2) •Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving•Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~•Power:幂逼近,有2种类型,a*x^b 、a*x^b + c•Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型•Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)•Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)•Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
Matlab数据拟合与数据可视化技巧

Matlab数据拟合与数据可视化技巧数据拟合和数据可视化是数据分析和研究中至关重要的环节。
Matlab作为一种广泛使用的数值计算工具,提供了多种数据拟合和可视化技巧,能够帮助研究者更好地分析和展示数据。
本文将介绍几种常用的Matlab数据拟合和数据可视化技巧,希望对读者有所启发。
一、数据拟合1. 多项式拟合多项式拟合是一种常用的数据拟合方法,可以通过多项式函数拟合数据的曲线关系。
在Matlab中,可以使用polyfit函数进行多项式拟合。
该函数的输入参数为x和y,分别代表自变量和因变量的数据,我们可以选择拟合的多项式阶数n。
比如,我们可以通过以下代码进行二次多项式拟合:```matlabx = 1:10;y = [1.5, 2.3, 3.1, 4.1, 5.2, 6.5, 7.9, 9.4, 11.0, 12.7];p = polyfit(x, y, 2);```拟合结果p将得到二次多项式的系数。
我们可以使用polyval函数对新的x值进行拟合:```matlabx_new = 1:0.1:10;y_new = polyval(p, x_new);```这样,我们就可以得到新的x_new和对应的拟合曲线y_new。
2. 曲线拟合除了多项式拟合,Matlab还提供了其他的曲线拟合方法。
其中,最小二乘法是常用的一种方法。
在Matlab中,可以使用fit函数进行曲线拟合。
该函数能够拟合多种类型的曲线,如指数函数、幂函数等。
我们可以根据数据的特点选择合适的类型进行拟合。
```matlabx = 1:10;y = [1.5, 2.3, 3.1, 4.1, 5.2, 6.5, 7.9, 9.4, 11.0, 12.7];f = fit(x', y', 'exp1');```在上述代码中,我们选择了指数函数进行拟合。
拟合结果f将给出各个参数的估计值。
我们可以使用这些参数绘制拟合曲线:```matlabx_new = 1:0.1:10;y_new = feval(f, x_new);```类似地,x_new和y_new将给出新的x值和拟合曲线。
matlab拟合数据例题

matlab拟合数据例题
当我们需要在Matlab中拟合数据时,通常会使用curve
fitting工具箱中的函数。
这个工具箱提供了多种方法来拟合数据,包括线性回归、多项式拟合、指数拟合、对数拟合等。
下面我将以
一个简单的例子来说明如何在Matlab中拟合数据。
假设我们有一组x和y的数据,我们想要找到一个最佳拟合曲
线来描述它们之间的关系。
首先,我们需要将数据导入Matlab中,
然后使用curve fitting工具箱中的fit函数来进行拟合。
假设我
们的数据如下:
x = [1, 2, 3, 4, 5];
y = [2, 3, 5, 7, 11];
接下来,我们可以使用fit函数来进行拟合,比如进行线性拟合:
f = fit(x', y', 'poly1');
这里,'poly1'表示我们要进行一次多项式拟合。
然后,我们可以使用plot函数将原始数据和拟合曲线可视化出来:
plot(f, x, y);
这样就可以看到拟合曲线和原始数据的关系了。
除了线性拟合之外,还可以使用不同的方法来拟合数据,比如多项式拟合、指数拟合等。
只需要将'poly1'替换为其他方法的名称即可。
总的来说,在Matlab中进行数据拟合需要用到curve fitting 工具箱中的函数,通过选择合适的拟合方法和参数,可以找到最佳拟合曲线来描述数据之间的关系。
希望这个简单的例子可以帮助你更好地理解在Matlab中进行数据拟合的方法。
使用Matlab进行数据拟合的方法

使用Matlab进行数据拟合的方法概述:数据拟合是数据分析中常用的一种技术,它通过找到适合特定数据集的数学模型,在给定数据范围内预测未知变量的值。
在科学研究、工程分析和金融建模等领域,数据拟合起到了至关重要的作用。
而Matlab作为一种强大的数值计算工具,提供了丰富的函数和工具箱来实现各种数据拟合方法。
本文将介绍几种常见的使用Matlab进行数据拟合的方法。
一、线性回归线性回归是一种基本的数据拟合方法,它用于建立自变量和因变量之间的线性关系。
