上海闵行区初三数学二模卷
闵行二模数学初三期中试卷

一、选择题(每题3分,共30分)1. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是:A. 24cm²B. 32cm²C. 36cm²D. 40cm²2. 下列各数中,属于有理数的是:A. √-1B. √2C. πD. 3/23. 已知一元二次方程x² - 5x + 6 = 0的两个根为a和b,则a² + b²的值为:A. 25B. 21C. 20D. 194. 在直角坐标系中,点P(2,3)关于y轴的对称点为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)5. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = x²C. y = 1/xD. y = 3x - 26. 在等差数列{an}中,若a₁ = 2,公差d = 3,则第10项a₁₀等于:A. 29B. 30C. 31D. 327. 下列命题中,正确的是:A. 平行四边形的对角线互相垂直B. 等腰三角形的底边上的高平分顶角C. 相似三角形的对应边长成比例D. 对顶角相等的三角形是等腰三角形8. 已知函数f(x) = 2x + 1,若f(x) > 3,则x的取值范围是:A. x > 1B. x < 1C. x ≤ 1D. x ≥ 19. 在直角坐标系中,点A(3,4)和点B(6,8)的中点坐标是:A. (4,5)B. (5,6)C. (6,7)D. (7,8)10. 下列各数中,属于无理数的是:A. √25B. √-16C. π/2D. 0.1010010001...二、填空题(每题3分,共30分)11. 已知一元二次方程x² - 4x + 3 = 0的两个根为m和n,则m + n的值为______。
12. 若sinθ = 1/2,则cosθ的值为______。
13. 在等差数列{an}中,若a₁ = 5,公差d = -2,则第5项a₅等于______。
闵行区初中二模数学试卷

一、选择题(每题4分,共40分)1. 下列数中,绝对值最小的是()。
A. -3B. 2C. 0D. -52. 若方程 2x - 5 = 3 的解为 x,则 x 的值是()。
A. 4B. 2C. 1D. 03. 在等腰三角形 ABC 中,AB = AC,若∠B = 50°,则∠A 的度数是()。
A. 40°B. 50°C. 60°D. 70°4. 一个长方体的长、宽、高分别为 4cm、3cm、2cm,则它的表面积是()。
A. 52cm²B. 54cm²C. 56cm²D. 58cm²5. 下列函数中,在定义域内单调递增的是()。
A. y = 2x + 1B. y = -3x + 2C. y = x²D. y = 1/x6. 若 a > b,且 c < 0,则下列不等式中正确的是()。
A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c7. 下列各组数中,存在一个偶数和一个奇数,使得它们的和为偶数的是()。
A. 2, 4, 6B. 1, 3, 5C. 0, 2, 4D. 7, 9, 118. 若 a, b, c 成等差数列,且 a + b + c = 12,则 b 的值是()。
A. 3B. 4C. 5D. 69. 在平面直角坐标系中,点 A(-2,3)关于原点对称的点是()。
A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)10. 下列图形中,不是轴对称图形的是()。
A. 正方形B. 等边三角形C. 梯形D. 圆二、填空题(每题5分,共50分)11. 若 |x - 1| = 3,则 x 的值为 _______。
12. 在直角三角形 ABC 中,∠C = 90°,AB = 5cm,AC = 3cm,则 BC 的长度为_______。
上海市2024年闵行区中考数学二模试卷

一、选择题1. 下列实数中,有理数是( 上海市2024年闵行区中考数学二模试卷) A.−π3B. −1C.D.2. 下列运算正确的是( ) A. +=a a a 2B. ⋅=a a a 2C. =a a 2833)(D. −=aa 263)(3. 下列函数中,y 的值随着x 的值增大而增大的是( ) A. =xy 1 B. =−+y x 2 C. =−y x 2 D. =−xy 1 4. 某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是( ) A. 150,150 B. 155,155 C. 150,160 D. 150,155 5. 