高考功能关系在重力场的应用
带电粒子(带电体)在电场中的平衡、运动(学生版)--2024年高考物理大题突破

大题 带电粒子(带电体)在电场中的平衡、运动带电粒子的运动时而像落体运动时而像抛体运动还有的像“圆周运动”总之考察带电粒子的运动本质还是在考察传统的经典运动模型,但由于电场力的性质以及电场能的性质的加持之下这类问题变得更灵活多变个富有物理思想,因此在高考中的出镜率非常高,所以备考中应引起足够重视。
带电粒子(带电体)在电场中的平衡1(2023·吉林·二模)用两根长度均为L 的绝缘细线各系一个小球,并悬挂于同一点。
已知两小球A 、B 质量均为m ,当它们带上等量同种电荷时,两细线与竖直方向的夹角均为θ,如图所示。
若已知静电力常量为k ,重力加速度为g 。
求:(1)小球所带的电荷量;(2)在空间中施加一匀强电场,同时撤去B 球,仍使A 球保持不动,求所加电场强度E 的最小值。
【思路分析】根据受力分析结合共点力平衡的求解方法来求解电荷量;应用矢量三角形来求解电场强度的最小值。
1(23-24高三上·河北·阶段练习)如图所示,水平向右的匀强电场中,绝缘丝线一端固定悬挂于O 点,另一端连接一带负电小球,小球质量为m ,电荷量为Q 。
O 点正下方投影为M 点。
等量异种电荷A 、B 的电荷量均为Q ,对称放置于M 点两侧,小球静止时恰好处于AM 的中点N 处。
已知AN =NM =L ,且绝缘丝线ON =2L ,静电力常数为k ,求:(1)匀强电场的电场强度E ;(2)撤去匀强电场,保持A 、B 位置不变,三者电性不变,A 、B 和小球的电荷量均变为Q (未知),保持电荷量仍相等,换一根绝缘丝线让小球仍静止于N 点,平衡时丝线与竖直方向所成的夹角为37°、求等量异种电荷A 、B 在N 处产生的总场强E (已知sin37°=35,cos37°=45)。
带电粒子(带电体)在电场中的运动1(23-24高三下·北京东城·阶段练习)在一柱形区域内有匀强电场,柱的横截面积是以O 为圆心,半径为R 的圆,AB 为圆的直径,如图所示。
高考典型例题:等效重力场

高考典型例题:等效重力场标准化工作室编码[XX968T-XX89628-XJ668-XT689N]运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动, 对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。
等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将其称为等效重力可得:αcos mg g m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。
规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。
2025高考物理步步高同步练习必修3学习笔记专题强化4 电场中的功能关系及图像问题

2025高考物理步步高同步练习必修3学习笔记电场中的功能关系及图像问题[学习目标] 1.会利用功能关系、能量守恒定律分析电场综合问题.2.理解E-x、φ-x、E p-x 图像的意义,并会分析有关问题.一、电场中的功能关系1.合外力做的功等于物体动能的变化量,即W合=ΔE k.2.静电力做功等于带电体电势能的减少量,即W AB=E p A-E p B=-ΔE p.3.只有静电力做功时,带电体电势能与机械能的总量不变,即E p1+E机1=E p2+E机2.例1质量为m的带电小球射入匀强电场后,以方向竖直向上、大小为2g的加速度向下运动,重力加速度为g,在小球下落h的过程中()A.小球的重力势能减少了2mghB.小球的动能增加了2mghC.静电力做负功2mghD.小球的电势能增加了3mgh例2(2021·衡水市桃城区月考)如图所示,在竖直平面内,光滑绝缘直杆AC与半径为R的圆周交于B、C两点,在圆心O处有一固定的正点电荷,B点为AC的中点,C点位于圆周的最低点.现有一质量为m、电荷量为-q、套在杆上的带负电小球从A点由静止开始沿杆下滑.已知重力加速度为g,A点距过C点的水平面的竖直高度为3R,小球滑到B点时的速度大小为5gR.(1)求小球滑到C点时的速度大小;(2)若以B点作为零电势点,试确定A点的电势.二、电场中的图像问题1.v-t图像例3 (2021·大庆市让胡路区高二期末)一正电荷在电场中仅受静电力作用,从A 点运动到B 点,速度随时间变化的图像如图所示,t A 、t B 分别对应电荷在A 、B 两点的时刻,则下列说法中正确的是( )A .A 处的电场强度一定小于B 处的电场强度 B .A 处的电势一定低于B 处的电势C .电荷在A 处的电势能一定大于在B 处的电势能D .从A 到B 的过程中,静电力对电荷做正功 2.φ-x 图像从φ-x 图像上可直接看出电势随位置的变化,可间接求出电场强度E 随x 的变化情况:φ-x 图像切线斜率的绝对值k =|ΔφΔx |=|Ud |,表示E 的大小,电场强度E 的方向为电势降低最快的方向.例4 (2021·杭州二中期中)两点电荷q 1、q 2固定在x 轴上的A 、B 两点,两电荷连线上各点电势φ随x 变化的关系图像如图所示,其中P 点电势最高,且x AP <x PB ,则( )A .q 1和q 2都是正电荷B .q 1的电荷量大于q 2的电荷量C .