数学竞赛

合集下载

2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)

2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。

每年各种数学竞赛时间表

每年各种数学竞赛时间表

每年各种数学竞赛时间表
每年数学竞赛的时间表可能会因地区和组织而有所不同。

以下是一些常见的数学竞赛及其大致的时间安排:
1.美国的数学竞赛(AMC):每年分多个级别进行,包括AMC 8、AMC 10和AMC 12。

这些竞赛通常在每年的2月和3月进行。

2.美国的数学奥林匹克竞赛(USAMO):每年4月举行,只有高中学生可以参加。

3.英国数学奥林匹克竞赛(BMO):每年9月举行,只有英国中学生可以参加。

4.国际数学奥林匹克竞赛(IMO):每年7月举行,全球各地的中学生都可以参加。

5.亚洲太平洋数学奥林匹克竞赛(APMO):每年9月举行,亚太地区的中学生可以参加。

6.中国大学生数学竞赛:每年11月举行,面向中国高校在校大学生。

此外,还有一些定期举办的比赛,如美国的数学协会(MAA)举办的哈密瓜奖(Harmony Award)和美国的数学基金会(MF)举办的克雷茨曼奖(Kretschmann Award)等。

请注意,这些时间表可能因各种原因而有所变化,因此最好提前查看官方网站或相关组织以获取最新信息。

数学竞赛试题及答案

数学竞赛试题及答案

数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数除以3的余数是2,那么这个数加1后除以3的余数是多少?A. 0B. 1C. 2D. 3答案:B3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A4. 一个数的75%是150,那么这个数是多少?A. 200B. 300D. 500答案:B5. 一个班级有21个男生和一些女生,班级总人数是42人,那么这个班级有多少女生?A. 21B. 20C. 19D. 18答案:B6. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 9/10答案:D7. 一个数的1/3与它的1/4的和等于这个数的1/2,那么这个数是多少?A. 12B. 24C. 36D. 48答案:B8. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64答案:B9. 一个数的3倍加上12等于这个数的7倍,求这个数是多少?A. 4B. 6C. 8D. 10答案:C10. 下列哪个数是质数?A. 15B. 29C. 35D. 50答案:B二、填空题(每题4分,共20分)11. 一个长方形的长是15cm,宽是长的1/3,那么这个长方形的宽是_______cm。

答案:5cm12. 一本书的价格是35元,如果打8折,那么现价是______元。

答案:28元13. 一个数的1/2与它的1/4的差等于3,那么这个数是______。

答案:1214. 一个数的倒数是1/7,那么这个数是______。

答案:715. 一个数的1/5加上它的1/3,和是这个数的______。

答案:8/15三、解答题(每题10分,共40分)16. 一块地的面积是300平方米,如果长是30米,那么这块地的宽是多少米?答案:这块地的宽是300平方米除以30米,即10米。

中学奥林匹克数学竞赛

中学奥林匹克数学竞赛

中学奥林匹克数学竞赛
(原创版)
目录
1.中学奥林匹克数学竞赛的概述
2.中学奥林匹克数学竞赛的组织形式
3.中学奥林匹克数学竞赛的竞赛内容
4.中学奥林匹克数学竞赛的参赛对象
5.中学奥林匹克数学竞赛的意义
正文
中学奥林匹克数学竞赛,简称中学奥数,是一项面向全球中学生的数学竞赛活动。