在Rt ABC 中,∠CAB=90°,AB=5,AC=12,以点A ,点B ,点C 为圆心的,,A B C 的半径分别为5、10、8,那么下列结论错误的是( ) A. 点B 在A 上 B. A 与B 内切C. A 与C 有两个公共点D. 直线BC 与A 相切6. 在矩形ABCD 中,AB<BC ,点E 在边AB 上,点F 在边BC 上,联结DE 、DF 、EF ,===AB a BE CF b ,, DE=c ,∠BEF=∠DFC ,以下两个结论:①++−=a b a b c 222)()(②+>a b c 2其中判断正确的是( ) A. ①②都正确 B. ①②都错误C. ①正确,②错误D. ①错误,②正确二、填空题7. 计算:=421_____________8. 单项式xy 22的次数是_______________ 9. 不等式组⎩−>⎨⎧<x x 2026的解集是______________10. 计算:()()32523a b a b −++=________________11. 分式方程2111x x x =−−的解是______________ 12. 已知关于x 的方程220x x m ++=没有实数根,那么m 的取值范围是______________13.《九章算术》中记载:“今有牛五、羊二,直金十九两,牛二、羊五,直金十六两,牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两,2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x 两,1只羊值金y 两,那么可列方程组为_______________14. 某校在实施全员导师活动中,对初三(1)班学生进行调查问卷:学生最期待的一项方式是:A 畅谈交流心得;B 外出郊游骑行;C 开展运动比赛;D 互赠书签贺卡。
上海市闵行区2020-2021学年第二学期九年级数学二模试卷(电子版有答案)

所以 4 3 m 8
三、解答题: 19.原式 = 0 20. −2 x 3,数轴略
21.(1) 45
(2) 7 2 10
22.60
23.(1)由 ABE = ECF ,AEB = EFC, EA = EF 可证 (2) AB2 = BG BD AB = BD ABD∽ GBA
点 A 处,从点 A 处开始,在河流南岸立 4 根标杆,以这 4 根标杆为顶点,组成边长为 10 米的正方形 ABCD ,
且 A,D,E 三点在一条直线上,在标杆 B 处观察塔 E,视线 BE 与边 DC 相交于点 F,如果测得 FC = 4
米,那么塔与树的距离 AE 为_______米.
第2页
17.如图,在 Rt ABC 中,ACB = 90 ,A = 60 ,点 D 为 AB 中点,将 ACD 沿直线 CD 翻折后, 点 A 落在点 E 处,设 BC = a , DB = b ,那么向量 DE 用向量 a , b 表示为________.
A.这组数据的方差是 0
B.这组数据的众数是 0
C.这组数据的中位数是 0
D.这组数据的平均数是 0
5.下列命题中,真命题是( )
A.有两个内角是 90 的四边形是矩形
B.一组邻边互相垂直的菱形是正方形
C.对角线相互垂直的梯形是等腰梯形
D.两组内角相等的四边形是平行四边形
6.如图,在 ABC 中, C = 90 , AC = BC , AB = 8 ,点 P 在边 AB 上, P 的半径为 3, C 的
3
4
5
6
B
C
D
A
B
2024上海闵行区初三二模数学试卷及答案

公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:公众号:奥孚升学奥孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚公众号:奥孚升学公众号:奥孚升学2024闵行区初三二模数学卷参考答案感谢Eric同学分享!1-6BCCDDA7.28.39.2<x<310.16向量a+12向量b11.x=-112.m>113.5x+2y=192x+5y=16(方程组前面要加大括号)14.90°15.216.2/317.三分之根号二18.25/719.3+√220.化简:a-1/a+1求值:3+2√221.⑴证明两组对边互相平行⑵证明△CDE≌△DGB22.⑴y1=2x-6y2=-x+33⑵18-20时自西向东8-9时自东向西23⑴AB=BC=CD=DE=EF=FA∠A=∠B=∠C=∠D=∠E=∠F⑵AB=√(10-2√5)(二重根)24.(1)⑵D(3/2,0)Q(-5/2,-2)⑶-5/4<t<0t<-525.⑴①∠ABO=45°②证明略⑵。
闵行区初三数学中考二模卷及答案

