(人教版)七年级上册-第二章整式的加减知识总结

合集下载

人教版七年级数学上册第二章 整式的加减知识点总结

人教版七年级数学上册第二章 整式的加减知识点总结

第二章 整式的加减
1、单项式:表示数或字母乘积的式子,单独的一个数字或字母也叫单项式。

(注意:像x
1这样的字母在分母的位置的式子不是数与字母的积,故不是单项式)
2、单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号,如:-xy,系数是-1,a 系数是1);单项式中所有字母指数的和,叫单项式的次数(只与字母有关,如-xy,次数是2,ab 2,次数是3)。

3、多项式:几个单项式的和叫多项式。

X k b 1 . c o m
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
(如多项式 2xy 2+xy-y+1,项数是4,次数是3。

) 5、⎩
⎨⎧多项式单项式整式 (单项式和多项式统称为整式)。

6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同
类项(与系数无关,与字母的排列顺序无关)。

7、合并同类项法则:系数相加,字母与字母的指数不变。

8、去括号法则:
去括号时,若括号前边是“+”号,括号里的各项都不变号。

若括号前边是“-”号,括号里的各项都要变号。

9、整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:
(合并)
10、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

人教版初一上册数学第二章整式的加减总结(共66张PPT)

人教版初一上册数学第二章整式的加减总结(共66张PPT)
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
掌握同类项的概念时注意:
1.判断几个单项式或项,是否是同类项,就 要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同.
=(3x2 3x2 2x2 ) 2x 3
=4x 2 2 x 3
注意:有多重括号的,一般先去小括号,再去中括号, 最后再去大括号;
求多项式3(x2 4x 1) 1 (3x3 4x2 6)的值,其中x 2; 3
(先去括号) (降幂排列)
(合并同类项,化简完成) 当x=-2时(代入)
是单项式。 • 4,0也是数字,也属于单项式。 • 5,有分数也属于单项式。
• 单项式的次数是指单项式中所有字母因数的指数和

这个名词是清代数学家李善兰译书时根据原词概念汉
化的。

单项式是字母与数的乘积。

单项式的次数:一个单项式中,所有字母的指数的和
叫做这个单项式的次数。

单项式的系数:单项式中的数字因数。如:2xy的系
3、 –xmy与45ynx3是同类项,则 m=__3_____. n=__1____
1.填空,并解释其中依据:
(1) 79t 21t (79 21)t 100t
(2) 3ab2 4ab2 ( 3 4)ab2 ab2
(3) 1.618 x 0.118 x 0.5x ( 1.618 0.118 0.5 )x x
呀!!
1、找出同类项
用不同的线标记出各组同类项,注意每一项的符号。

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律. 2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x D解析:D 【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润. 【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D . 【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 11.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.2.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.3.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于 解析:8128a【分析】根据题意给出的规律即可求出答案. 【详解】由题意可知:第n 个式子为2n-1a n , ∴第8个式子为:27a 8=128a 8, 故答案为:128a 8. 【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型. 8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 1.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.解析:22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得;(3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级数学上册--第二章 整式的加减章节复习(课件)

人教版七年级数学上册--第二章 整式的加减章节复习(课件)
解:因为|x+1|+(y﹣1)2=0,且|x+1|≥0,(y﹣1)2≥0,
所以x+1=0,y﹣1=0,
所以x=﹣1,y=1,
所以3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3
=3x2y+3xy﹣2x2y+2xy﹣4x2y﹣3
=﹣3x2y+5xy﹣3
=﹣3×(﹣1)2×1+5×(﹣1)×1﹣3
【4-2】先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3,其中x、y
2.多项式的次数:多项式里,次数最高项的次数,叫做这个多项式的次数.
3.整式:单项式与多项式统称整式.
三、多项式及整式相关概念
在确定多项式的项和次数时应注意:
1.多项式的各项应包括它前面的符号;
2.多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前
面的符号;
3.要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,
=-2x-(x -2x +6x)
2
9
2
=-2x-(-x2+6x)
= 3x − ( x + 3 + 2x 2 )
2
9
=-2x+x2-6x
2
= 3x − x − 3 − 2x 2
2
2
9
=x -8x
2
=x − x−3
2
2
2
3
整式的加减运算
例7.已知a,b,c三个数在数轴上对应的点如图所示,
化简: b − a − 2a − b + a − c − c
解:根据数轴可知:c < b < 0 < a,|c|>|a|>|b|,