在A 、B 之间将一负点电荷沿x 轴从P 点左侧移到右侧,电势能先减小后增大D .一点电荷只在静电力作用下沿x 轴从P 点运动到B 点,加速度逐渐变小 3.E -x 图像(1)E -x 图像中,E 的数值反映电场强度的大小,E 的正负反映电场强度的方向,E 为正表示电场方向为正方向.(2)E -x 图线与x 轴所围的面积表示“两点之间的电势差U ”,电势差的正负由沿电场强度方向电势降低判断.例5 (多选)(2021·南安市高二月考)静电场在x 轴上的电场强度E 随x 变化的关系图像如图所示,x 轴正方向为电场强度正方向,带正电的点电荷沿x 轴运动,则点电荷( )A.在x2和x4处电势能相等B.由x1运动到x3的过程中电势能增大C.由x1运动到x4的过程中静电力先增大后减小D.由x1运动到x4的过程中静电力先减小后增大4.E p-x图像例6在光滑绝缘的水平桌面上有一带电的小球,只在静电力的作用下沿x轴正方向运动,其电势能E p随位移x变化的关系如图所示.下列说法正确的是()A.小球一定带负电荷B.x1处的电场强度一定小于x2处的电场强度C.x1处的电势一定比x2处的电势高D.小球在x1处的动能一定比在x2处的动能大带电粒子在交变电场中的运动[学习目标] 1.学会分析带电粒子在交变电场中的直线运动.2.学会分析带电粒子在交变电场中的曲线运动.一、带电粒子在交变电场中的直线运动1.此类问题中,带电粒子进入电场时初速度为零,或初速度方向与电场方向平行,带电粒子在交变静电力的作用下,做加速、减速交替的直线运动.2.该问题通常用动力学知识分析求解.重点分析各段时间内的加速度、运动性质、每段时间与交变电场的周期T间的关系等.常用v-t图像法来处理此类问题,通过画出粒子的v-t图像,可将粒子复杂的运动过程形象、直观地反映出来,便于求解.例1 (多选)(2021·鹤岗市工农区高二期中)如图甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大.当两板间加上如图乙所示的电压后,下列选项图中反映电子速度v 、位移x 和加速度a 三个物理量随时间t 的变化规律可能正确的是( )针对训练1 (多选)(2021·银川一中期中)如图甲所示,两平行金属板水平放置,A 板的电势φA =0,B 板的电势φB 随时间t 的变化规律如图乙所示,电子只受静电力的作用,且初速度为零(设两板间距足够大),则( )A .若电子是在t =0时刻进入板间的,它将一直向B 板运动B .若电子是在t =0时刻进入板间的,它将时而向B 板运动,时而向A 板运动,最后打在B 板上C .若电子是在t =T8时刻进入板间的,它将时而向B 板运动,时而向A 板运动,最后打在B板上D .若电子是在t =T4时刻进入板间的,它将时而向B 板运动,时而向A 板运动,最后不能打到B 板上二、带电粒子在交变电场中的曲线运动带电粒子以一定的初速度垂直于电场方向进入交变电场,粒子做曲线运动.(1)若带电粒子的初速度很大,粒子通过交变电场时所用时间极短,故可认为粒子所受静电力为恒力,粒子在电场中做类平抛运动.(2)若粒子运动时间较长,在初速度方向做匀速直线运动,在垂直初速度方向利用v y -t 图像进行分析:①v y =0时,速度方向沿v 0方向.②y 方向位移可用v y -t 图像的面积进行求解.例2 如图甲所示,极板A 、B 间的电压为U 0,极板C 、D 间的间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速度地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过C 、D 板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 板间飞出,不计粒子的重力及粒子间的相互作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 两极板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度.针对训练2 (多选)(2021·赤峰市松山区高二月考)如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间做周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0.已知t =0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场.不计粒子间的相互作用,则( )A .所有粒子都不会打到两极板上B .所有粒子最终都垂直电场方向射出电场C .运动过程中所有粒子的最大动能不可能超过2E k0D .只有t =n T2(n =0,1,2,…)时刻射入电场的粒子才能垂直电场方向射出电场带电粒子在重力场与电场中的运动[学习目标] 1.会应用运动和力、功和能的关系分析带电粒子在复合场中的直线运动问题. 2.会应用运动和力、功和能的关系分析带电粒子在复合场中的类平抛运动问题和圆周运动问题.