闵行区2021学年第二学期九年级质量调研考试数学试卷 2021.04一、选择题:〔本大题共6题,每题4分,总分值24分〕1.以下实数中,是无理数的是〔A 〕3.14; 〔B 〕237; 〔C 1; 〔D 2.以下运算肯定正确的选项是〔A〔B 1;〔C 〕2a =;〔D 2-3.不等式组21,10x x ->⎧⎨-<⎩的解集是 〔A 〕12x >-; 〔B 〕12x <-; 〔C 〕1x <; 〔D 〕112x -<<. 4.用配方法解方程0142=+-x x 时,配方后所得的方程是〔A 〕2(2)3x -=;〔B 〕2(2)3x +=; 〔C 〕2(2)1x -=;〔D 〕2(2)1x -=-. 5.在△ABC 与△A ′B ′C ′中,AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的选项是〔A 〕AC = A ′C ′;〔B 〕BC = B ′C ′; 〔C 〕∠B =∠B ′;〔D 〕∠C =∠C ′.6.以下命题中正确的选项是〔A 〕矩形的两条对角线相等;〔B 〕菱形的两条对角线相等;〔C 〕等腰梯形的两条对角线互相垂直;〔D 〕平行四边形的两条对角线互相垂直.二、填空题:〔本大题共12题,每题4分,总分值48分〕7.计算:124= .8.因式分解:2x y x y -= .9x 的实数根是 .10.如果关于x 的一元二次方程220x x m -+=有两个实数根,那么m 的取值范围是 .11.一次函数2(1)5y x =-+的图像在y 轴上的截距为 . 12.反比例k y x=〔0k ≠〕的图像经过点〔2,-1〕,那么当0x >时,y 随x 的增大而 .〔填“增大〞或“减小〕. 13.抛物线22y a x b x =++经过点〔3,2〕,那么该抛物线的对称轴是直线 .14.布袋中装有3个红球和3个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .15.如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,如果AB a =,AD b =,那么OC = .16.:⊙O 1、⊙O 2的半径长分别为2、5,如果⊙O 1与⊙O 2相交,那么这两圆的圆心距d 的取值范围是 .17.如图,在正方形ABCD 中,E 为边BC 的中点,EF ⊥AE ,与边CD 相交于点F ,如果△CEF 的面积等于1,那么△ABE 的面积等于 .18.如图,在Rt △ABC 中,∠C = 90°,∠A = 50°,点D 、E 分别在边AB 、BC 上,将△BDE 沿直线DE 翻折,点B 与点F 重合,如果∠ADF = 45°,那么∠CEF = 度. 三、解答题:〔本大题共7题,总分值78分〕 19.〔此题总分值10分〕 先化简,再求值:21232()222x x x x x++÷+-+,其中2x =.20.〔此题总分值10分〕解方程组:2223,44 1.x y x x y y +=⎧⎨-+=⎩21.〔此题共2小题,总分值10分,其中第〔1〕小题4分,第〔2〕小题6分〕如图,在△ABC 中,AB = AC ,点D 在边AB 上,以点A 为圆心,线段AD 的长为半径的⊙A 与边AC 相交于点E ,AF ⊥DE ,垂足为点F ,AF 的延长线与边BC 相交于点G ,联结GE .DE = 10,12cos 13BAG ∠=,12AD DB =. 求:〔1〕⊙A 的半径AD 的长; 〔2〕∠EGC 的余切值.22.〔此题共2小题,每题5分,总分值10分〕 为了有效地利用电力资源,电力部门推行分时用电.即在居民家中安装分时电表,每天6∶00至22∶00用电每千瓦时0.61元,每天22∶00至次日6∶00用电每千瓦时0.30元.原来不实行分时用电时,居民用电每千瓦时0.61元.某户居民为了解家庭的用电及电费情况,于去年9月随意记录了该月6天的用电情况,见下表〔单位:千瓦时〕.〔1〕如果该用户去年9月份〔30天〕每天的用电情况根本相同,根据表中数据,试估量该用户去年9月总用电量约为多少千瓦时.〔2〕如果该用户今年3月份的分时电费为127.8元,而按照不实行分时用电的计费方法,其电费为146.4元,试问该用户今年3月份6∶00至22∶00与22∶00至次日6∶00两个时段的用电量各为多少千瓦时?〔注:以上统计是从每个月的第一天6∶00至下一个月的第一天6∶00止〕23.〔此题共2小题,每题6分,总分值12分〕〔第15题图〕 A C B D E F 〔第18题图〕 A B C D E F 〔第17题图〕 A F D E B C G:如图,在梯形ABCD 中,AD // BC ,AB = CD ,BC = 2AD .DE ⊥BC ,垂足为点F ,且F 是DE 的中点,联结AE ,交边BC 于点G .