七年级数学上册第二章整式的加减基础知识点归纳总结

七年级数学上册第二章整式的加减基础知识点归纳总结

(名师选题)七年级数学上册第二章整式的加减基础知识点归纳总结单选题1、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b 的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.2、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.3、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.4、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.5、一个矩形的周长为l,若矩形的长为a,则该矩形的宽为( )A.l2−a B.l−a2C.l−a D.l2a答案:A分析:根据矩形的周长公式进行计算即可.解:∵矩形的周长为l,矩形的长为a,∴矩形的宽为l−a.2故选A.小提示:本题考查列代数式,解题的关键是熟记矩形的周长=2(长+宽).6、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.7、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.8、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.9、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10、下列整式与ab2为同类项的是()A.a2b B.−2ab2C.ab D.ab2c答案:B分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与ab2是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与ab2不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与ab2不是同类项,故选项不符合题意.故选:B.小提示:此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.填空题+cd的值是_________.11、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.12、立信初一年级周二体锻课站队时,有三个人数一样多的小组(假设人数足够多)分别记为A、B、C三个小组,依次完成以下三个步骤:第一步,A组二个人去B组;第二步,C组三个人去B组;第三步,A组还有几个人,B组就去多少人到A组.请你确定,最终B组人数为 _____人.答案:7分析:设A、B、C原来人数为a人,根据题意列出关系式,去括号合并即可得到结果.解:设A、B、C原来人数为a人,根据题意得:a+2+3﹣(a﹣2)=a+2+3﹣a+2=7(人),则最终B组人数为7人.所以答案是:7.小提示:此题考查了整式的加减,弄清题意是解本题的关键.13、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.14、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.15、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空.解:应写成:2a2-b.3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.解答题.16、先化简,再求值:a2b-[2a2-2(ab2-2a2b)-4]-2ab2,其中a=-2,b=12答案:−3a2b−2a2+4;-10分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=a2b−(2a2−2ab2+4a2b−4)−2ab2=a2b−2a2+2ab2−4a2b+4−2ab2=−3a2b−2a2+4当a=-2,b=12时,原式=−3×(−2)2×12−2×(−2)2+4=−6−8+4=-10小提示:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17、东坡区某学校举办“传承三苏家国情怀弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12倍少1件,各奖品单价如表所示.若二等奖奖品买了a件,全部奖品的总价是b元.a的代数式表示b,并化简;(2)当a=8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?答案:(1)12a−1;37−32a;b=42a +680(2)买一等奖奖品花费180元,买三等奖奖品花费500元(3)1184元分析:(1)利用题干中的数量关系即可表示出一等奖的件数,用总数减去一、二奖的奖品数量即可得到三等奖的奖品数量;利用表格中的信息分别计算三种奖品的费用再相加即可得出结论;(2)利用费用=件数×单价分别列出代数式,再将a=8代入计算即可得出结论;(3)利用已知条件求得a值,再将a值代入(1)中的代数式b=42a+680,计算即可得出结论.(1)一等奖奖品12a−1(件),三等奖奖品36-a-(12a−1)=37−32a(件)所以答案是:12a−1;37−32a.用含有a的代数式表示b是:b=(12a−1)×60+42a+(37−32a)×20=30a-60+42a +740-30a=42a +680;即b=42a +680.(2)当a=8时,买一等奖奖品花费(12×8−1)×60=180(元)买三等奖奖品花费(37−32×8)×20=25×20=500(元)答:当a=8时,买一等奖奖品花费180元,买三等奖奖品花费500元.(3)买二等奖奖品花费504元,则二等奖奖品买了504÷42=12(件),即a=12,又(1)可知b=42a +680,故买全部奖奖品花费了42×12+680=1184(元)答:若买二等奖奖品花费504元,则买全部奖奖品花费了1184元.小提示:本题主要考查了列代数式,求代数式的值,利用公式:费用=件数×单价解答是解题的关键.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)数学 第二章<整式的加减>知识点姓名一、整式1. 代数式:用基本的运算符号把 和表示 连接起来的式子叫做代数式,单独的一个数或一个字母也是代数式。

2. 代数式的值:一般地,用 代替代数式里的字母,按照代数式的运算关系计算得出的结果,叫做代数式的值。

注意:(1)当数与字母相乘时,乘号通常简写为“ ”或 ,并且数在 ,字母在 ,若数字是带分数,要化为 。

(2)字母与字母相乘时,乘号通常省略不写或者写为“· ”。

(3)除法写成 的形式。

3.单项式:如100t 、6a 2b 、2.5x 、vt 、-n ,它们都是数或字母的积,像这样的式子叫做 ,单独的一个数或一个字母也是 。

4.单项式的系数:单项式中的 叫做这个单项式的系数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的系数分别是 、 、 、 、 。

5. 单项式的次数:一个单项式中, 叫做这个单项式的次数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的次数分别是 、 、 、 、 。

6.多项式:如2x-3,3x+5y+2z ,21ab-πr 2,它们都可以看作几个单项式的和,像这样 叫做多项式。

其中 叫做多项式的项,不含字母的项叫做 项。

例如:在多项式2x-3中,2x 和-3是它的项,其中-3是常数项。

7.多项式的次数:多项式里 次数,叫做这个多项式的次数。

例如:在多项式2x-3中,次数最高的项是一次项2x ,这个多项式的次数是1;在多项式x 2+2x+18中,次数最高的项是二次项x 2,这个多项式的次数是2。

注意:(1)多项式的次数取决于多项式中次数最高项的次数。

(2)多项式的每一项都包括它前面的符号。

(3)多项式的次数不是所有项的次数之和。

(4)多项式中含有几项,就是几项式,最高次数是几,就是几次式。

(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数。

(6)判断一个代数式是不是多项式,关键是代数式能不能写成单项式的和。

人教版七年级上册数学-第二章 第5课 整式的加减(去括号)