Matlab中可以使用`polyfit`函数来实现线性拟合。
具体步骤如下:1. 导入数据集。
首先需要将数据集导入到Matlab中,可以使用`importdata`函数读取数据文件。
2. 根据自变量和因变量拟合一条直线。
使用`polyfit`函数来进行线性拟合,返回的参数可以用于曲线预测。
3. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线,比较其拟合效果。
二、多项式拟合多项式拟合是一种常见的非线性拟合方法,它通过拟合多项式函数来逼近原始数据集。
Matlab中使用`polyfit`函数同样可以实现多项式拟合。
具体步骤如下:1. 导入数据集。
同线性回归一样,首先需要将数据集导入到Matlab中。
2. 选择多项式次数。
根据数据集的特点和实际需求,选择适当的多项式次数。
3. 进行多项式拟合。
使用`polyfit`函数,并指定多项式次数,得到拟合参数。
4. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线。
三、非线性拟合有时候,数据集并不能通过线性或多项式函数来准确拟合。
这时,需要使用非线性拟合方法,通过拟合非线性方程来逼近原始数据。
Matlab中提供了`lsqcurvefit`函数来实现非线性拟合。
具体步骤如下:1. 导入数据集。
同样,首先需要将数据集导入到Matlab中。
2. 定义非线性方程。
根据数据集的特点和实际需求,定义适当的非线性方程。
使用MATLAB进行数据拟合的步骤与技巧

使用MATLAB进行数据拟合的步骤与技巧概述:数据拟合是一种重要的数学方法,用于确定给定数据集的数学模型,并使用所选模型来预测未知数据点的值。
MATLAB是一种广泛用于科学和工程领域的高级计算机语言和数值计算环境。
它提供了强大的工具和函数,可用于数据处理和拟合。
本文将介绍使用MATLAB进行数据拟合的基本步骤,并分享一些技巧和注意事项。
数据拟合步骤:1. 数据导入和可视化:首先,将数据导入MATLAB环境中。
可以从文件、数据库或其他源获取数据,并使用MATLAB的数据导入工具将其加载到工作空间中。
然后,使用plot函数将数据绘制为散点图,以获得对数据的初步了解。
2. 选择拟合模型:根据数据的特点和目标,选择适当的拟合模型。
主要有线性拟合、多项式拟合和非线性拟合等。
线性拟合适用于大多数简单数据集,多项式拟合可用于具有曲线特征的数据集,非线性拟合则可以更精确地拟合复杂数据。
3. 创建拟合函数:在MATLAB中,可以使用fittype函数创建自定义的拟合函数。
该函数定义了拟合模型的形式,并且需要选择适当的方程类型和参数。
可以根据所选模型的特性和拟合需求,添加必要的参数和约束。
4. 拟合数据:使用cfit函数对数据进行拟合。
cfit函数接受拟合函数、数据和初始参数值作为输入,并根据最小二乘拟合准则计算出最优拟合参数。
可以通过调用fit函数,使用最小二乘法或其他拟合算法,拟合数据。
拟合结果将生成一个代表最佳拟合曲线的对象。
5. 可视化拟合结果:为了更好地评估拟合结果,使用plot函数在原始数据图上叠加绘制拟合曲线。
比较拟合曲线与实际数据的吻合程度,考虑调整模型或拟合算法以获得更好的拟合效果。
6. 评估拟合效果:使用MATLAB提供的工具和函数评估拟合结果的质量。
例如,可以使用拟合对象的自由度调整的R方值(Adjusted R-squared)来度量模型拟合优度。
除了R方值,还可以计算均方根误差(RMSE)等指标来评估拟合效果。
matlab拟合工具箱拟合方法

matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具箱,它提供了多种拟合方法,用于拟合数据集并找到最佳的拟合曲线。
本文将介绍Matlab拟合工具箱的几种常用的拟合方法。
一、线性拟合(Linear Fit)线性拟合是最简单和最常用的拟合方法之一。
线性拟合假设拟合曲线为一条直线,通过最小二乘法求解最佳拟合直线的斜率和截距。
线性拟合可以用于解决一些简单的线性关系问题,例如求解两个变量之间的线性关系、求解直线运动的速度等。
二、多项式拟合(Polynomial Fit)多项式拟合是一种常见的拟合方法,它假设拟合曲线为一个多项式函数。
多项式拟合可以适用于一些非线性的数据集,通过增加多项式的阶数,可以更好地拟合数据。
在Matlab拟合工具箱中,可以通过设置多项式的阶数来进行多项式拟合。
三、指数拟合(Exponential Fit)指数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个指数函数。
指数拟合可以用于拟合一些呈指数增长或指数衰减的数据集。
在Matlab拟合工具箱中,可以使用指数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
四、对数拟合(Logarithmic Fit)对数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个对数函数。