〔1〕求证:四边形ABGD 是平行四边形;〔2〕如果AD =,求证:四边形DGEC 是正方形.24.〔此题共3小题,总分值12分,其中第〔1〕小题4分,第〔2〕小题3分,第〔3〕小题5分〕:在平面直角坐标系中,一次函数3y x =+的图像与y 轴相交于点A ,二次函数2y x bx c =-++的图像经过点A 、B 〔1,0〕,D 为顶点. 〔1〕求这个二次函数的解析式,并写出顶点D的坐标;〔2〕将上述二次函数的图像沿y 轴向上或向下平移,使点D 的对应点C 在一次函数3y x =+的图像上,求平移后所得图像的表达式;〔3〕设点P 在一次函数3y x =+的图像上,且2ABP ABC S S ∆∆=,求点P 的坐标. 25.〔此题共3小题,总分值14分,其中第〔1〕小题4分,第〔2〕、〔3〕小题每题5分〕如图,在平行四边形ABCD 中,8AB =,tan 2B =,CE ⊥AB ,垂足为点E 〔点E 在边AB 上〕,F 为边AD 的中点,联结EF ,CD .〔1〕如图1,当点E 是边AB 的中点时,求线段EF 的长;〔2〕如图2,设BC x =,△CEF 的面积等于y ,求y 与x 的函数解析式,并写出函数定义域;〔3〕当16BC =时,∠EFD 与∠AEF 的度数满足数量关系:EFD k AEF ∠=∠,其中k ≥0,求k 的值.闵行区2021学年第二学期九年级质量调研考试 数学试卷参考答案及评分标准一、选择题:〔本大题共6题,每题4分,总分值24分〕1.C ;2.D ;3.B ;4.A ;5.B ;6.A .二、填空题:〔本大题共12题,每题4分,总分值48分〕 7.2;8.(1)x y x -;9.2x =;10.1m ≤;11.3;12.增大;13.32x =;14.12; 15.1122a b +;16.37d <<;17.4;18.35. 三、解答题:〔本大题共7题,总分值78分〕19.解:原式32(2)(2)(2)32x x x x x x ++=⨯+-+……………………………………………〔4分〕 A B C D E F G 〔第23题图〕 〔第24题图〕 A B C D E F 〔图1〕 A B C DE F 〔图2〕 〔第25题图〕 A B CD E F2x x =-.…………………………………………………………………〔2分〕当2x =时,原式===.…………………〔4分〕 20.解:由 22441x x y y -+=,得 21x y -=,21x y -=-. ………………〔2分〕原方程组化为23,21x y x y +=⎧⎨-=⎩; 23,2 1.x y x y +=⎧⎨-=-⎩……………………………………〔4分〕 解这两个方程组,得原方程组的解是112,12x y =⎧⎪⎨=⎪⎩; 221,1.x y =⎧⎨=⎩…………………………………………………〔4分〕 21.解:〔1〕在⊙A 中,∵ AF ⊥DE ,DE = 10,∴ 1110522DF EF DE ===⨯=. …………………………………〔1分〕 在Rt △ADF 中,由 12cos 13AF DAF AD ∠==, 得 12AF k =,13AD k =.…………………………………………〔1分〕 利用勾股定理,得 222AF DF AD +=.∴ 222(12)5(13)k k +=.解得 1k =.……………………………〔1分〕 ∴ AD = 13. …………………………………………………………〔1分〕 〔2〕由〔1〕,可知 1212AF k ==.………………………………………〔1分〕∵ 12AD DB =, ∴ 13AD AB =.………………………………………〔1分〕 在⊙A 中,AD = AE .又∵ AB = AC , ∴ AD AE AB AC=.∴ DE // BC .…………………〔1分〕 ∴ 13AF AD AG AB ==,EGC FEG ∠=∠. ∴ AG = 36. ∴ 24FG AG AF =-=.…………………………〔1分〕在Rt △EFG 中,5cot 24EF FEG FG ∠==.……………………………〔1分〕 即得 5cot 24EGC ∠=.………………………………………………〔1分〕 22.解:〔1〕6∶00至22∶00用电量:4.5 4.4 4.6 4.6 4.3 4.6301356+++++⨯=.……………………………〔2分〕 22∶00至次日6∶00用电量:1.4 1.6 1.3 1.5 1.7 1.530456+++++⨯=.………………………………〔2分〕 所以 135 +45 = 180〔千瓦时〕.……………………………………〔1分〕 所以,估量该户居民去年9月总用电量为180千瓦时.〔2〕根据题意,得该户居民5月份总用电量为 146.42400.61=〔千瓦时〕.