一、带电粒子在复合场中的直线运动讨论带电粒子在复合场中做直线运动(加速或减速)的方法(1)动力学方法——牛顿运动定律、运动学公式.当带电粒子所受合力为恒力,且与速度方向共线时,粒子做匀变速直线运动,若题目涉及运动时间,优先考虑牛顿运动定律、运动学公式.在重力场和电场叠加场中的匀变速直线运动,亦可以分解为重力方向上、静电力方向上的直线运动来处理.(2)功、能量方法——动能定理、能量守恒定律.若题中已知量和所求量涉及功和能量,那么应优先考虑动能定理、能量守恒定律.例1如图所示,两水平边界M、N之间存在竖直向上的匀强电场.一根轻质绝缘竖直细杆上等间距地固定着A、B、C三个带正电小球,每个小球质量均为m,A、B两球带电荷量均为q、C球带电荷量为2q,相邻小球间的距离均为L.将该细杆从边界M上方某一高度处由静止释放,已知B球进入电场上边界时的速度是A球进入电场上边界时速度的2倍,且B球进入电场后杆立即做匀速直线运动,C球进入电场时A球刚好穿出电场.整个运动过程中杆始终保持竖直状态,重力加速度为g.不计空气阻力.求:(1)匀强电场的电场强度的大小E;(2)A球经过电场上边界时的速度的大小v0;(3)C球经过边界N时的速度的大小.针对训练1(多选)如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受合力为零B.做匀减速直线运动C.电势能逐渐增加D.机械能逐渐增加二、带电粒子的类平抛运动带电粒子在电场中的类平抛运动的处理方法:1.运动分解的方法:将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在这两个方向上分别列运动学方程或牛顿第二定律.2.利用功能关系和动能定理分析(1)功能关系:静电力做功等于电势能的减少量,W电=E p1-E p2.(2)动能定理:合力做功等于动能的变化,W=E k2-E k1.例2(2019·全国卷Ⅲ)空间存在一方向竖直向下的匀强电场,O、P是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m的小球A、B.A不带电,B的电荷量为q(q>0).A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为t2.重力加速度为g,求:(1)电场强度的大小;(2)B运动到P点时的动能.针对训练2(多选)(2021·荣成市高二月考)如图所示,有A、B、C三个质量相等,带正电、带负电和不带电的小球,从平行板电场的左侧不同位置以相同的初速度垂直于电场方向进入电场,它们落在同一点,极板平行于水平面,可以判断()A.小球A带正电,小球B不带电B.三个小球在电场中运动的时间相等C.三个小球到达极板时的动能关系为E k A<E k B<E k CD.三个小球在电场中运动时的加速度关系为a A>a B>a C三、带电粒子在电场(复合场)中的圆周运动1.解决复合场中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和静电力的合力,也有可能是单独的静电力.有时可以把复合场中的圆周运动等效为竖直面内的圆周运动,找出等效“最高点”和“最低点”. 2.等效最高点和最低点的确定方法在复合场中,任取一点(取题目中的圆心O 点),在该点处把物块所受重力与静电力合成为等效重力,等效重力所在直线与物块做圆周运动的圆周有两个交点,这两个交点一个是等效最低点,一个是等效最高点,并且等效最低点就是等效重力线箭头所在方向与圆周的交点,另一个就是等效最高点.例3 (2021·六安市高二期中)如图所示,一个竖直放置的半径为R 的光滑绝缘环,置于水平方向的匀强电场中,电场强度为E ,有一质量为m 、电荷量为q 的带正电荷的空心小球套在环上,并且Eq =mg .(1)当小球由静止开始从环的顶端A 下滑14圆弧长到位置B 时,小球的速度为多少?环对小球的压力为多大?(2)小球从环的顶端A 滑至底端C 的过程中,小球在何处速度最大?最大速度为多少?。
高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳广西合浦廉州中学秦付平两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题就是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,就是力学中能考查的重要内容。
从连接体的运动特征来瞧,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
从能量的转换角度来说,有动能与势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。
一、判断物体运动情况例1如图1所示,在不计滑轮摩擦与绳质量的条件下,当小车匀速向右运动时,物体A的受力情况就是( )A.绳的拉力大于A的重力B.绳的拉力等于A的重力C.绳的拉力小于A的重力D.拉力先大于A的重力,后小于重力解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向与与绳垂直的方向进行正交分解,分别就是v2、v1。
如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。
