第三章 3.3 3.3.1 - 3.3.2 几何概型 随机数的含义与应用 Word版含解析
3.3.2随机数的含义与应用课件

为 a=a1 *4-1 .
3. 为了测算如图阴影部分的面积,作 一个边长为6的正方形将其色包含在内, 并向正方形内随机投掷800个点.已知恰 有200个点落在阴影部分内,据此,可估
计阴影部分的面积是___9_____.
建立一个概率模型,它与某些我们__感__兴__趣__的__量__ 有关,然后设计适当的试验,并通过这个试验 的结果来_确__定__这__些__量___.按照以上思路建立起来 的方法称为计算机随机模拟法或蒙特卡罗方法.
3.如何产生a~b之间的均匀随机数?
提示: (1)利用计算器或计算机产生0~1之间
地上有一个椭圆形草坪,在一次大风
后,发现该场地内共落有300 片树叶,
其中落在椭圆外的树叶数为 96片,以
此数据为依据可以估计出草坪的面积
约为 ( B )
A.768 m2
B.1632 m2
C.1732 m2 D.868 m2
活动2. (1)将区间[0,1]内的均匀随机数a1
转化为区间[-3,5]内的均匀随机数,
A.N1与N的大小无关
B.
N 1 是试验中的频率
N
C.
N 1 是试验中的概率
N
D.N越大,NN 1 应越小
3.在区间 [-1,2]上随机取一个数x,则|x|≤1的
2 概率为 ___3___.
4[ .12已,知2函]上数任f(x取)=一lo点g2xx0,,x则∈使[ f(12x0,)≥02的],概在率区为间
0到1区间的均匀随机数a1=RAND. (2)经过伸缩变换,a=a1*3. (3)统计出[1,2]内随机数的个数N1和[0,3] 内随机数的个数N.
最新人教版高中数学必修3第三章《随机数的含义与应用》

数学人教B必修3第三章3.3 随机数的含义与应用1.理解几何概型的意义.2.掌握几何概型问题的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.3.了解随机数的意义,能运用模拟方法(包括用计算机产生随机数来进行模拟)估计事件的概率.1.几何概型的定义事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的____________成正比,而与A的__________无关,满足以上条件的试验称为几何概型.几何概型的两个特点:一是无限性,即在一次试验中,基本事件的个数可以是无限的;二是等可能性,即每一个基本事件发生的可能性是均等的.【做一做1】下列概率模型中,是几何概型的有().①从区间[-10,10]内任取一个数,求取到1的概率;②从区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]内任取一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm的正方形内投一点P,求点P离正方形中心不超过1 cm的概率.A.1个B.2个C.3个D.4个2.几何概型概率公式在几何概型中,事件A的概率定义为________,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.运用几何概型的概率公式P(A)=μAμΩ需注意:(1)μΩ不为0.(2)其中“μΩ”的意义依Ω确定,当Ω分别是线段、平面图形、立体图形时,相应的“μΩ”分别是长度、面积和体积.(3)区域为“开区域”.(4)区域Ω内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比,而与其形状、位置无关.【做一做2】如图,在正方形围栏内均匀散布着米粒,一小鸡在其中随意啄食,则小鸡正在正方形的内切圆中的概率为________.3.随机数随机数就是__________随机产生的数,并且得到这个范围内的每一个数的______一样.它有很广阔的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复的试验.学习用随机模拟方法近似求事件的概率,条件不具备的可以用计算器等其他简便易行的方法,进行简单的模拟试验,统计试验结果,并计算频率估计概率,从中领会概率的意义和统计思想.【做一做3】将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( ).A .rand( )*8B .rand( )*8+2C .rand( )*8-2D .rand( )*61.古典概型与几何概型的异同剖析:古典概型与几何概型都是概率类型的一种,它们的区别在于:古典概型的基本事件数为有限个,而几何概型的基本事件数为无限个;共同点在于:两个概型都必须具备等可能性,即每个结果发生的可能性都相等.判断一次试验是否是古典概型,有两个标准来衡量:一是试验结果的有限性,二是试验结果的等可能性,如果这两个标准都符合,则这次试验是古典概型,否则不是古典概型;判断一次试验是否是几何概型有三个标准:一是试验结果的无限性,二是试验结果的等可能性,三是可以转化为求某个几何图形测度的问题.如果一次试验符合这三个标准,则这次试验是几何概型.这两种概率模型的本质区别是试验结果的种数是否有限.2.基本事件的选取对概率的影响 剖析:先比较以下两道题:(1)在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM <AC 的概率.(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.这两道题虽然都是在等腰Rt △ABC 中求AM <AC 的概率,但题干明显不同,题目(1)是“在斜边AB 上任取一点M ”,而题目(2)是“在∠ACB 内部任作一条射线CM ”,其解答分别如下:(1)在AB 上截取AC ′=AC ,于是P (AM <AC )=P (AM <AC ′)=AC ′AB =AC AB =22. (2)在∠ACB 内的射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的.在AB 上取AC ′=AC ,则△ACC ′是等腰三角形,且∠ACC ′=180°-45°2=67.5°,故满足条件的概率为67.5°90°=0.75.由此可见,背景相似的问题,当基本事件的选取不同,其概率是不一样的.题型一 与“长度”有关的几何概型【例1】某公共汽车站每隔15 min 有1辆汽车到达,乘客到达车站的时刻是任意的,求1个乘客到达车站后候车时间大于10 min 的概率.分析:把时刻抽象为点,时间就抽象为线段,故可用几何概型求解.反思:在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d .在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.题型二 与“面积”有关的几何概型【例2】甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.分析:甲、乙两人中每人到达会面地点的时间都是6时到7时之间的任一时刻,如果在平面直角坐标系内用x 轴表示甲到达约会地点的时间,y 轴表示乙到达约会地点的时间.用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x ,y )就表示甲、乙两人分别在6时到7时时间段内到达的时间,而能会面的时间由|x -y |≤15所对应的区域表示.由于每人到达的时间都是随机的,所以正方形内每个点都是等可能被取到的(即基本事件等可能发生).所以两人能会面的概率只与|x -y |≤15所对应的区域的面积有关,这就转化为面积型几何概率问题.反思:(1)此题涉及两个变量,因而可以在直角坐标系下讨论此问题. (2)如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.题型三 与“体积”有关的几何概型【例3】已知正三棱锥SABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.分析:首先作出到底面距离等于h2的截面,然后再求这个截面的面积,进而求出有关体积.反思:解与体积有关的几何概型时要注意:(1)寻求区域d 在区域D 中的分界面,但要明确是否含分界面不影响概率大小. (2)每个基本事件的发生是“等可能的”.(3)概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.