它旨在选拔和培养优秀的数学人才,激发学生学习数学的兴趣,提高学生的数学素养和逻辑思维能力。

中学奥林匹克数学竞赛的组织形式主要包括国家级、省级、市级和校级等各个层次的比赛。

其中,国家级比赛是最高水平的比赛,选拔出的选手将代表我国参加国际数学奥林匹克竞赛。

这些比赛的组织和管理,通常由各地区的教育部门和数学学会共同负责。

中学奥林匹克数学竞赛的竞赛内容涵盖了初等数学的各个领域,包括代数、几何、组合、数论等。

竞赛题目分为个人赛和团体赛两类。

个人赛主要测试选手的数学技能和解题能力,团体赛则侧重于选手的协作和沟通能力。

中学奥林匹克数学竞赛的参赛对象主要是中学生,包括初中生和高中生。

对于参赛选手来说,参加奥数比赛不仅可以提高自己的数学能力,还可以拓宽视野,结识志同道合的朋友。

中学奥林匹克数学竞赛在我国具有重要的意义。

首先,它有助于选拔和培养优秀的数学人才,为我国的科技创新和经济发展提供人才支持。


次,它有助于提高全社会对数学教育的重视,推动初等数学教育的改革和发展。

最后,它有助于激发学生学习数学的兴趣,培养学生的逻辑思维和创新能力。

总的来说,中学奥林匹克数学竞赛是一项对中学生具有重要意义的活动。

数学竞赛考试内容

数学竞赛考试内容

数学竞赛考试内容
1. 哎呀呀,数学竞赛考试里那些几何图形,就像神秘的宝藏等着我们去挖掘!比如给你一个三角形,让你去求角度或者边长,那可真是刺激啊!
2. 嘿,代数这部分可不能小瞧呀!像求解方程,不就像是解开一个难缠的谜题嘛!X+3=5,你能快速说出 X 是多少吗?
3. 哇塞,数论在数学竞赛考试里简直就是个神奇的领域!想想看,研究那些整数的奥秘,是不是超级有趣?比如判断一个数是不是质数!
4. 说真的,数学竞赛的组合问题就像是搭积木,要巧妙地把各种元素组合起来!像是安排比赛的赛程,这得多费脑子呀!
5. 喂喂喂,概率问题可有意思啦!扔个骰子,猜中某个点数的概率是多少,这不就跟玩游戏一样嘛!
6. 啊呀,数列在数学竞赛里那也是相当重要的呀!无穷无尽的数字排列,就像一条看不到尽头的道路,要努力去探索呢,像等差数列 1,3,5,7,多有规律啊!
7. 嘿哟,函数在考试中也是个大角色呢!它就像一个魔法工具,能变出各种奇妙的曲线来!给你个二次函数,看看它的图像有多美!
8. 哎呀,数学竞赛考试内容真是丰富多彩呀,每一个部分都像是等待我们去挑战的山峰,让我们努力攀登吧!
我觉得数学竞赛考试内容虽然有难度,但充满了挑战和乐趣,能让我们在数学的海洋中尽情遨游!。

学奥数你不可不知的七大杯赛

学奥数你不可不知的七大杯赛

学奥数你不可不知的七大杯赛学奥数已经成为了很多家庭的共识。

随着奥数的普及,各种奥数竞赛也层出不穷。

而世界上有一些备受瞩目的奥数竞赛,值得我们了解和参与。

本文将介绍学奥数中七大知名杯赛,包括国际奥林匹克数学竞赛(IMO)、亚洲太平洋数学奥林匹克(APMO)、国际萨莫格罗夫奥数竞赛(SAMO)、国际欧几里德奥数竞赛(EGMO)、俄罗斯奥数竞赛(RMO)、美国决定性研究数学竞赛(USAMO)以及中国数学奥林匹克竞赛(CIMC)。

一、国际奥林匹克数学竞赛(IMO)国际奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO)是世界范围内最有声望的数学竞赛之一,被誉为“数学界的奥林匹克游戏”。

IMO成立于1959年,每年有来自全球各国的代表队参赛。

竞赛的题目涵盖了代数、几何、数论和组合数学等多个领域,对参赛选手的综合数学能力有较高的要求,其题目常常具有较高的难度。

二、亚洲太平洋数学奥林匹克(APMO)亚洲太平洋数学奥林匹克(Asia-Pacific Mathematical Olympiad,简称APMO)是亚洲地区的顶级奥数竞赛之一,自1989年开始举办。