A的速度等于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。
点评:此类问题通常就是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体与被动运动物体的加速、减速的不一致性。
解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。
二、求解连接体速度例2质量为M与m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。
求当M滑至容器底部时两球的速度。
两球在运动过程中细线始终处于绷紧状态。
解析:设M滑至容器底部时速度为,m的速度为。
根据运动效果,将沿绳的方向与垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能守恒定律有:,联立两式解得:,方向水平向左;方向竖直向上。
点评:作为连接两个物体的介质绳,能实现力与能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。
重难点07 功能关系 能量守恒(原卷版)-高考物理重点难点热点专题汇总

1.命题情境源自生产生活中的与功能变化的相关的情境或科学探究情境,解题时能从具体情境中抽象出物理模型,正确各力做功情况和能量的转化。
2.命题既有重力场中的直线运动,也有电场或磁场中的直线运动、曲线运动,或更加复杂的复合场中的曲线运动的能量转化。
3.命题中经常注重物理建模思想的应用,具体问题情境中,抽象出物体模型,利用功能转化的思想知识分析问题和解决问题。
一.力做功及功能关系定洛伦兹力不做功,只改变速度的方向安培力可以做功,也可以不做功感应电流在磁场中受到的安培力做负功,阻碍导体棒与导轨的相对运动|W 安|=|ΔE 机械能|=Q 分子力可以做正功,也可以做负功W 分子力=-ΔE p核力核力破坏时将释放巨大的能量ΔE =Δmc 2其中c 为光速二、机械能守恒定律1.机械能守恒的判断(1)利用机械能守恒的定义判断;(2)利用做功判断;(3)利用能量转化判断;(4)对于绳突然绷紧和物体间非弹性碰撞问题,机械能往往不守恒.2.解题步骤(1)选取研究对象,分析物理过程及状态;(2)分析受力及做功情况,判断机械能是否守恒;(3)选取参考面,根据机械能守恒列式.3.应用技巧对于连接体的机械能守恒问题,常常应用重力势能的减少量等于动能的增加量来分析和求解.三、能量守恒定律分析物体做功的过程中有哪些能量之间发生转化,哪些能量增加,哪些能量减少,总的能量保持不变。
(建议用时:30分钟)一、单选题1.北京冬奥会后,冰雪运动越来越受人们关注,滑雪机也逐渐走进大众生活。
滑雪机是利用电机带动雪毯向上运动,雪毯的质感完全仿真滑雪场的平坦硬雪,滑雪者相对雪毯向下滑行,以达到学习和锻炼的目的,并且通过调整雪毯的速度或坡度,还可以模拟在滑雪场以各种速度在各种坡度的雪道滑行,如图为一小型滑雪机展品。
已知某滑雪机坡道长6m =L ,倾角37θ= ,在某次训练中,一开始雪毯静止未开启,一质量50kg m =(含装备)的滑雪者没有做任何助力动作,恰能够沿雪毯匀速下滑。
高考物理计算题常见考点分析

高考物理计算题常见考点分析1.力学综合型。
力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高。
具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体、多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。
2.带电粒子运动型。
带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区。
近年来高考重点就是受力情况和运动规律分析求解,周期、半径、轨迹、速度、临界值等,再结合能量守恒和功能关系进行综合考查。
3.电磁感应型。
电磁感应是高考考查的重点和热点,命题频率较高的知识点有感应电流的产生条件、方向的判定和感应电动势的计算,电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流的图象问题。
从计算题型看,主要考查电磁感应现象与直流电路、磁场、力学、能量转化相联系的综合问题,主要以大型计算题的形式考查。
4.力电综合型。
力学中的静力学、动力学、功和能等部分,与电学中的场和路有机结合,出现了涉及力学、电学知识的综合问题,主要表现为:带电体在场中的运动或静止,通电导体在磁场中的运动或静止;交、直流电路中平行板电容器形成的电场中带电体的运动或静止;电磁感应提供电动势的闭合电路等问题。
这四类又可结合并衍生出多种多样的表现形式。
从历届高考中,力电综合型有如下特点:(1)力、电综合命题多以带电粒子在复合场中的运动、电磁感应中导体棒动态分析、电磁感应中能量转化等为载体,考查学生理解、推理、综合分析及运用数学知识解决物理问题的能力。
(2)力、电综合问题思路隐蔽,过程复杂,情景多变,在能力立意下,惯于推陈出新、情景重组,设问巧妙变换,具有重复考查的特点。
5.信息处理型。