题型四 与“角度”有关的几何概型 【例4】已知半圆O 的直径为AB =2R . (1)过A 作弦AM ,求使弦AM <R 的概率; (2)过A 作弦AM ,求使弦AM >R 的概率;(3)作平行于AB 的弦MN ,求使弦MN <R 的概率; (4)作平行于AB 的弦MN ,求使弦MN ≥R 的概率.分析:过A 作弦应理解为过A 作射线AM 交半圆于M ,作AB 的平行弦MN ,可以理解为过垂直于AB 的半径上的点作平行于AB 的弦.反思:(1)如果试验的结果所构成的区域的几何度量可用角度表示,则其概率计算公式为P (A )=事件A 构成区域的角度试验的全部结果构成区域的角度.(2)解决此类问题的关键是事件A 在区域内是均匀的,进而判定事件的发生是等可能的. 题型五 利用随机模拟实验估计图形的面积【例5】利用随机模拟的方法近似计算图中阴影部分(y =2-2x -x 2与x 轴围成的图形)的面积.分析:解答本题可先计算与之相应的规则多边形的面积,而后由几何概率进行面积估计.反思:在解答本题的过程中,易出现将点(a ,b )满足的条件误写为b >2-2a -a 2,导致该种错误的原因是没有验证阴影部分的点(a ,b )应满足的条件.题型六 易错辨析【例6】在0~1之间随机选择两个数,这两个数对应的点把长度为1的线段分成三条,试求这三条线段能构成三角形的概率.错解:因为⎩⎪⎨⎪⎧x +y >12,x +y <1,所以12<x +y <1.所以P =(12,1)(0,1)=121=12.错因分析:本题误把长度作为几何度量当成本题的模型.1小明往下面的靶子上投石子,最容易投中黑色区的是( ).2一只小狗在如图所示的方砖上走来走去,最终停在阴影部分方砖上的概率是( ).A .18B .79C .29D .7163在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( ).A .π4B .1-π4C .π8D .1-π84如图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.5一条均匀的绳子长为20 m ,在一次拔河比赛中(假设每点受力均匀)被拔断,断点离中点不到2 m 的概率为________.答案: 基础知识·梳理1.几何度量(长度、面积或体积) 位置和形状【做一做1】 B 第一个概率模型不是几何概型,虽然区间[-10,10]内有无数个数,但取到“1”只是一个数字,不能构成区间长度;第二个概率模型是几何模型,因为区间[-10,10]和区间[-1,1]内都有无数多个数,且在这两个区间内的每个数被取到的可能性相等;第三个概率模型不是几何概型,因为区间[-10,10]内的整数只有21个,是有限的;第四个概率模型是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数个点,且点P 落在任何一点处都是等可能的.2.P (A )=μAμΩ【做一做2】 π43.在一定范围内 机会 【做一做3】 C 典型例题·领悟【例1】 解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10.如图所示.记候车时间大于10 min 为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上时,事件A 发生,设区域D 的测度为15,则区域d 的测度为5.所以()51=153d P A D ==的测度的测度.答:候车时间大于10 min 的概率是13. 【例2】 解:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,如图,则两人能够会面的充要条件是|x -y |≤15.(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图中的阴影部分表示.由几何概率公式得P (A )=S A S =602-452602=716.答:两人能会面的概率是716.【例3】 解:如图所示,在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于面ABC 和面A 1B 1C 1之间时,点M 到底面的距离小于2h.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 的面积为4S . 由题意,区域D 的体积为13Sh ,区域d 的体积为1117334238S h Sh Sh -⋅⋅=⋅. ∴78P =.∴点M 到底面的距离小于2h 的概率为78.【例4】 解:(1)如图①所示,过点A 作⊙O 的切线AE ,作弦AM ′=R .由平面几何知识,∠M′AB =60°,∠M ′AE =30°,∴P (AM <R )=P (AM <AM ′)=P (∠EAM <∠EAM ′)=∠EAM′的大小∠EAB 的大小=30°90°=13.(2)类似于(1)可求P (AM >R )=60°90°=23.①②(3)如图②所示,过点O 作半径OE ⊥AB ,作弦M′N′∥AB ,交OE 于点E ′,且M′N′=R .连接OM′,则OE′=32R ,EE′=R -32R =2-32R .∴P (MN <R )=P (MN <M′N′)=EE′OE =2-32.(4)类似于(3)可求P (MN ≥R )=OE′OE =32.【例5】 解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1,b 1.(2)经过平移和伸缩变换,a =4a 1-3,b =3b 1,得到一组[-3,1],一组[0,3]上的均匀随机数.(3)统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )数).(4)计算频率N 1N就是点落在阴影部分的概率的近似值.(5)设阴影部分面积为S ,由几何概型概率公式得点落在阴影部分的概率为S12,∴S 12≈N 1N . ∴S ≈12N 1N 即为阴影部分面积的近似值.【例6】 正解:设三条线段的长度分别为x ,y ,1-x -y ,则⎩⎪⎨⎪⎧0<x <1,0<y <1,0<1-x -y <1,即⎩⎪⎨⎪⎧0<x <1,0<y <-x +1.在平面上建立如图所示的直角坐标系,围成三角形区域G ,每对(x ,y )对应着G 内的点(x ,y ),由题意知,每一个试验结果出现的可能性相等,因此,试验属于几何概型.记事件A ={三条线段能构成三角形},则事件A 发生当且仅当 >11>1>x y x y x x y y ⎧⎪⎨⎪⎩+--,-,-,即1,21,21.2y x x y ⎧>-+⎪⎪⎪<⎨⎪⎪<⎪⎩因此图中的阴影区域g 就表示“三条线段能构成三角形”,即事件A 发生.容易求得g 的面积为18,G 的面积为12,则P (A )=g 的面积G 的面积=14.随堂练习·巩固1.B 2.C 3.A4.49“随机”才具有“等可能性”,属于几何概型;由几何概型的计算公式得P =小正方形的面积大正方形的面积=2232=49.5.15。
最新人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学 第三章 第34节 随机数的含义与应用;概率的应用知识精讲(理) 人教实验B版必修.doc

高二数学 第三章 第3-4节 随机数的含义与应用;概率的应用人教实验B 版(理)必修3【本讲教育信息】一、教学内容:几何概型;随机数的含义二、教学目标:1. 了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2. 通过阅读材料,了解人类认识随机现象的过程。
三、知识要点分析: 1. 随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2. 随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3. 几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; 4. 几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5. 几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域G 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上的概率为:P=g 的面积/G 的面积(3)设空间区域v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域V 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为:P=v 的体积/V 的体积【典型例题】例1. 一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