对数拟合可以用于拟合一些呈对数增长或对数衰减的数据集。
在Matlab拟合工具箱中,可以使用对数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
五、幂函数拟合(Power Fit)幂函数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个幂函数。
幂函数拟合可以用于拟合一些呈幂函数增长或幂函数衰减的数据集。
在Matlab拟合工具箱中,可以使用幂函数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
六、指数幂函数拟合(Exponential Power Fit)指数幂函数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个指数幂函数。
指数幂函数拟合可以用于拟合一些呈指数幂函数增长或指数幂函数衰减的数据集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rnm am1 yn1 (m n) ,用 a R \ y
可得最小二乘意义下的解。 3.多项式在x处的值y可用以下命令计算:
y=polyval(a,x)
13
例 对下面一组数据作二次多项式拟合
xi yi 0.1 1.978 0.2 3.28 0.4 6.16 0.5 7.34 0.6 7.66 0.7 9.58 0.8 9.48 0.9 1
9.30 11.2
即要求 出二次多项式:
f ( x) a1x 2 a2 x a3
中 的 A (a1 , a2 , a3 ) 使得:
[ f ( xi ) yi ]2
i 1
11
最小
14
解法1.用解超定方程的方法
此时 x12 R x2 11 1 x11 1 x1
线性最小二乘法的求解:预备知识 超定方程组:方程个数大于未知量个数的方程组
r11a1 r12 a2 r1m am y1 ( n m) r a r a r a y nm m n n1 1 n 2 2
r11 R 其中 rn1 r12 rn 2
n
即 Ra=y
r1m a1 y1 , a , y am yn rnm
超定方程一般是不存在解的矛盾方程组。
(ri1a1 ri 2 a2 rim am yi ) 2 达到最小, 如果有向量a使得
求血药浓度随时间的变化规律c(t). 作半对数坐标系(semilogy)下的图形
10
2
MATLAB(aa1)
c(t ) c0 e
10
1 0
kt
c, k为待定系数
0 2 4 6 8
4
10
曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所 有数据点最为接近,即曲线拟合得最好。 y + + +
函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者的数学方法上是完全不同 的。
实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
x f 1 1.5 2 3.9 4 6.6 7 11.7 9 15.6 12 13 18.8 19.6 15 20.6 17 21.1
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
记
J ( a1 , a2 , am ) i2 [ f ( xi ) yi ]2
i 1 n i 1
n
n
[ ak rk ( xi ) yi ]
i 1 k 1
m
2
( 2)
8
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
MATLAB(zxec2)
%作出数据点和拟合曲线的图形 20.1293 -0.0317
2)计算结果: A = -9.8108
f ( x) 9.8108x 2 20.1293x 0.0317
16
用MATLAB作非线性最小二乘拟合
Matlab的提供了两个求非线性最小二乘拟合的函数: lsqcurvefit和lsqnonlin。两个命令都要先建立M-文件fun.m, 在其中定义函数f(x),但两者定义f(x)的方式是不同的,可参 考例题. 1. lsqcurvefit 已知数据点: xdata=(xdata1,xdata2,…,xdatan), ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
8
10
12
14
16
18
25
ÒÑÖªÊý¾Ýµã 20
15 spline
10 Èý´Î¶àÏîʽ²åÖµ 5
0
0
2
4
6
8
10
12
14
16
18
7
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令 f(x)=a1r1(x)+a2r2(x)+ …+amrm(x) 其中 a1,a2, …am 为待定系数。 第二步: 确定a1,a2, …am 的准则(最小二乘准则): (1)