〔1分〕 设该用户6月份6∶00至22∶00的用电量为x 千瓦时,则22∶00至次日6∶00的用电量为〔240 –x 〕千瓦时.根据题意,得 0.610.30(240)127.8x x +-=.……………………〔2分〕 解得 180x =.…………………………………………………………〔1分〕所以 24060x -=. …………………………………………………〔1分〕 答:该用户6月份6∶00至22∶00与22∶00至次日6∶00两个时段的用电量分别为180、60千瓦时.23.证明:〔1〕∵ DE ⊥BC ,且F 是DE 的中点,∴ DC = EC .即得 ∠DCF =∠ECF .……………………………………………〔1分〕 又∵ AD // BC ,AB = CD ,∴ ∠B =∠DCF ,AB = EC .∴ ∠B =∠ECF .∴ AB // EC .…………………………………〔1分〕 又∵ AB = EC ,∴ 四边形ABEC 是平行四边形.……………〔1分〕∴ 12BG CG BC ==.………………………………………………〔1分〕 ∵ BC = 2AD ,∴ AD = BG .………………………………………〔1分〕 又∵ AD // BG ,∴ 四边形ABGD 是平行四边形.……………〔1分〕 〔2〕∵ 四边形ABGD 是平行四边形,∴ AB // DG ,AB = DG .…………………………………………〔1分〕 又∵ AB // EC ,AB = EC ,∴ DG // EC ,DG = EC .∴ 四边形DGEC 是平行四边形.…………………………………〔1分〕 又∵ DC = EC ,∴ 四边形DGEC 是菱形.……………………〔1分〕 ∴ DG = DC .由AD =,即得CG .………………〔1分〕 ∴ 222DG DC CG +=.∴ 90GDC ∠=︒.∴ 四边形DGEC 是正方形. ……………………………………〔2分〕24.解:〔1〕由 0x =,得 3y =.∴ 点A 的坐标为A 〔0,3〕.………………………………………〔1分〕 ∵ 二次函数2y x bx c =-++的图像经过点A 〔0,3〕、B 〔1,0〕,∴ 3,10.c b c =⎧⎨-++=⎩……………………………………………………〔1分〕 解得 2,3.b c =-⎧⎨=⎩∴ 所求二次函数的解析式为223y x x =--+.……………………〔1分〕 顶点D 的坐标为D 〔-1,4〕.…………………………………………〔1分〕 〔2〕设平移后的图像解析式为2(1)y x k =-++.根据题意,可知点C 〔-1,k 〕在一次函数3y x =+的图像上,∴ 13k -+=.…………………………………………………………〔1分〕 解得 2k =.……………………………………………………………〔1分〕 ∴ 所求图像的表达式为2(1)2y x =-++或221y x x =--+.……〔1分〕 〔3〕设直线1x =-与x 轴交于点E .由〔2〕得 C 〔-1,2〕.又由 A 〔0,3〕,得AC =根据题意,设点P 的坐标为P 〔m ,m +3〕.∵ △ABP 与△ABC 同高,于是,当 2ABP ABC S S ∆∆=时,得2AP AC ==1分〕此时,有两种不同的情况:〔ⅰ〕当点P 在线段CA 的延长线上时,得CP CA AP =+=,且0m >.过点P 作PQ 1垂直于x 轴,垂足为点Q 1.易得 1EO AP CA OQ =.∴.解得 2m =.即得 35m +=. ∴ P 1〔2,5〕.………………………………………………………〔2分〕〔ⅱ〕当点P 在线段AC 的延长线上时,得 CP AP AC =-=0m <.过点P 作PQ 2垂直于x 轴,垂足为点Q 2.易得 2EQ OEAC PC =.∴.解得 2m =-.即得 31m +=. ∴ P 2〔-2,1〕.………………………………………………………〔2分〕 综上所述,点P 的坐标为〔2,5〕或〔-2,1〕.另解:〔3〕由〔2〕得 C 〔-1,2〕.又由 A 〔0,3〕,得 AC =根据题意,设点P 的坐标为P 〔m ,m +3〕.∵ △ABP 与△ABC 同高,于是,当 2ABP ABC S S ∆∆=时,得 2AP AC ==1分〕∴ 28AP =.即得 22(33)8m m ++-=.………………………………………〔1分〕 解得 12m =,22m =-.………………………………………………〔1分〕 ∴ m +3 = 5或1.……………………………………………………〔1分〕 ∴ 点P 的坐标为〔2,5〕或〔-2,1〕.……………………………〔1分〕25.解:〔1〕分别延长BA 、CF 相交于点P .