分析:类似于古典概型,我们希望先找到基本事件组,即找到其中每一个基本事件。
19-20 第3章 3.3.1 几何概型 3.3.2 随机数的含义与应用

3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用1.几何概型的定义事件A理解为区域Ω的某一子区域A(如图所示),A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,满足以上条件的试验称为几何概型.2.几何概型的概率公式在几何概型中,事件A的概率定义为:P(A)=μAμΩ,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.思考:几何概型有哪些特点?[提示](1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.3.随机数的含义随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样.4.产生随机数的方法(1)用函数型计算器产生随机数的方法:0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的.(2)用计算机软件产生随机数(这里介绍的是Scilab中产生随机数的方法):①Scilab中用rand()函数来产生0~1的均匀随机数.每调用一次rand()函数,就产生一个随机数.②如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.1.下列概率模型是几何概型的为()A.已知a,b∈{1,2,3,4},求使方程x2+2ax+b=0有实根的概率B.已知a,b满足|a|≤2,|b|≤3,求使方程x2+2ax+b=0有实根的概率C.从甲、乙、丙三人中选2人参加比赛,求甲被选中的概率D.求张三和李四的生日在同一天的概率(一年按365天计算)B[A、C、D的基本事件是有限的,为古典概型,只有B为几何概型.] 2.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为()A.13 B.12 C.14D.16B[向△ABC内投一点的结果有无限个,属几何概型.设点落在△ABD内为事件A,则P(A)=△ABD面积△ABC面积=12.]3.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则()A.m>nB.m<nC.m=nD.m是n的近似值D[随机模拟法求其概率,只是对概率的估计.]4.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.23[∵区间[-1,2]的长度为3,由|x|≤1得x∈[-1,1],而区间[-1,1]的长度为2,x取每个值为随机的,∴在[-1,2]上取一个数x,|x|≤1的概率P=2 3.][1.古典概型和几何概型有何异同点?[提示]相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的.不同点:古典概型要求随机试验的基本事件的总数必须是有限的;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2.P(A)=0⇔A是不可能事件,P(A)=1⇔A是必然事件是否成立?[提示](1)无论是古典概型还是几何概型,若A是不可能事件,则P(A)=0肯定成立;若A是必然事件,则P(A)=1肯定成立.(2)在古典概型中,若事件A的概率P(A)=0,则A为不可能事件;若事件A 的概率P(A)=1,则A为必然事件.(3)在几何概型中,若事件A的概率P(A)=0,则A不一定是不可能事件,如:事件A对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A并不是不可能事件;同样地,若事件A的概率P(A)=1,则A也不一定是必然事件.3.解决几何概型问题的关键是什么?几何概型求概率问题一般有几种类型?[提示]解决几何概型的关键是把握好“测度”问题,常见测度为长度(角度)、面积、体积.【例1】如图,在△ABC中,∠B=60°,∠C=45°,高AD=3,在边BC上找一点M,求BM<1的概率.[思路探究]由题意M是边BC上一点,故试验全部结果构成的区域长度为边BC的长,E事件的区域长度为1.可由几何概型概率公式求解.[解]∵AD⊥BC,∠B=60°,∠C=45°,∴BD=1,DC=3,∴BC=1+ 3.记事件E为“在BC上找一点M,使BM<1”,则P(A)=1BC=11+3=3-12.1.(变条件)本例把“在边BC上找一点M”改为“在∠BAC内作射线AM交BC于点M”,其他条件不变,求BM<1的概率.[解]∵∠B=60°,∠C=45°,∴∠BAC=75°,∵AD⊥BC,AD=3,∴BD=1,∠BAD=30°.记事件F为“在∠BAC内作射线AM交BC于点M,使BM<1”,则P(F)=30°75°=25.2.(变结论)本题条件不变,求M到边BC两端点的距离均大于1的概率.[解]∵AD⊥BC,∠B=60°,∠C=45°,∴BD=1,DC=3,∴BC=1+ 3.记事件G为“在BC上找一点M,使M到BC两端点的距离均大于1”,则P(G)=1+3-21+3=2- 3.1.若一次试验中所有可能的结果和某个事件A包含的结果(基本事件)都对应一个长度,如线段长、时间区间长、距离、路程等,那么需要先求出各自相应的长度,然后运用几何概型的概率计算公式求出事件A发生的概率.2.“角度”型几何概型问题容易与“长度”型混淆,求解时应特别注意辨别.【例2】甲、乙两人约定在6时到7时在某处会面,并约定先到者应等候另一人20分钟,过时即可离去,求两人能会面的概率.[思路探究]解答本题可先求出解析图中阴影部分面积及整个区域面积,然后利用几何概型公式求出相应事件的概率.[解]用x和y分别表示甲、乙两人到达约会地点的时间,则两人能会面的条件是|x-y|≤20.在平面上建立直角坐标系如图所示,则(x,y)的所有可能结果是边长为60的正方形,可能会面的时间用图中阴影部分表示,所以P (A )=602-402602=59.1.解此类几何概型问题的关键是:(1)根据题意确认是否是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.2.对于几何概型,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.1.如图所示,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M(图中白色部分).若在此三角形内随机取一点P,则点P落在区域M内的概率为________.1-π4 [由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.]【例3】一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率.[思路探究]利用体积之比求概率.[解]依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于 1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P=1333=127.3.本例条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于13的概率.[解]到A点的距离小于13的点,在以A为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为43π×⎝⎛⎭⎪⎫133×18,所以P=43π×⎝⎛⎭⎪⎫133×1833=π2×37.与体积有关的几何概型问题的解决方法(1)如果试验的全部结果所构成的区域可用体积来度量,则其概率的计算公式为:P(A)=构成事件A的体积试验的全部结果构成的体积.(2)解决此类问题一定要注意几何概型的条件,并且要特别注意所求的概率是与体积有关还是与长度有关,不要将二者混淆.【例4】如图所示,在墙上挂着一块边长为16 cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm,某人站在3 m之外向此板投镖,设投镖击中线上或没有投中木板时不算,可重投,利用随机模拟的方法近似计算下列问题:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?