勾股定理中的折叠问题+平面最短路径(基础版)
勾股定理中的最短路径问题与翻折问题(五大题型)(原卷版)

专题01 勾股定理中的最短路径问题与翻折问题(五大题型)【题型1 与长方形有关的最短路径问题】【题型2 与圆柱有关的最短路径问题】【题型3 与台阶有关的最短路径问题】【题型4将军饮马与最短路径问题】【题型5几何图形中翻折、旋转问题】【方法技巧】长方体最短路径基本模型如下:几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解【题型1 与长方体有关的最短路径问题】【典例1】(2023•丹江口市模拟)如图,地面上有一个长方体盒子,一只蚂蚁在这个长方体盒子的顶点A处,盒子的顶点C′处有一小块糖粒,蚂蚁要沿着这个盒子的表面A处爬到C′处吃这块糖粒,已知盒子的长和宽为均为20cm,高为30cm,则蚂蚁爬行的最短距离为()cm.A.10B.50C.10D.70【变式1-1】(2022秋•新都区期末)一个长方体盒子的长、宽、高分别为15cm,10cm,20cm,点B离点C的距离是5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到点B,蚂蚁爬行的最短路程是()A.10cm B.25cm C.5cm D.5cm【变式1-2】(2023春•光泽县期中)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.D.35【变式1-3】(2023春•灵丘县月考)如图,正方体的棱长为3cm,已知点B与点C之间的距离为1cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为()A.B.5cm C.4cm D.【变式1-4】(2022秋•莲湖区期末)如图,正方体盒子的棱长为2,M为EH的中点,现有一只蚂蚁位于点B处,它想沿正方体的表面爬行到点M处获取食物,则蚂蚁需爬行的最短路程为()A.B.C.D.【变式1-5】(2022秋•汝阳县期末)如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.B.C.D.【变式1-7】(2022秋•平昌县期末)如图是一个长方体盒子,其长,宽、高分别为4,2,9,用一根细线绕侧面绑在点A,B处,不计线头,细线的最短长度为()A.12B.15C.18D.21【变式1-8】(2023•陇县三模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()厘米.A.8B.10C.12D.13【变式1-10】(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是()A.cm B.4cm C.cm D.5cm【题型2 与圆柱有关的最短路径问题】(2023春•防城区期中)如图,一圆柱高BC=12πcm,底面周长是16πcm,【典例2】P为BC的中点,一只蚂蚁从点A沿圆柱外壁爬到点P处吃食,要爬行的最短路程是()A.12πcm B.11πcm C.10πcm D.9πcm【变式2-1】(2023春•德州期中)如图,圆柱形玻璃容器高18cm,底面圆的周长为48cm,在外侧底部点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧顶端的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度()A.52cm B.30cm C.D.60cm【变式2-2】(2023春•夏津县期中)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m 时,这段葛藤的长是()m.A.3B.2.6C.2.8D.2.5【变式2-3】(2023春•东港区校级月考)如图所示,已知圆柱的底面周长为36,高AB=5,P点位于圆周顶面处,小虫在圆柱侧面爬行,从A点爬到P点,然后再爬回C点,则小虫爬行的最短路程为()A.26B.13+C.13D.2【变式2-4】(2023春•富顺县校级月考)如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为()A.cm B.15cm C.14cm D.13cm【变式3-5】(2022秋•蒲城县期末)今年9月23日是第五个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为20cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A.20πcm B.40πcm C.D.【变式2-6】(2023春•宣化区期中)如图,圆柱底面半径为,高为18cm,点A、B分别是圆柱两底面圆周上的点,且点B在点A的正上方,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.21cm B.24cm C.30cm D.32cm【变式2-7】(2023春•随县期末)如图是学校艺术馆中的柱子,高4.5m.为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m,则这条花带至少需要m.