信息处理型试题是指试题提供一些有关信息,然后要求考生根据所学知识,将有用的信息收集起来,经过处理后运用已经的知识、方法和手段解决新问题。
高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳广西合浦廉州中学秦付平两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。
从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。
一、判断物体运动情况例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是()A.绳的拉力大于A的重力B.绳的拉力等于A的重力C.绳的拉力小于A的重力D.拉力先大于A的重力,后小于重力解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。
如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。
A的速度等于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。
点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。
解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。
二、求解连接体速度例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。
求当M滑至容器底部时两球的速度。
两球在运动过程中细线始终处于绷紧状态。
解析:设M滑至容器底部时速度为,m的速度为。
根据运动效果,将沿绳的方向和垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能守恒定律有:,联立两式解得:,方向水平向左;方向竖直向上。
点评:作为连接两个物体的介质绳,能实现力和能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。
10 静电场2高考真题分项详解(解析板)

十年高考分类汇编专题10静电场2(2011—2020)目录题型一、带电粒子在复合场中的运动 ................................................................................................ 1 题型二、带电粒子在纯电场、复合场中运动的综合类问题 (5)题型一、带电粒子在复合场中的运动1.(2019天津)如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加212mvB .机械能增加22mv C .重力势能增加232mv D .电势能增加22mv【考点】:功能关系、动能定理、运动的独立性、电场力做功【答案】:C【解析】:小球的动能增加量为2222321)2(21mv mv v m E E KM KN =-=-;故A 错误;除重力外其它力对小球做功的大小为小球机械能的增加量,在本题中电场力对小球做功的大小为小球机械能的增加量,在水平方向上研究小球可知电场力对其做正功,电势能减小,可求得电场力对小球做功大小为小球水平方向动能的增量2221)(v m ;即小球的机械能增加了22mv ;电势能减小了22mv ;故B 对,D 错;从M 点到N 点对小球应用动能定理得:2221)2(21mv v m W W G D -=-;又22mv W D =;可求得221mv W G =故C 错;2.(2016江苏)如图所示,水平金属板A 、B 分别与电源两极相连,带电油滴处于静止状态.现将B 板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴( )A. 仍然保持静止B. 竖直向下运动C. 向左下方运动D. 向右下方运动【考点】带电粒子在复合场中的运动、受力分析【答案】D【解析】两极板平行时带电粒子处于平衡状态,则重力等于电场力,当下极板旋转时,板间距离增大场强减小,电场力小于重力;由于电场线垂直于金属板表面,所以电荷处的电场线如图所示,所以重力与电场力的合力偏向右下方,故粒子向右下方运动,选项D正确.3.(2013广东)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【考点】带电粒子在复合场中的运动、受力分析、类平抛运动【答案:C】【解析】选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y =12at 2及a =qE m ,得带电微滴的轨迹方程为y =qEx22mv 20,即运动轨迹是抛物线,与带电量有关,选项C 正确,D 错误.4.(2016全国1) 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力以外其他力做的功等于机械能的变化;合力的功等
.要注意把握重力和摩擦力做功的区别,滑动摩擦力做功应是力和路程的乘积,把机械能转化为内能.