[思路探究]与面积有关的几何概型要表示平面图形内的点必须有两个坐标,我们可以产生两组随机数来表示点的坐标确定点的位置.[解]记事件A={投中大圆内},事件B={投中小圆与中圆形成的圆环},事件C={投中大圆之外}.①用计算机产生两组[0,1]上的均匀随机数,a1=rand(),b1=rand().②经过变换,a=a116-8,b=b116-8,得到两组[-8,8]的均匀随机数.③统计投在大圆内的次数N1(即满足a2+b2<36的点(a,b)数),投中小圆与中圆形成的圆环次数N2(即满足4<a2+b2<16的点(a,b)数),投中木板的总次数N(即满足上述-8<a<8,-8<b<8的点(a,b)数).④计算频率f n(A)=N1N,f n(B)=N2N,f n(C)=N-N1N,即分别为概率P(A)、P(B)、P(C)的近似值.通过模拟得(1)P(A)≈0.44.(2)P(B)≈0.15.(3)P(C)≈0.56.1.解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过解方程求得阴影部分面积的近似值.2.解决此类问题时注意两点:一是选取合适的对应图形,二是由几何概型正确计算概率.2.利用随机模拟的方法近似计算图中阴影部分(y=2-2x-x2与x轴围成的图形)的面积.[解](1)利用计算机产生两组[0,1]上的均匀随机数,a1=rand(),b1=rand().(2)经过变换a=a1](3)统计试验总次数N和落在阴影部分的点的个数N1(满足条件b<2-2a-a2的点(a,b)的个数).(4)计算频率N1N就是点落在阴影部分的概率的近似值.(5)设阴影部分面积为S.由几何概型概率公式得点落在阴影部分的概率为S 12.∴S12≈N1N.∴S≈12N1N,即为阴影部分面积的近似值.1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式和计算机模拟试验.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点.(2)求解与面积相关的几何概型问题的三个关键点.(3)注意与体积有关的几何概型的求解策略.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积.1.思考辨析(1)几何概型的概率与构成事件的区域形状无关.()(2)在射击中,运动员击中靶心的概率在(0,1)内.()(3)几何概型的基本事件有无数多个.()(4)计算机或计算器只能产生[0,1]的均匀随机数,对于试验结果在[2,5]上的试验,无法用均匀随机数进行模拟估计试验.()[答案](1)√(2)×(3)√(4)×2.转动图中各转盘,指针指向红色区域的概率最大的是()D[D中红色区域面积是圆面积的一半,其面积比A,B,C中要大,故指针指到的概率最大.]3.在区间(10,20]内的所有实数中,随机取一个实数a,则这个实数a<13的概率是()A.13 B.17C.310D.710C[∵a∈(10,13),∴P(a<13)=13-1020-10=310.]4.在长为12 cm的线段AB上任取一点M,并以线段AM为边长作一个正方形,求作出的正方形面积介于36 cm2与81 cm2之间的概率.[解]如图所示,点M落在线段AB上的任一点上是等可能的,并且这样的点有无限多个.设事件A为“所作正方形面积介于36 cm2与81 cm2之间”,它等价于“所作正方形边长介于6 cm与9 cm之间”.取AC=6 cm,CD=3 cm,则当M点落在线段CD上时,事件A发生.所以P(A)=|CD||AB|=312=14.课时分层作业(十九)随机数的含义与应用(建议用时:60分钟)[合格基础练]一、选择题1.下列关于几何概型的说法中,错误的是()A.几何概型是古典概型的一种,基本事件都具有等可能性B.几何概型中事件发生的概率与它的位置或形状无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性A[几何概型和古典概型是两种不同的概率模型,故选A.]2.在圆心角为90°的扇形中,以圆心O为起点作射线OC,则使得∠AOC 和∠BOC都不小于30°的概率为()A.13 B.23 C.14D.34A[记M=“射线OC使得∠AOC和∠BOC都不小于30°”.如图所示,作射线OD,OE使∠AOD=30°,∠AOE=60°.当OC在∠DOE内时,使得∠AOC和∠BOC都不小于30°,此时的测度为度数30°,所有基本事件的测度为直角的度数90°.所以P(M)=30°90°=13.]3.在半径为1的圆中随机地投一个点,则点落在圆内接正方形中的概率是()A.1π B.2π C.2πD.3πB[点落在圆内的任意位置是等可能的,而落在圆内接正方形中只与面积有关,与位置无关,符合几何概型特征,圆内接正方形的对角线长等于2,则正方形的边长为 2.∵圆面积为π,正方形面积为2,∴P=2π.]4.在半径为2的球O内任取一点P,则|OP|>1的概率为()A.78 B.56 C.34D.12A[把问题转化为与体积有关的几何概型求解,∴|OP|>1的概率为43π×23-43π×1343π×23=78.] 5.令a 1=rand( ),则将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )A .a =a 1 * 8 B.a =a 1 *8+2 C.a =a 1 *8-2 D .a =a 1 * 6C [要产生a ~b 内的均匀随机数,可用交换rand( )*(b -a )+a 得到,a =a 1]二、填空题6.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________.14 [由题意Δ=1-4n ≥0,则n ≤14.又n ∈(0,1),故P =141-0=14.] 7.如图,长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.16[设长、宽、高分别为a ,b ,c ,则此点在三棱锥A -A 1BD 内运动的概率P =16abc abc =16.]8.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.1316[记事件A=“打篮球”,则P(A)=π×⎝ ⎛⎭⎪⎫142π×12=116.记事件B=“在家看书”,则P(B)=π×⎝ ⎛⎭⎪⎫122π×12-P(A)=14-116=316.故P(B)=1-P(B)=1-316=1316.]三、解答题9.如图所示,在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.[解]弦长不超过1,即|OQ|≥32,而Q点在直径AB上是随机的,记事件A={弦长超过1}.由几何概型的概率公式得P(A)=32×22=32.∴弦长不超过1的概率为1-P(A)=1-3 2.10.街道旁边有一游戏:在铺满边长为9 cm的正方形塑料板的宽广地面上,掷一枚半径为1 cm的小圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边上,可重掷一次;若掷在正方形内,需再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获得一元钱,试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?[解]小圆板中心用O表示,考察O落在正方形ABCD的哪个范围时,能使圆板与塑料板ABCD的边相交接,及O落在哪个范围时能使圆板与塑料板ABCD的顶点相交接.图1图2(1)如图1所示.因为O落在正方形ABCD内任何位置是等可能的,圆板与正方形塑料板ABCD的边相交接是在圆板的中心O到与它靠近的边的距离不超过1时,所以O落在图中阴影部分时,小圆板就能与塑料板ABCD的边相交接.因此,区域Ω是边长为9 cm的正方形,图中阴影部分表示事件A:“小圆板压在塑料板的边上.”于是μΩ=9×9=81(cm2),μA=9×9-7×7=32(cm2).故所求概率P(A)=32 81.(2)小圆板与正方形的顶点相交接是在中心O与正方形的顶点的距离不超过圆板的半径1时,如图2所示的阴影部分,图中阴影部分表示事件B:“小圆板压在塑料板顶点上”.于是μΩ=9×9=81(cm2),μB=π·12=π(cm2).故所求的概率P(B)=π81.[等级过关练]1.