在平行四边形ABCD 中,AD // BC ,AD = BC .……………………〔1分〕 又∵ F 为边AD 的中点,∴ 12PA AF PF PB BC PC ===.即得 P A = AB = 8.……………………〔1分〕 ∵ 点E 是边AB 的中点,AB = 8,∴ 142AE BE AB ===. 即得 12PE PA AE =+=.∵ CE ⊥AB ,∴ tan 428EC BE B =⋅=⨯=.∴ PC =1分〕在Rt △PEC 中,90PEC ∠=︒,12PF PC =,∴ 12EF PC ==1分〕 〔2〕在Rt △PEC 中,tan 2EC B BE ==,∴ 12BE EC =. 由 BC = x ,利用勾股定理 222BE EC BC +=,得 BE x =.即得 2EC BE ==.………………………〔1分〕∴ 8AE AB BE x =-=-.∴ 16PE PA AE =+=.…〔1分〕 于是,由 12PF PC =,得 111222EFC PEC y S S PE EC ∆∆===⨯⋅.∴ 1(16)4y x =-.………………………………………〔1分〕∴ 2110y x =-,0x <≤2分〕 〔3〕在平行四边形ABCD 中,AB // CD ,CD = AB = 8,AD = BC = 16.∵ F 为边AD 的中点,∴ 182AF DF AD ===.………………〔1分〕 ∴ FD = CD .∴ DFC DCF ∠=∠.………………………………〔1分〕 ∵ AB // CD ,∴ ∠DCF =∠P .∴∠DFC =∠P.……………………………………………………〔1分〕在Rt△PEC中,90PEC∠=︒,12PF PC=,∴EF = PF.∴∠AEF =∠P =∠DFC.又∵∠EFC =∠P +∠PEF = 2∠PEF.……………………………〔1分〕∴∠EFD =∠EFC +∠DFC = 2∠AEF +∠AEF = 3∠AEF.即得k = 3.……………………………………………………………〔1分〕。
闵行初中二模数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于无理数的是()A. 3.14B. 2/3C. √2D. 1.6182. 已知a > b,则下列不等式中正确的是()A. a + b > b + aB. a - b < b - aC. a/b > b/aD. a/b < b/a3. 一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的对角线长为()A. 7cmB. 9cmC. 12cmD. 13cm4. 在直角坐标系中,点A(-2,3)关于x轴的对称点为()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)5. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 2x + 16. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10 = ()A. 50B. 55C. 60D. 657. 下列关于一元二次方程x^2 - 5x + 6 = 0的解法中,正确的是()A. 直接开平方B. 因式分解C. 使用公式法D. 使用配方法8. 下列关于圆的性质中,正确的是()A. 圆的直径等于圆的半径的两倍B. 圆的周长等于圆的直径的π倍C. 圆的面积等于圆的半径的平方的π倍D. 以上都是9. 已知三角形ABC的边长分别为a、b、c,若a = 3,b = 4,c = 5,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形10. 下列关于坐标系中点的位置描述正确的是()A. 第一象限的点坐标为(x,y),x > 0,y > 0B. 第二象限的点坐标为(x,y),x < 0,y > 0C. 第三象限的点坐标为(x,y),x < 0,y < 0D. 第四象限的点坐标为(x,y),x > 0,y < 0二、填空题(每题5分,共25分)11. 若x + 2 = 0,则x = _______。
上海市闵行区中考数学二模试卷含答案解析