【题型3 与台阶有关的最短路径问题】【典例3】(2023春•连山区期末)如图是楼梯的一部分,若AD=2,BE=1,AE=3,一只蚂蚁在A处发现C处有一块糖,则这只蚂蚁吃到糖所走的最短路程为()A.B.3C.D.2【变式3-1】(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()cm.A.10B.50C.120D.130【变式3-2】(2023春•西塞山区期中)如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.【变式3-3】(2022秋•叙州区期末)如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A 点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【题型4将军饮马与最短路径问题】【典例4】(2022秋•辉县市校级期末)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()cm.A.15B.C.12D.18【变式4-1】(2022春•吴江区期末)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则该蚂蚁要吃到饭粒需爬行的最短路径长是()A.13cm B.3cm C.cm D.2cm【变式4-2】(2023春•临潼区期末)如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【变式4-3】(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()(π取3)m.A.30B.28C.25D.22【变式4-4】(2022秋•雁峰区校级期末)如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B 处的爬行最短路线长为(杯壁厚度不计)()A.12cm B.17cm C.20cm D.25cm【变式4-5】(2022秋•郫都区期末)如图,圆柱形玻璃杯高为22cm,底面周长为30cm,在杯内壁离杯上沿3cm的点B处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底5cm与面包渣相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【题型5几何图形中翻折、旋转问题】【典例5】(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3B.4C.5D.6【变式5-1】(2022春•安乡县期中)如图,在△ABC中,∠ACB=90°,AC=12,BC=10,点D为BC的中点,点E为AC边上一动点,连接DE.将△CDE沿DE折叠,点C的对应点为点C'.若△AEC'为直角三角形,则AE的长为.【变式5-2】(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.【变式5-3】(2022秋•绥德县期中)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【变式5-4】(2020秋•海宁市期中)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D为BC上一点,将△ABD沿AD折叠至△AB′D,AB′交线段CD 于点E.当△B′DE是直角三角形时,点D到AB的距离等于.【变式5-5】(2020•浙江自主招生)将一直径为25cm的圆形纸片(如图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体形状的纸盒(如图③),则这样的纸盒体积最大为cm3.【变式5-6】(2022秋•和平区期中)一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=.【变式5-7】(2022春•温州期末)图1是一款平衡荡板器材,示意图如图2,A,D为支架顶点,支撑点B,C,E,F在水平地面同一直线上,G,H为荡板上固定的点,GH∥BF,测量得AG=GH=DH,Q为DF上一点且离地面1m,旋转过程中,AG始终与DH保持平行.如图3,当旋转至A,Q,H在同一直线上时,连结G′Q,测得G′Q=1.6m,∠DQG′=90°,此时荡板G′H′距离地面0.6m,则点D离地面的距离为m.【变式5-8】(2022•公安县模拟)某厂家设计一种双层长方体垃圾桶,AB=84cm,BC=30cm,CP=36cm,侧面如图1所示,EF为隔板,等分上下两层.下方内桶BCFG绕底部轴(CP)旋转打开,如图2,将其打开后点G卡在隔板上,此时可完全放入下方内桶的球体的最大直径为25.2cm,求BG的长度为cm.。
用勾股定理求几何体中的最短路线长课件

问题描述
问题定义
给定一个几何体,如长方体、球体等,求从一个顶点到另一个顶点的最短路线长 度。
问题分析