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是( )A.14B.12C.34 D .23C [如图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP ||AB |>14”.即P ⎝ ⎛⎭⎪⎫△PBC 的面积大于S 4=|P A ||BA |=34.] 2.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为( )A .1-3π12B .1-3π24 C.3π12 D .3π24B [设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×1=43-π2,故所求概率P =43-π243=1-3π24.] 3.假设你在如图所示的图形上随机撒一粒黄豆,则它落到阴影部分(等腰三角形)的概率是________.1π[设A={黄豆落在阴影内},因为黄豆落在图中每一个位置是等可能的,因此P(A)=S△ABCS⊙O,又△ABC为等腰直角三角形,设⊙O的半径为r,则AC=BC=2r,所以S△ABC =12AC·BC=r2,S⊙O=πr2,所以P(A)=r2πr2=1π.]4.在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为________.16π[点P到点A的距离小于等于a可以看做是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体ABCD-A1B1C1D1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P=18×43πa3a3=16π.]5.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?[解] 如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积πR 2(R为圆盘的半径),阴影区域的面积为4×15πR 2360=πR 26.∴在甲商场中奖的概率为P 1=πR 26πR 2=16.如果顾客去乙商场,记盒子中3个白球为a 1,a 2,a 3,3个红球为b 1,b 2,b 3,记(x ,y )为一次摸球的结果,则一切可能的结果有:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 3,b 1),(a 3,b 2),(a 3,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共15种.摸到的2球都是红球的情况有(b 1,b 2),(b 1,b 3),(b 2,b 3),共3种.∴在乙商场中奖的概率为P 2=315=15.∵P 1<P 2,∴顾客在乙商场中奖的可能性大.。
人教课标版(B版)高中数学必修3《3.3.2随机数的含义与应用》参考课件(1)

[小问题·大思维] 1.利用随机模拟法获得的事件产生的可能性与频率有什么
区分? 提示:利用随机模拟法获得的事件产生的可能性的大小数 据也是一种频率,只能是随机事件产生的概率的一种近似 估计,但是,由于随机数产生的等可能性,这种频率比较 接近概率.并且,有些实验没法直接进行(如下雨),故这 种模拟实验法在科学研究中具有十分有益的作用.
[研一题]
[例2] 如图所示,在墙上挂着一块边长 为16 cm的正方形木板,上面画了小、 中、大三个同心圆,半径分别为2 cm、 4 cm、6 cm,某人站在3 m之外向此木板投镖.设投镖击中 线上或没有投中木板时都不算,可重投,问:
(1)投中大圆内的概率是多少? (2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少?
S3 判断是否出现 1 点,即是否满足 x=1.如果是,则计 数器 m 的值加 1,即 m=m+1.如果不是,m 的值保持不变;
S4 表示随机试验次数的计数器 n 的值加 1,即 n=n+ 1.如果还要继续试验,则返回步骤 S2 继续执行,否则,程序 结束.程序结束后事件 A 发生的频率mn 作为事件 A 的概率的近 似值.
S3 判断是否同时出现1点,即是否满足x=1且y=1, 如果是,则计数器m的值加1,即m=m+1,如果不是,m的 值保持不变.
S4 表示随机试验次数的计数器 n 值加 1,即 n=n+1, 如果还要继续试验,则返回步骤 S2 继续执行,否则,程序 结束.
程序结束后事件 A 发生的频率mn 作为事件 A 的概率的近 似值.
S4 表示试验次数的计数器 n 值加 1,即 n=n+1.如果 还需要继续试验,则返回步骤 S2 继续执行,否则,程序结束.
程序结束后算出mn1,mn2,mn3或n-nm1分别作为事件 A, B,C 概率的近似值.
高中数学必修三讲义 第3章 3.3.1~3.3.2 几何概型

§3.3几何概型3.3.1几何概型3.3.2均匀随机数的产生学习目标 1.通过具体问题感受几何概型的概念,体会几何概型的意义.2.会求一些简单的几何概型的概率.3.会用随机模拟的方法近似计算某事件的概率.知识点一几何概型的概念思考往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?答案出现的结果是无限个;每个结果出现的可能性是相等的.梳理(1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的特点①试验中所有可能出现的结果(基本事件)有无限多个.②每个基本事件出现的可能性相等.知识点二几何概型的概率公式思考既然几何概型的基本事件有无限多个,难以像古典概型那样计算概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?答案可以用事件A所占有的几何量与总的基本事件所占有的几何量之比来表示.梳理事件发生的概率与构成该事件的区域测度(如长度、面积、体积)成比例,故可用区域的测度代替基本事件数.P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). 知识点三均匀随机数1.均匀随机数的定义如果试验的结果是区间[a,b]内的任何一个实数,而且出现任何一个实数是等可能的,则称这些实数为均匀随机数.2.均匀随机数的特征(1)随机数是在一定范围内产生的.(2)在这个范围内的每一个数被取到的可能性相等.3.均匀随机数的产生(1)计算器产生区间[0,1]上的均匀随机数的函数是RAND.(2)Excel软件产生区间[0,1]上的均匀随机数的函数为“rand ( )”.(3)产生方法:①由几何概型产生;②由转盘产生;③由计算器或计算机产生.1.在一个正方形区域内任取一点的概率是零.(√)2.与面积有关的几何概型的概率与几何图形的形状有关.(×)3.随机模拟方法是以事件发生的频率估计概率.(√)类型一几何概型的识别例1下列关于几何概型的说法错误的是()A.几何概型是古典概型的一种,基本事件都要具有等可能性B.几何概型中事件发生的概率与它的形状或位置无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性考点几何概型定义题点几何概型的判断答案 A解析几何概型和古典概型是两种不同的概率模型,几何概型中的基本事件有无限多个,古典概型中的基本事件有有限个.反思与感悟几何概型特点的理解(1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.跟踪训练1判断下列概率模型是古典概型还是几何概型.(1)先后抛掷两枚质地均匀的骰子,求出现两个“4点”的概率;(2)如图所示,图中有一个转盘,甲、乙玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.考点古典、几何概型定义题点古典、几何概型的判断解(1)先后抛掷两枚质地均匀的骰子,所有可能结果有6×6=36(种),且它们的发生都是等可能的,因此属于古典概型.(2)游戏中指针指向B区域时有无限多个结果,且它们的发生都是等可能的,而且不难发现“指针落在阴影部分”的概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.类型二几何概型的计算命题角度1与长度有关的几何概型例2取一根长为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率为多少?考点几何概型计算公式题点与长度有关的几何概型解如图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段时,事件A发生,因为中间一段的长度为1 m,所以事件A发生的概率为P(A)=13.