18
2. lsqnonlin
已知数据点: xdata=(xdata1,xdata2,…,xdatan) ydata=(ydata1,ydata2,…,ydatan) lsqnonlin用以求含参量x(向量)的向量值函数 f(x)=(f1(x),f2(x),…,fn(x))T 中的参量x,使得
f T ( x) f ( x) f1 ( x) 2 f 2 ( x) 2 f n ( x) 2
20
c(t ) a be0.0.2 kt 例2 用下面一组数据拟合
中的参数a,b,k
tj
100 200 300 400 500 600 700 800 900 1000
c j 10 3 4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59
该问题即解最优化问题:
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T
中的参变量x(向量),使得
n 2
( F ( x, xdata ) ydata )
i 1 i i
最小
17
输入格式为: (1) x = lsqcurvefit (‘fun’,x0,xdata,ydata); (2) x =lsqcurvefit (‘fun’,x0,xdata,ydata,options); (3) x = lsqcurvefit (‘fun’,x0,xdata,ydata,options,’grad’); (4) [x, options] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (5) [x, options,funval] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (6) [x, options,funval, Jacob] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); 说明:x = lsqcurvefit (‘fun’,x0,xdata,ydata,options); fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata 选项见无 迭代初值 已知数据点 约束优化
最小。 其中 fi(x)=f(x,xdatai,ydatai) =F(x,xdatai)-ydatai
19
输入格式为: 1) x=lsqnonlin(‘fun’,x0); 2) x= lsqnonlin (‘fun’,x0,options); 3) x= lsqnonlin (‘fun’,x0,options,‘grad’); 4) [x,options]= lsqnonlin (‘fun’,x0,…); 5) [x,options,funval]= lsqnonlin (‘fun’, 说明:x= x0,…); lsqnonlin (‘fun’,x0,options); fun是一个事先建立的 定义函数f(x)的M-文件, 自变量为x 选项见无 迭代初值 约束优化
+ i (x+ i) i,y
+
+
+
+
y=f(x)
x
i 为点(xi,yi) 与曲线 y=f(x) 的距离
5
拟合与插值的关系 问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
1)输入以下命令: x=0:0.1:1; y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)];
MATLAB(zxec1)
A=R\y'
2)计算结果: A = -9.8108 20.1293 -0.0317
i 1
则称a为上述超定方程的最小二乘解。
9
线性最小二乘法的求解 所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。 Ra=y (3) r1 ( x1 ) rm ( x1 ) a1 y1 , a , y R r1 ( xn ) rm ( xn ) am yn
1100 1000 900 800 700 20
826
873
942 1032
设 R=at+b a,b为待定系数
40
60
80
100
3
拟 合 问 题 引 例 2 已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
其中
定理:当RTR可逆时,超定方程组(3)存在最小二乘解, 且即为方程组
RTRa=RTy
的解:a=(RTR)-1RTy
10
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x), …rm(x)}的选取 1. 通过机理分析建立数学模型来确定 f(x); 2. 将数据 (xi,yi) i=1, …n 作图,通过直观判断确定 f(x): f=a1+a2x + + + + + f=a1+a2x+a3x2 + + + + + f=a1+a2x+a3x2 + + + + +