最短路线问题可以通过几何学中的勾股定理进行求解。勾股定理是直角三角形中 ,直角边的平方和等于斜边的平方。在三维空间中,可以利用勾股定理找到最短 路径。
02
勾股定理简介
勾股定理的定义
勾股定理:在直角三角形中,直角边 的平方和等于斜边的平方。即,如果 直角三角形的两条直角边长度分别为 a和b,斜边长度为c,则有a^2 + b^2 = c^2。
用勾股定理求几何体中的 最短路线长ppt课件
• 引言 • 勾股定理简介 • 几何体的最短路线问题 • 用勾股定理求解最短路线长 • 结论
01
引言
目的和背景
目的
介绍如何使用勾股定理在几何体中寻找最短路线长度。
背景
几何体中的最短路线问题在实际生活中有着广泛的应用,如建筑、工程、机器 人等领域。通过解决这类问题,可以优化设计、提高效率、降低成本等。
THANKS
感谢观看
勾股定理的证明方法
勾股定理的证明方法有多种,其中比较常见的是欧几里得证 明法。该证明方法利用了相似三角形的性质和边长之间的关 系,通过一系列的推导和证明,最终证明了勾股定理。
除了欧几里得证明法外,还有其他的证明方法,如利用代数 方法和微积分方法等。这些证明方法虽然不同,但都能够证 明勾股定理的正确性。
的性质和勾股定理得出的结论。
空间几何体中的最短路线问题
1 2 3
球面几何中的大圆弧最短
在球面几何中,两点之间的大圆弧是最短的路径 。大圆弧是指经过球心并与球面相切的圆弧。
圆柱体或圆锥体中的母线最短
在圆柱体或圆锥体中,从顶点到底面的母线是最 短的路径。母线是与底面平行的线段,也是旋转 轴。
勾股定理解决最短路径问题及折叠问题

3、如图,长方体的长为 15cm ,宽为10cm ,高为20cm ,点B 到点C 的距离为5cm ,一只 蚂蚁如果要沿着长方体的表面从A 点爬到B 点,需要爬行的最短距离是多少? 勾股定理解决最短路径问题及折叠问题 1、如图,长方体的长为 15,宽为10,高为20,点B 离点C 的距离为 沿着长方体的表面从点 A 爬到点B ,需要爬行的最短距离是多少? 5,—只蚂蚁如果要2、如图,长方体的底面边长分别为 1cm 和3cm ,高为6cm .如果用一根细线从点 A 开始 经过4个侧面缠绕一圈到达点 B ,那么所用细线最短需要 ____________ cm ;如果从点 A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 I"4、如图所示,正方形ABCD 的面积为12, △ ABE 是等边三角形,点E 在正方形 ABCD 内,在对角线 AC 上有一点P ,使PD PE 的和最小,求这个最小值5、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世 •著名的恩施大峡谷 (A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB = 50km , A 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P,向A 、B两景区运送游客•小民设计了两种方案,图1是方案一的示意图(AP 与直线X 垂直,垂足为P ), P 到A 、B 的距离之和Si = PA+PB,图2是方案二的示意图(点 A 关于直线X 的对 称点是A',连接BA'交直线X 于点P ), P 到A 、B 的距离之和 ◎= PA+PB.(1 )求S 、S 2,并比较它们的大小; (2 )请你说明PA+PB 的值为最小; (3 )拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图 3所示的直角C30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、.并求出这个最小值.坐标系,B到直线Y的距离为B、Q组成的四边形的周长最小YkCt6、如图,在锐角厶ABC中,AB= ,2,/ BAC= 45°,/ BAC的平分线交BC于点D, M N分别是AD和AB上的动点,则BM+M的最小值是.7、如题,在长方形ABCD中,将?ABC沿AC对折至?AEC位置,CE与AD 交于点F.(1)试说明:AF=FC⑵如果AB=3 BC=4,求AF的长。
勾股定理最短路径问题做题技巧

勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。
其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。
下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。
1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。
通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。
一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。
2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。
这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。