反思与感悟在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练2 平面上画了一些彼此相距2a 的平行线,把一枚半径为r (r <a )的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率. 考点 几何概型计算公式 题点 与长度有关的几何概型解 记“硬币不与任何一条平行线相碰”为事件A ,如图,由图可知:硬币圆心在线段AB 上的任意一点的出现是等可能的.圆心在线段CD (不含点C ,D )上出现时硬币不与平行线相碰,所以P (A )=线段CD 的长度线段AB 的长度=2a -2r 2a =a -r a .命题角度2 与面积有关的几何概型例3 设点M (x ,y )在区域{(x ,y )||x |≤1,|y |≤1}上均匀分布出现,求: (1)x +y ≥0的概率; (2)x +y <1的概率; (3)x 2+y 2≥1的概率. 考点 几何概型计算公式 题点 与面积有关的几何概型解 如图,满足|x |≤1,|y |≤1的点(x ,y )组成一个边长为2的正方形(ABCD )区域(含边界), S 正方形ABCD =4.(1)x +y =0的图象是直线AC ,满足x +y ≥0的点在AC 的右上方(含AC ),即在△ACD 内(含边界),而S △ACD =12·S 正方形ABCD =2,所以P (x +y ≥0)=24=12.(2)设E (0,1),F (1,0),则x +y =1的图象是EF 所在的直线,满足x +y <1的点在直线EF 的左下方,即在五边形ABCFE 内(不含边界EF ),而S 五边形ABCFE =S 正方形ABCD -S △EDF =4-12=72,所以P (x +y <1)=S 五边形ABCFE S 正方形ABCD =724=78.(3)满足x 2+y 2=1的点是以原点为圆心的单位圆O ,S ⊙O =π,所以P (x 2+y 2≥1)=S 正方形ABCD -S ⊙OS 正方形ABCD=4-π4. 反思与感悟 如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域的某个指定区域内的点,且该区域中的每一个点被取到的机会都一样,这样的概率模型就可以视为几何概型,并且这里的区域可以用面积表示,利用几何概型的概率公式求解.跟踪训练3 一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率. 考点 几何概型计算公式 题点 与面积有关的几何概型解 如图所示,区域Ω是长30 m 、宽20 m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2 m 的概率约为0.31. 命题角度3 与体积有关的几何概型例4 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.考点 几何概型计算公式 题点 与体积有关的几何概型解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率为P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练4 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3πD.233π考点 几何概型计算公式 题点 与体积有关的几何概型 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝⎛⎭⎫323=32π,则此点落在正方体内部的概率P =V 1V 2=233π.类型三 均匀随机数及随机模拟方法例5 在如图所示的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值.考点 均匀随机数的运用 题点 均匀随机数的运用解 随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比, 即圆的面积正方形的面积≈落在圆中的豆子数落在正方形中的豆子数.设正方形的边长为2,则圆的半径为1,则圆的面积正方形的面积=π2×2=π4,由于落在每个区域的豆子数是可以数出来的,所以π≈落在圆中的豆子数落在正方形中的豆子数×4.所以就得到了π的近似值.反思与感悟 用随机模拟的关键是把实际问题中事件A 及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识. 跟踪训练5 利用随机模拟方法计算由y =1和y =x 2所围成的图形的面积. 考点 均匀随机数的运用 题点 均匀随机数的运用解 以直线x =1,x =-1,y =0,y =1为边界作矩形,(1)利用计算器或计算机产生两组0~1区间的均匀随机数,a 1=RAND ,b =RAND ; (2)进行平移和伸缩变换,a =2(a 1-0.5);(3)数出落在阴影内的样本点数N 1,用几何概型公式计算阴影部分的面积.例如做1 000次试验,即N =1 000,模拟得到N 1=698, 所以P =N 1N =阴影面积矩形面积=6981 000,即阴影部分的面积S =矩形面积×6981 000=2×6981 000=1.396.1.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78 B.56 C.34 D.12 考点 几何概型计算公式 题点 与体积有关的几何概型 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.2.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是( )A.13B.23C.43 D.无法计算 考点 几何概型计算公式 题点 与面积有关的几何概型 答案 C解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.112 B.38 C.116 D.56 考点 几何概型计算公式 题点 与长度有关的几何概型 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,由几何概型概率计算公式,得看到黄灯的概率为P =580=116.4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 .考点 几何概型计算公式 题点 与面积有关的几何概型 答案 π8解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.5.在区间[0,3]内任意取一个数,则此数大于2的概率为 . 答案 13解析 由于区间[0,3]的长度为3,区间(2,3]的长度为1,故所求概率为P =13.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型.2.几何概型主要用于解决与长度、面积、体积有关的问题.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为 P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).一、选择题1.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( ) A.925 B.1625 C.310 D.15 考点 几何概型计算公式 题点 与长度有关的几何概型 答案 D解析 以AG 为半径作圆,面积介于36π平方厘米到64π平方厘米,则AG 的长度应介于6厘米到8厘米之间(如图). ∴所求概率P =210=15.2.如图所示,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连接MN ,则弦MN 的长度超过2R 的概率是( )A.15B.14C.13D.12考点 几何概型计算公式 题点 与角度有关的几何概型答案 D解析 当MN =2R 时,∠NOM =90°,若MN 的长度超过2R ,则∠NOM 在90°与180°之间,所以概率为180°360°=12.3.在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( ) A.16 B.13 C.23 D.45 考点 几何概型计算公式 题点 与长度有关的几何概型 答案 C解析 设AC =x cm ,则BC =(12-x )cm(0<x <12), ∴矩形面积为x (12-x )cm 2,由x (12-x )<32,解得x >8或x <4,∴0<x <4或8<x <12.