参赛队伍由来自亚洲和太平洋地区的国家和地区组成。

APMO的试题与IMO类似,但难度相对较小,更加注重数学思维的灵活运用。

三、国际萨莫格罗夫奥数竞赛(SAMO)国际萨莫格罗夫奥数竞赛(South African Mathematics Olympiad,简称SAMO)是非洲地区最具影响力的奥数竞赛之一,于1977年首次举办。

SAMO的内容包括初中奥数和高中奥数两个阶段,试题涵盖了代数、几何、数论和组合数学等各个数学分科,对参赛选手的数学素养有较高的要求。

四、国际欧几里德奥数竞赛(EGMO)国际欧几里德奥数竞赛(European Girls' Mathematical Olympiad,简称EGMO)是专门为女生设计的奥数竞赛,由欧洲各国女性代表队参赛。

数学竞赛方案

数学竞赛方案
1.竞赛结束后,组织教师对竞赛命题、竞赛组织等方面进行总结,为下一届竞赛提供借鉴。
2.收集参赛学生及教师的意见和建议,不断优化竞赛方案,提高竞赛质量。
3.对获奖学生进行长期关注与培养,助力其数学学科发展。
本数学竞赛方案旨在为我校数学竞赛活动提供严谨、细致的策划与组织保障,期待全校师生的积极参与,共同推动我校数学教育事业的发展。
2.提高学生的数学思维能力、创新能力和解决问题的能力。
3.发现和培养数学人才,为我国数学事业发展储备力量。
4.促进教师教学方法的改革,提高教学质量。
三、竞赛组织
1.竞赛形式:个人赛。
2.参赛对象:全校中学生。
3.竞赛分组:根据参赛学生的年级和数学水平,分为初中组、高中组和精英组。
4.竞赛时间:每年一届,于当年9月份举行。
五、评分标准与奖项设置
1.评分标准:根据竞赛题目难度、学生答题表现,采用百分制评分。
2.奖项设置:
-初中组:一等奖(5%)、二等奖(10%)、三等奖(15%)
-高中组:一等奖(5%)、二等奖(10%)、三等奖(15%)
-精英组:一等奖(5%)、二等奖(10%)、三等奖(15%)
-优秀组织奖:对积极参与竞赛组织的班级和教师给予表彰。
六、竞赛保障
1.组织保障:成立数学竞赛组委会,负责竞赛的组织与实施。
2.经费保障:学校设立数学竞赛专项经费,确保竞赛顺利进行。
3.人员保障:选拔具有丰富教学经验和竞赛命题能力的教师参与竞赛命题、评卷等工作。
4.宣传保障:通过校园广播、宣传栏等形式,广泛宣传数学竞赛,提高学生参与度。
七、竞赛总结与反馈
六、评分标准与奖项设置
1.评分标准:按照竞赛题目难度、学生答题情况进行评分,满分为100分。