在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。
3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。
我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。
4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。
当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。
另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。
5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。
我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。
在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。
希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。
勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧摘要:1.引言2.勾股定理简介3.求最短路径方法技巧4.应用实例与分析5.结论正文:【引言】在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。
本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。
【勾股定理简介】勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。
其数学表达式为:a + b = c。
其中a、b为直角边,c为斜边。
【求最短路径方法技巧】利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。
这里有两种求最短路径的方法:1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。
可以通过构建直角三角形,利用勾股定理求解路径长度。
2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。
最后在所有路径中选择长度最短的一条。
同样可以利用勾股定理计算路径长度。
【应用实例与分析】以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。
现在需要求从A点到B点的最短路径。
首先,求出AB的中点C:(1.5, 2)。
然后,分别计算从A到C和从C到B 的路径长度。
AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。
只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。
勾股定理最短路径问题

勾股定理最短路径问题
勾股定理最短路径问题是一种在数学和计算机科学领域中常见的问题。
该问题
的目标是找到两个给定点之间的最短路径,并且路径中的每个线段都恰好满足勾股定理。
勾股定理是一个基本的几何定理,它表明在一个直角三角形中,斜边的平方等
于两个直角边的平方和。
勾股定理最短路径问题则是将这个定理应用到路径规划中。
为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或
A*算法。
首先,我们将给定的起点和终点转化为图中的节点,节点之间的连接表
示可以直接连接的路径。
在每个节点中,我们需要计算到达该节点的路径长度。
以起点为起始节点,我
们开始遍历每个相邻节点,并通过计算其与起点的距离来更新节点的路径长度。
这个过程会持续进行,直到所有节点的路径长度都被计算出来。
接下来,我们需要根据勾股定理来评估路径的长度。
对于连接起点和终点的路
径上的每一段线段,我们可以根据勾股定理计算其长度。
通过将每一段线段的长度累加,我们可以得到整条路径的长度。
最后,我们可以使用最短路径算法来确定具有最短长度的路径。
这将帮助我们
找到勾股定理最短路径问题的解决方案。
总结而言,勾股定理最短路径问题是一个涉及路径规划和数学定理应用的问题。
通过使用最短路径算法,我们可以找到满足勾股定理的最短路径,从而有效地解决这个问题。
勾股定理的应用最短路径问题

勾股定理的应用最短路径问题1. 引言大家好,今天咱们聊聊一个古老又有趣的数学概念——勾股定理。
可能有人会问:“这跟我有什么关系呢?”嘿,等着听,勾股定理可不是干巴巴的公式,它其实在我们日常生活中随处可见,特别是在寻找最短路径的时候!想想吧,咱们出门去超市、上班、约会,总是希望能走条最短的路,不是吗?1.1 勾股定理是什么?首先,让我给你简单科普一下,勾股定理就是“直角三角形的两条直角边的平方和等于斜边的平方”。
哎哟,这听起来可能有点抽象,但是举个例子就明白了。