上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD 中,AB ∥CD ,∠DAB=90°,AB=12,DC=7,cos ∠ABC=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD= .三、解答题:(本大题共7题,满分78分) 19.(10分)计算: +(﹣1)﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x +4的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC=90°,tan ∠ABC=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得2S △ABM =S △ABC ,求点M 的坐标.22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x +4的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC=90°,tan ∠ABC=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得2S △ABM =S △ABC ,求点M 的坐标.【解答】解:(1)令y=0,则﹣2x +4=0,解得x=2,∴点A 坐标是(2,0).令x=0,则y=4,∴点B 坐标是(0,4).∴AB===2.∵∠BAC=90°,tan ∠ABC==,∴AC=AB=.如图1,过C 点作CD ⊥x 轴于点D ,∠BAO +∠ABO=90°,∠BAO +∠CAD=90°,∵∴∠ABO=∠CAD ,,∴△OAB ∽△DAC . ∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C 坐标是(4,1).(2)S △ABC =AB•AC=×2×=5.∵2S △ABM =S △ABC ,∴S △ABM =.∵M (1,m ),∴点M 在直线x=1上;令直线x=1与线段AB 交于点E ,ME=m ﹣2; 如图2,分别过点A 、B 作直线x=1的垂线,垂足分别是点F 、G ,∴AF +BG=OA=2;∴S △ABM =S △BME +S △AME =ME•BG +ME•AF=ME (BG +AF ) =ME•OA=×2×ME=,∴ME=,m ﹣2=, m=,∴M (1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x 千米/时. 根据题意,列方程得﹣=,解得:x 1=15,x 2=﹣30.经检验,x 1=15是原方程的根,且符合题意,x 2=﹣30不符合题意舍去. 答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF•BC=AB•BD ;(2)求证:四边形ADGF 是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形21 /21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市闵行区初三二模数学试卷
一. 选择题
1. 如果单项式21
2n a b c 是六次单项式,那么n 的值取( ) A. 6 B. 5 C. 4 D. 3
2. 在下列各式中,二次根式 )
11 3. 下列函数中,y 随着x 的增大而减小的是( ) A. 3y x = B. 3y x =- C. 3y x =
D. 3y x
=- 4. 一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的 鞋畅销,那么下列统计量对该经理来说最有意义的是( )
A. 平均数
B. 中位数
C. 众数
D. 方差 5. 下列图形中,既是轴对称又是中心对称图形的是( )
A. 正五边形
B. 等腰梯形
C. 平行四边形
D. 圆 6. 下列四个命题,其中真命题有( ) (1)有理数乘以无理数一定是无理数
(2)顺次联结等腰梯形各边中点所得的四边形是菱形 (3)在同圆中,相等的弦所对的弧也相等
(4)如果正九边形的半径为a ,那么边心距为sin 20a ⋅︒
A. 1个
B. 2个
C. 3个
D. 4个
二. 填空题
7. 计算:3
|2|-=
8. 在实数范围内分解因式:2
2a a -=
9. 2=的解是
10. 不等式组30
43x x x -≥⎧⎨+>-⎩
的解集是
11. 已知关于x 的方程2
0x x m --=没有实数根,那么m 的取值范围是
12. 将直线2
13
y x =-
+向下平移3单位,那么所得到的直线在y 轴上的截距为 13. 如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”,写出一 个你所学过的特殊的等对角线四边形的名称 14. 如图,已知在梯形ABCD 中,AD ∥BC ,且
3BC AD =,点E 是边DC 的中点,设AB a =u u u r r
, AD b =u u u r r ,那么AE =u u u r
(用a r 、b r 表示)