初中数学全国竞赛真题试卷

初中数学全国竞赛真题试卷

一、选择题(本大题共20小题,每小题5分,共100分)1. 已知实数a、b满足a+b=1,则a²+b²的最小值为()A. 0B. 1C. 2D. 32. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°3. 若等差数列{an}的前三项分别为1,-2,3,则该数列的公差为()A. 1B. -1C. 2D. -24. 已知函数f(x)=x²-2x+1,则f(x)的最小值为()A. 0B. 1C. 2D. 35. 若x,y满足x²+y²=1,则x²+y²的最大值为()A. 1B. 2C. 3D. 46. 已知正方体的对角线长为a,则该正方体的体积为()A. a²B. 2a²C. 3a²D. 4a²7. 在等腰三角形ABC中,AB=AC,∠BAC=30°,则底边BC的长度为()A. √3B. 2√3C. 3√3D. 4√38. 已知等比数列{an}的前三项分别为2,6,18,则该数列的公比为()A. 1B. 2C. 3D. 69. 若函数f(x)=ax²+bx+c在x=1时的导数值为2,则a+b+c的值为()A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标为()A. (1,1)B. (1,2)C. (2,1)D. (2,2)11. 已知等差数列{an}的前n项和为Sn,公差为d,首项为a₁,则Sn的表达式为()A. Sn = n(a₁+an)/2B. Sn = n(a₁+an)/2 + d/2C. Sn = n(a₁+an)/2 - d/2D. Sn = n(a₁+an)/2 d12. 在等腰三角形ABC中,AB=AC,∠BAC=30°,则∠B的度数为()A. 30°B. 45°C. 60°D. 90°13. 已知函数f(x)=x³-3x²+4x,则f(x)的零点个数为()A. 1B. 2C. 3D. 414. 若x,y满足x²+y²=4,则x+y的最大值为()A. 2B. 4C. 6D. 815. 在直角坐标系中,点P(3,4),点Q(6,2),则线段PQ的中点坐标为()A. (4,3)B. (5,3)C. (5,4)D. (6,5)16. 已知等比数列{an}的前三项分别为1,-2,4,则该数列的公比为()A. -1B. 2C. -2D. 1/217. 若函数f(x)=ax²+bx+c在x=0时的导数值为0,则a+b+c的值为()A. 0B. 1C. 2D. 318. 在直角坐标系中,点A(1,2),点B(3,4),则线段AB的斜率为()A. 1B. 2C. 3D. 419. 已知等差数列{an}的前n项和为Sn,公差为d,首项为a₁,则Sn²的表达式为()A. S n² = n²(a₁+an)²/4B. Sn² = n²(a₁+an)²/2C. Sn² = n²(a₁+an)²D. Sn² = n(a₁+an)²/220. 在等腰三角形ABC中,AB=AC,∠BAC=60°,则底边BC的长度为()A. √3B. 2√3C. 3√3D. 4√3二、填空题(本大题共5小题,每小题10分,共50分)21. 已知函数f(x)=ax²+bx+c,若f(1)=2,f(2)=5,则a+b+c的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
男计算机学院47女计算机学院48女计算机学院49女50女51女52男53男54女55男计算机学院56男57男58女59男60女1男2男3男计算机学院4男5男6男7女8女9女10女11女12女13男14男15男16男17女18女19女20男21男22女23女24女25男26男27男28男29男30女31女32
女34女35男36男37男38男39男40女41女42女43女44男45男46女47女48男49男50男51男52男53男54男55女56男57女58男59男60女1女计算机学院2女计算机学院3男4女5女计算机学院6男7男8男9男10男11男计算机学院12男13男14男15男16男17男18男19
女20
女21女22女23女24男25男26男27男28女29女30女31女32男33男34女35女36男37女38女39女40男41女42男43男44男45男46男47男48女49女50女51女52女53女54女55女56女57女58女59男60男1男2男3男4男5男6
女7
男8男9女10男11女12男13男14男15男16女17男18男19女20男21男22男23男24男25男26男27女28男29男30男31男32男33女34女35男36男计算机学院37女38男39男40男41男42男计算机学院43男计算机学院44男45男计算机学院46男计算机学院47女计算机学院48男计算机学院49男计算机学院50男计算机学院51男52男53
男54
男55男56男57女58女59男60男1男2男3女4女5女6男7男8男9男10男11男12女13女14女15女16男17男18女19男20男计算机学院21男计算机学院22男计算机学院23男24男25男26女27女28女29男30男31女32男33男计算机学院34女35男36男37女38男39男40
男41
男42男43男44女45男46男47女48女49女50男51女52女53男54男55女56女57女58女59女计算机学院60女计算机学院1男2男3男计算机学院4女5女6男7男8男9男10女11女12女13女14女15男16女17女18女19女20女21男22女23女计算机学院24女计算机学院25女计算机学院26女计算机学院27
女计算机学院28
女计算机学院29女计算机学院30男31男计算机学院32男33女计算机学院34男35男36男37女38男39男40男41女42女43女44男45男46男47男48女49女50男51男52女53女54女55女56女57女58女59女60女61男62。

相关文档
最新文档