∴所求概率为4+412=23,故选C.4.如图,在一个边长分别为a ,b (a >b >0)的矩形内画一个梯形,梯形的上、下底边长分别为a 3,a2,且高为b .现向该矩形内随机投一点,则该点落在梯形内部的概率是( )A.710B.57C.512D.58 考点 几何概型计算公式 题点 与面积有关的几何概型 答案 C解析 S 梯形=12⎝⎛⎭⎫a 3+a 2b =512ab ,S 矩形=ab . 所以P =S 梯形S 矩形=512.5.在[0,5]之间随机取一个数作为x 的值,则使1<log 2(x -1)≤2成立的概率是( ) A.15 B.25 C.35 D.45 考点 几何概型计算公式 题点 与长度有关的几何概型 答案 B解析 由1<log 2(x -1)≤2,得2<x -1≤4,即3<x ≤5, 则对应的概率P =5-35-0=25.故选B.6.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A.1-π4B.π2-1C.2-π2D.π4考点 几何概型计算公式 题点 与面积有关的几何概型 答案 A解析 由题意得,无信号的区域面积为2×1-2×14π×12=2-π2,由几何概型的概率公式,得无信号的概率为P =2-π22=1-π4.7.如图,在等腰三角形ABC 中,∠ACB =120°,DA =DC ,过顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,则AM <33AC 的概率为( )A.33B.34C.32 D.14考点 几何概型计算公式 题点 与角度有关的几何概型 答案 D解析 由题意,在等腰△ABC 中,∠ACB =120°,DA =DC ,则AC =3AD ,即AD =33AC ,AB =3AC =3AD ,所以要使过顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,则AM <33AC ,只要AM <AD 即可,由DA =DC ,得∠ACD =∠CAD =180°-120°2=30°,所以AM <33AC 的概率为30°120°=14.故选D. 8.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0使f (x 0)>0的概率为( ) A.0.5 B.0.6 C.0.7 D.0.8 考点 几何概型计算公式 题点 与长度有关的几何概型 答案 C解析 如图,在[-5,5]上函数的图象和x 轴分别交于两点(-1,0),(2,0),只有x 0∈[-5,-1)∪(2,5]时,f (x 0)>0,由题意,知本题是几何概型问题.记事件A 为“任取一点x 0,使f (x 0)>0”,事件A 的区域长度是区间[-5,-1)与(2,5]的长度和,全体基本事件的长度是[-5,5]的区间长度.由几何概型的概率计算公式,得P (A )=4+310=0.7.故选C.9.在闭区间[-4,6]上随机取出一个数x ,执行如图所示的程序框图,则输出的x 不小于39的概率为( )A.15B.25C.35D.45考点 概率问题的综合题型 题点 概率与程序框图的综合 答案 A解析 由程序框图知,第一次循环,n =1,满足条件n ≤3,x =2x +1,n =2, 第二次循环,n =2,满足条件n ≤3,x =2(2x +1)+1=4x +3,n =3, 第三次循环,n =3,满足条件n ≤3,x =2(4x +3)+1=8x +7,n =4, 此时不满足条件n ≤3,输出8x +7, 由8x +7≥39得x ≥4,又因为x ∈[-4,6],所以4≤x ≤6,则输出的x 不小于39的概率P =6-46-(-4)=210=15.故选A. 二、填空题10.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为 . 考点 几何概型计算公式 题点 与面积有关的几何概型 答案334π解析 设圆面半径为R ,如图所示△ABC 的面积S △ABC =3·S △AOC =3·12AC ·OD =3·CD ·OD=3·R sin 60°·R cos 60°=33R 24,∴P =S △ABC πR 2=33R 24πR 2=334π.11.射箭比赛的箭靶涂有五个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会射箭比赛的靶面直径是122 cm ,黄心直径是12.2 cm ,运动员在距离靶面70 m 外射箭.假设射箭都等可能射中靶面内任何一点,那么射中黄心的概率是 .考点 几何概型计算公式 题点 与面积有关的几何概型 答案 0.01解析 由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,黄心的面积为14π×(12.2)2 cm 2,所以射中黄心的概率为=14×π×(12.2)214×π×1222=0.01.12.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m = .考点 几何概型的综合应用 题点 几何概型与不等式的综合应用 答案 3解析 当m ≤2时,2m 6=56无解.当2<m ≤4时,由m +26=56得m =3,综上m =3.三、解答题13.两人约定在20时到21时之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,且在20时到21时之间各时刻相见的可能性是相等的,求两人在约定时间内相见的概率. 考点 几何概型的综合应用题点 几何概型与线性规划的综合应用解 设两人分别于(20+x )时和(20+y )时到达约定地点(0≤x ,y ≤1),要使两人能在约定时间范围内相见,则有-23≤x -y ≤23.(x ,y )的各种可能结果可用图中的单位正方形(包括边界)来表示,满足两人在约定的时间范围内相见的(x ,y )的各种可能结果可用图中的阴影部分(包括边界)来表示.因此阴影部分与单位正方形的面积比就是两人在约定时间范围内相见的可能性的大小,也就是所求的概率,即P =S 阴影S 单位正方形=1-⎝⎛⎭⎫13212=89.四、探究与拓展14.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A.0.3 B.0.6 C.0.7 D.0.8 考点 概率问题的综合题型 题点 几何概型与不等式的综合应用 答案 C解析 画出图形(如图所示),m ,n 所满足的区域为矩形ABCD ,而m >n 所满足的区域为梯形ABCE ,所以m >n 的概率P =S 梯形ABCE S 矩形ABCD=15-9215=0.7.故选C.15.某校早8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为.(用数字作答)考点几何概型的综合应用题点几何概型与线性规划的综合应用答案932解析设小张和小王到校的时间分别为y和x,则⎩⎪⎨⎪⎧30≤x≤50,30≤y≤50,y-x≥5,则满足条件的区域如图中阴影部分所示.故所求概率P=12×15×1520×20=932.。
高中数学人教B版必修三课件 第三章 概率 3.3.2 随机数的含义与应用精选ppt课件

3.2 随机数的含义与应用
学
业
3.2 随机数的含义与应用
分层测3.2 随机数的含义与应用
评
1.了解随机数的含义. 2.掌握利用计算器(计算机)产生均匀随机数的方法. 3.会利用随机数模拟某一问题的试验来解决具体的有关概率的问题. (重点、难点)
的
教材整理
随机数的含义与应用
【答案】 C
为(
2.利用计算机产生 0~1 之间的均匀随机数 a,则事件“3a-1<0”发生的概率
)
2 A.3
1 B.2
1 C.3
1 D.6
【解析】 因为0<a<1,所以事件3a-1<0,即a<13的概率是13,故选C.
【答案】 C
相同
rand( )
rand( )*(b-a)+a
1.判断(正确的打“√”,错误的打“×”)
(1)随机数只能用计算器或计算机产生.(
)
(2) 计 算 机或 计 算 器 只 能 产 生 [0,1] 的 均 匀 随 机 数 , 对 于 试 验 结 果 在 [2,5]上 的 试
验,无法用均匀随机数进行模拟估计试验.(
S2
用变换 int(rand()*5)+1 产生 1~6 之间的整数随机数 x 表示掷一颗骰子出
现的点数;用变换 int(rand()*5)+1 产生 1~6 之间的整数随机数 y 表示掷另一颗骰
子出现的点数,用 1 表示 1 点,用 2 表示 2 点,用 3 表示 3 点,…,用 6 表示 6
点.