的跳水运动员竖直进入水中后受到水
,那么在他减速下降高度为h的过程中,
.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.
段光滑,AB段粗糙,动摩擦因数μ=
200 N/m,左端固定于P点,右端处于自由
的小滑块,使其缓慢压缩弹簧,当推力做功W=25 J时撤去推力.已知弹簧
弹簧处于自然状态时,其右端位于P点.现用一质量m=0.1 kg的小
18 m/s,经过水平轨道右端Q点后恰好沿半圆轨道
B点,若物块与水平轨道间的动摩擦因数μ=
,取g=10 m/s2.
与水平传送带平滑连接.传送带以恒定速率v=3.0 m/s向右运动,
间距L=0.80 m,两个质量均
,长为r=5.0 m的轻质绝缘细
′处,且细绳处于拉直状态,滑块B不带电.开始时滑块A、B
之间细绳,弹簧弹开(忽略其伸长
,方向竖直向上.滑块B脱离弹簧后
当前面的运动过程不好直接分析时,我们可以先分析后面的运
.对于物体在传送带上的运动问题,要通过比较物体和传送带的速度来确定物体相对传送带的运动特点.
处与水平传送带恰平齐接触,传送带水平
是由三部分光滑轨道平滑连接在一起组成的,
BCD与弧DE相切在轨道最高点
以初速度v0=4 m/s冲上传送带,
,结果物块滑上传送带运动一段时间后,又返回到N端,
因碰撞使弹射器的锁定被打开,将物块弹
=0和t=4 s末两个时刻的两张照片,当t=0时,汽
(a) (b) (c)
B.4 s末汽车的速度
内汽车牵引力对汽车所做的功 D.4 s末汽车牵引力的功率
.如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止开始下滑,到b点开
始压缩轻弹簧,到c点时达到最大速度,到d点(图中未画出)开始弹回,返回b点离开弹
簧,恰能再回到a点.若bc=0.1 m,弹簧弹性势能的最大值为8 J,则( )
.轻弹簧的劲度系数是50 N/m B.从d到c滑块克服重力做功8 J
.滑块动能的最大值为8 J D.从d到c弹簧的弹力做功8 J
如图11所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状
态的跳板(A位置)上,随跳板一同向下运动到最低点(B位置),对于运动员从开始与跳板接触到运
动至最低点的过程,下列说法中正确的是 ( )
.运动员到达最低点时,其所受外力的合力为零
.在这个过程中,运动员的动能一直在减小
点,质量M=3 kg的三角形
的小球从离地面高H=5.5 m
1.4 s,小球沿DE上升到
求:
.如图所示,在竖直平面内,由斜面和圆形轨道分别与水平面相切连接而成的光滑轨道,圆形轨道的半径为R.
点由静止开始下滑,物块通过轨道连接处的B、C点时,无机械能
点,弹簧处于自然状态时其右端位于B点.水平桌面右侧有一
点到桌面的竖直距离也是R,∠PON=45°第
释放后物块停在B点(B点为弹簧原长位置)
点释放,物块过B点后做匀减速直线运动,其位
点沿圆轨道切线落入圆轨道.(g=10。