想象一下,你在一个小区里,想从家里去朋友家,结果发现可以选择两条路:一条是笔直的,另一条是绕来绕去的。
咱们用勾股定理算一下,直走那条路肯定最省劲,走得快,又不费力,简直是“稳得一批”!1.2 最短路径的日常应用所以说,勾股定理就像是我们日常生活中的导航仪。
无论是行走还是开车,只要涉及到找路,勾股定理就在那里默默支撑着我们。
有时候你可能会觉得“哎,我怎么就走错了路呢?”其实啊,咱们常常是没有用到这个小聪明,走了冤屈的弯路。
所以,学会利用勾股定理,让我们在出门时不再“走火入魔”,多出点时间来享受生活,简直是“赚到了”!2. 勾股定理在生活中的真实案例接下来,我来给大家分享几个勾股定理在生活中实际应用的例子。
想象一下,你家后院有个长方形的游泳池,你想在旁边建个阳光棚。
你需要测量一下,从池边到棚子的某个点的距离。
这里用上勾股定理就能轻松搞定!假如你从池子的一个角落走到对面的边,再直线走到阳光棚的底部,咱们就能通过计算,得到最短的距离,省得你东跑西颠了。
2.1 工作中的应用再说说工作吧,假设你是一名送货员,天天跑腿送快递。
为了提高效率,你需要计算每次送货的最短路径。
只要把送货点的坐标设定好,运用勾股定理,你就能算出最近的送货路线。
这样一来,工作起来简直是“如虎添翼”,还能多挣点外快,何乐而不为呢?2.2 健身房里的运动还有一种情况,比如你在健身房里锻炼,跑步机上那条直线可不是随便走走的!你想把心率调到最佳状态,搞个“HIIT”训练,结果一不小心跑偏了。
勾股定理与平面展开图—最短路径问题教学设计-人教版八年级数学下册(2)

教学设计授课教师单位授课时间课题勾股定理与平面展开图—最短路径问题教材版本人教版课型专题课教学目标1. 能把几何体表面展开成平面图形,找到最短路径。
2. 通过展开图形,构建直角三角形,运用勾股定理求出最短路径。
教学重点勾股定理来解决最短路径问题教学难点正方体长方体展开后有多条路线及如何分类观察从而归纳整理教法讲授法、讨论法、演示法(几何画板)学法合作探究学习教学准备制作正方体、长方体、圆柱等教具.教学过程设计意图复习引入1.有一只闯荡几何世界的蚂蚁,它想从点A到点B处吃食物,蚂蚁怎样走最近,为什么?两点之间,线段最短.2.在几何体不同平面上的两点如何寻找最短路径?带着问题我们来学习:勾股定理与平面展开图—最短路径问题活动一、圆柱中的最短路径问题例1 如图,一圆柱底面周长为6cm,高为4cm,一只蚂蚁从点A爬到对角的点B处吃食物,想一想,蚂蚁怎么走最近?最短路程是多少?(学生独立思考,举手回答,教师板演)C用“小蚂蚁”的问题引起学生兴趣,复习“两点之间,线段最短”并思考不同平面上的两点如何确定最短路径,从而引出课题。
解:如图将圆柱侧面展开,由题意得AC =4,BC =3 在Rt △ABC 中,∠ACB=90°∴ AB ==+22AB AC 53422=+ 答:蚂蚁爬行的最短路程是5cm. 练习1.有一圆形油罐底面圆的周长为6m ,高为4m ,一只蚂蚁从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为 米.2. 如图,有一圆柱油罐,已知油罐的底面圆的直径是4米,高是5米,要从点A 起环绕油罐建梯子,梯子的顶端正好到达点A 的正上方点B ,则梯子最短需 米.(π取3)归纳:求立体图形中最短路径的一般步骤:1. 展 立体—平面2. 找 起点、终点3. 连 两点之间,线段最短。
4. 求 勾股定理5. 答 答题活动二、正方体中的最短路径问题例2 如图,是棱长为1的正方体,蚂蚁从点A 到点B 处吃食物,问怎样爬行路径最短,最短路程是多少?它有几种最短爬行方法?(注:每个面均能爬行)(学生准备正方体,小组探究蚂蚁爬行的最短路线,由小组代表展讲)活动三、长方体中的最短路径问题通过学生的合作探究,先确定最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F 4C
把条件集中到一个Rt△中,根 据勾股定理得方程。
练习1. Rt△ABC中,∠C=900,沿AD折叠,使
AC与AE重合,若AC=6,BC=8,求△BDE的面积。
练习2. 矩形ABC中,AB=2,BC=5,沿EF对折
,使C与A重合,求△ABE的面积。
探究二、求平面上两点之间的最短距离
例 如图,牧童在小河南 4 km 的 A 处牧马,而他正位于他的 小屋B的西8 km北7 km处,他想把他的马牵到小河边去饮水,然
后回家.他要完成这件事情所走的最短路程是多少?
抽象为
解:如图,作点 A 关于 MN 的对称点 A′, 连接 A′B 交 MN 于点 P,连接 AP, 则 A→P→B 就是最短路线. AP+BP=A′B. 在 Rt△A′DB 中,由题意,得: BD=8 (km),DA′=7+4+4=15(km), 由勾股定理求得: A′B= BD2+DA′2=17 (km). 答:他要完成这件事情所走的最短路程是 17 km.
勾股定理两个特殊的应用
一、勾股定理中的折叠问题
二、勾股定理中的最短路径问题
探究一、勾股定理中的折叠问题
例:如图,折叠长方形的一边AD,点D落在BC边 的点F处,已知AB=8cm,AD=10cm,求EC的长。
A
8 10 6 10
D E
8-x
x
心得:先标等量,再构造方程。 折叠问题中构造方程的方法:
B