【解析】 0≤b1≤1,则函数 b=3(b1-2)的值域是-6≤b≤-3,即 b 是区间 [-6,-3]上的均匀随机数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.1 & 3.3.2几何概型随机数的含义与应用预习课本P109~114,思考并完成以下问题(1)什么是几何概型?(2)几何概型的概率计算公式是什么?(3)随机数的含义是什么?它的主要作用有哪些?[新知初探]1.几何概型(1)定义:事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.满足以上条件的试验称为几何概型.(2)计算公式:P(A)=μAμΩ,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.2.随机数(1)含义随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样.(2)产生①在函数型计算器上,每次按SHIFT Ran#键都会产生一个0~1之间的随机数.②Scilab中用rand()函数来产生0~1的均匀随机数.如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.[小试身手]1.用随机模拟方法得到的频率()A.大于概率B.小于概率C.等于概率D.是概率的近似值答案:D2.已知集合M={x|-2≤x≤6},N={x|0≤2-x≤1},在集合M中任取一个元素x,则x ∈M ∩N 的概率是( )A.19B.18C.14D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.3.如图所示,半径为4的圆中有一个小狗图案,在圆中随机撒一粒豆子,它落在小狗图案内的概率是13,则小狗图案的面积是( )A.π3B.4π3C.8π3D.16π3解析:选D 设小狗图案的面积为S 1,圆的面积S =π×42=16π,由几何概型的计算公式得S 1S =13,得S 1=16π3.故选D.4.在区间[-1,1]上随机取一个数x ,则x ∈[0,1]的概率为________. 解析:根据几何概型的概率的计算公式,可得所求概率为1-01-(-1)=12.答案:12[典例] (1).(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.答案:23(2)解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min ”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.1.解几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为: P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115. (3)法一:P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35.法二:P =1-P (红灯亮)=1-25=35.与面积和体积有关的几何概型[典例]B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14 C.38D.12(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.(2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.[答案] (1)B (2)231.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为: P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为 P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]1.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π解析:选D 由题意可得正方体的体积为V 1=1.又球的直径是正方体的体对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.则此点落在正方体内的概率为P =V 1V 2=132π=233π. 2.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析:选B 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4. 随机模拟法的应用[典例] 利用随机模拟法计算图中阴影部分(曲线y =2x 与x 轴、x =±1围成的部分)的面积.[解] 设事件A =“随机向正方形内投点,所投的点落在阴影部分”. S1 用计数器n 记录做了多少次投点试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x (即点落在阴影部分).首先置n =0,m =0;S2 用变换rand()*2-1产生-1~1之间的均匀随机数x 表示所投的点的横坐标;用变换rand()*2产生0~2之间均匀随机数y 表示所投的点的纵坐标;S3 判断点是否落在阴影部分,即是否满足y <2x ,如果是,则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;S4 表示随机试验次数的计数器n 的值加1,即n =n +1,如果还要继续试验,则返回步骤S2继续执行,否则,程序结束.程序结束后事件A 发生的频率mn 作为事件A 的概率的近似值.设阴影部分的面积为S ,正方形的面积为4,由几何概型计算公式得P (A )=S 4.所以m n =S4.所以S =4mn .即为阴影部分面积的近似值.利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ; (3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1N S ′,则已知图形面积的近似值为N 1NS ′.[活学活用]取一根长度为3 cm 的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 cm 的概率有多大?解:设事件A =“剪得两段的长都不小于1 cm ”.S1 用记数器n 记录做了多少次试验,用记数器m 记录其中有多少个数出现在1~2之间(即得两段的长都不小于1 cm),首先置n =0,m =0;S2 用变换rand( )*3,产生0~3之间的均匀随机数x ;S3 判断剪得两段是否长度都大于1 cm ,即是否满足1≤x ≤2,若是,则记数器m 的值增加1,即m =m +1,若不是,m 的值不变;S4 表示随机试验次数的记数器n 的值加1,即n =n +1;如果还需试验,则返回S2,继续执行,否则程序结束.程序结束后事件A 发生的频率mn 作为事件A 的概率的近似值.[层级一 学业水平达标]1.如图,一颗豆子随机扔到桌面上,则它落在非阴影区域的概率为( )A.19 B.16 C.23D.13解析:选C 试验发生的范围是整个桌面,其中非阴影部分面积占整个桌面的69=23,而豆子落在任一点是等可能的,所以豆子落在非阴影区域的概率为23,故选C.2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712解析:选C S 矩形=ab ,S 梯形=12⎝⎛⎭⎫13a +12a b =512ab . 故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab=512.3.已知函数f (x )=log 2x ,x ∈⎣⎡⎦⎤12,2,在区间⎣⎡⎦⎤12,2上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x ∈⎣⎡⎦⎤12,2,∴x 0∈[1,2], 从而由几何概型概率公式知所求概率P =2-12-12=23. 答案:234.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC<12V S -ABC 的概率是________. 解析:由V P -ABC<12V S -ABC 知,P 点在三棱锥S -ABC 的中截面A 0B 0C 0的下方,P =1-VS -A 0B 0C 0V S -ABC=1-18=78.答案:78[层级二 应试能力达标]1.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110. 2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE 内部的概率为12.3.如图所示,一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )A.2πB.1π C.12D .1-2π解析:选D S 扇形=14×π×22=π,S 阴影=S 扇形-S △OAB =π-12×2×2=π-2,∴P =π-2π=1-2π. 4.在区间[-1,1]上任取两数x 和y ,组成有序实数对(x ,y ),记事件A 为“x 2+y 2<1”,则P (A )为( )A.π4B.π2 C .πD .2π解析:选A 如图,集合S ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应,而事件A 所对应的事件(x ,y )与圆x 2+y 2=1内的点一一对应,所以P (A )=π4.5.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________. 解析:由于方程x 2+x +n =0(n ∈(0,1))有实根, ∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:146.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005. 答案:0.0057.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:点P 到点A 的距离小于等于a 可以看做是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD -A 1B 1C 1D 1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P =18×43πa 3a 3=16π. 答案:16π8.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心时,事件B 发生,于是事件B 发生的概率为P (B )=14×π×12.2214×π×1222=0.01.即“射中黄心”的概率是0.01.9.已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离;(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解:(1)由点到直线l 的距离公式可得d =2542+32=5. (2)由(1)可知圆心到直线l 的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l1的距离为3可知劣弧所对圆心角为60°.故所求概率为P=60°360°=1 6.。