15. 布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1,2,3,4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 16. 9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图,已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是
17. 点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP 的 长等于 cm
18. 如图,已知在ABC ∆中,AB AC =,1
tan 3B ∠=
,将ABC ∆翻折,使点C 与点A 重 合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BD
DC
的值为
三. 解答题
19. 13
8212(cos 60)3
2--+︒+-;
20. 解方程:222
421
242x x x x x x
-÷=+--;
21. 如图,已知在ABC ∆中,30ABC ∠=︒,8BC =,sin A ∠=,BD 是AC 边上的 中线,求:(1)ABC ∆的面积;(2)ABD ∠的余切值;
22. 如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比 为5
1:
12
i =,且26AB =米,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造, 经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡; (1)求改造前坡顶与地面的距离BE 的长;
(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多 少米(结果精确到1米)
【参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.33︒≈,cot 530.75︒≈】
23. 如图,已知在矩形ABCD 中,过对角线AC 的中点O 作AC 的垂线,分别交射线AD
和
CB 于点E 、F ,交边DC 于点G ,交边AB 于点H ,联结AF 、CE ;
(1)求证:四边形AFCE 是菱形;
(2)如果2OF GO =,求证:2
GO DG GC =⋅;
24. 如图,已知在平直角坐标系xOy 中,抛物线2
2y ax x c =++与x 轴交于点(1,0)A -和 点B ,与y 轴相交于点(0,3)C ,抛物线的对称轴为直线l ; (1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;
(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直线l 的对称点 为N ,试证明四边形CDAN 是平行四边形;
(3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,求点
P 的坐标;
25. 如图,已知在ABC ∆中,6AB AC ==,AH BC ⊥,垂足为点H ,点D 在边AB 上, 且2AD =,联结CD 交AH 于点E ; (1)如图1,如果AE AD =,求AH 的长;
(2)如图2,⊙A 是以点A 为圆心,AD 为半径的圆,交AH 于点F ,设点P 为边BC 上 一点,如果以点P 为圆心,BP 为半径的圆与⊙A 外切,以点P 为圆心,CP 为半径的圆与 ⊙A 内切,求边BC 的长;
(3)如图3,联结DF ,设DF x =,ABC ∆的面积为y ,求y 关于x 的函数解析式,并 写出自变量x 的取值范围;
参考答案
一. 选择题
1. D
2. B
3. B
4. C
5. D
6. A
二. 填空题
7. 4 8. 2
(2)a a - 9. 12x =
10. 3
35
x -<≤ 11. 1
4
m <-
12. 2- 13. 矩形 14. 122a b +r r 15. 1
2
16. 15 17. 3
18. 13
5
三. 解答题
19.
1
2
- 20. 3x =;
21.(1)16+(2)2+; 22.(1)24BE =;(2)8BF =;
23.(1)略;(2)略;
24.(1)2
(1)4y x =--+,对称轴1x =,顶点(1,4);
(2)直线为3y x =+,(2,3)N ,证明略;(3)(1,4-±;
25.(1)4AH =;(2)BC =(3)3(72916
x x y -=,0x <<;。