人教版七年级上册数学-第二章 第5课 整式的加减(去括号)

12.已知多项式 A=2x2-3xy,B=-3x2+5xy,化简下列式子:
(1)A-B; (1)2x2-3xy-(-3x2+5xy)
(2)A-2B.
=2x2-3xy+3x2-5xy
=5x2-8xy
(2)2x2-3xy-2(-3x2+5xy) =2x2-3xy+6x2-10xy =8x2-13xy
第3关 18.化简 2a-3b-5a+2(a-7b).
原式=2a-(3b-5a+2a-14b) =2a-3b+5a-2a+14b =5a+11b
19.已知多项式:A=a2-2ab-2b2,B=3a2+ab-3b2,化简下列
各式:
(1)A+B;
(2)A-2B.
(1)a2-2ab-2b2+3a2+ab-3b2
11.(例 4)已知多项式 A=a2-2ab,B=3a2+5ab,化简下列式子:
(1)A+B; (1)a2-2ab+3a2+5ab
(2)A-B.
=(a2+3a2)+(-2ab+5ab)
=4a2+3ab
(2)a2-2ab-(3a2+5ab) =a2-2ab-3a2-5ab =(a2-3a2)+(-2ab-5ab) =-2a2-7ab
三、过关检测
第1关
13.式子 x-2(y-1)去括号,结果为( D )
A.x-2y-1
B.x-2y+1
C.x-2y-2
D.x-2y+2
14.化简 a-b-(a+b)的结果是( C )
A.0
B.2a
C.-2b
D.2a-2b
15.下面去括号的过程正确的是( C ) A.m+2(a-b)=m+2a-b B.3x-2(4y-1)=3x-8y-2 C.(a-b)-(c-d)=a-b-c+d D.-5(x-y-z)=-5x+5y-5z

人教版七年级数学第二章整式的加减知识点归纳

人教版七年级数学第二章整式的加减知识点归纳

第二章整式的加减知识点1.单项式:数字与字母的积或者字母与字母的积。

一个单独的数字或者具体的数字也是单项式。

注意:数字与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。

2.单项式的系数:单项式中的数字因数。

如果在一个单项式中没有出现具体的数字,则它的系数是1.例如:xy 它的系数是1,-n 它的系数是-1.常数项(具体的数字)的系数就是它本身,例如:3的系数就是3,π的系数就是π。

π是一个常数(具体的数字),不是字母。

3.单项式的次数:单项式中所以字母指数的和。

例如:xy 6的次数是2次,323n m 的次数是5次,y x 233的次数是3次。

常数(具体的数字)的次数是0次,例如:3的次数就是0,π的次数是0。

4.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。

例如:多项式4y 32xy 22-+-m 是由单项式22xy 、m 2-、y 3、7-相加组成,所以22xy 、m 2-、y 3、7-就是多项式4y 32xy 22-+-m 的项,7-就是常数项。

5.多项式的次数:多项式中次数最高项的次数。

要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。

其中次数最高的项叫最高次项,例如:多项式4y 32xy 22-+-m ,22xy 的次数是3次,m 2-的次数是1次,y 3的次数是1次,7-的次数是0次,所以22xy 的次数最高,那么22xy 就是最高次项,则这个多项式的次数就是3次。

6.整式:多项式和单项式统称为整式。

如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。

7.同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如233-n m 与325m n 是同类项,因为这两个项中都含有字母m 、n ,并且字母m 的指数都是3,字母n 的指数都是2,所以他们是同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减
一、复习:
1、主要概念:
引导学生积极回答所提问题,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。

(1)关于单项式,你都知道什么?
单项式的概念:表示数或字母的积的代数式,叫做单项式,特别地,单独一
2, x/3, m, 5,ab2)个
数或一个字母也叫做单项式。

(3a, -5x
单项式中的数字因数,叫做单项式的系数。

一个单项式中,所有字母的指数
的和,叫做这个单项式的次数。

(2)关于多项式,你又知道什么?
多项式的定义:几个单项式的和叫做多项式,并指出,其中每个单项式叫做
2+5y+2z, 5+ 0.5ab-π2r)多项
式的项,不含字母的项叫做常数项。

(3x
多项式里次数最高项的次数,叫做这个多项式的次数。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也
是同类项。

2+2x+7+3x-8x2-2 (找出多项式中的同类项) 4x
2-8x2+2x+3x+7-2 (交换律) =4x
2-8x2 )+(2x+3x)+(7-2) (结合律) =(4x
2 +(2+3)x+(7-2) (分配律) =(4-8)x
2+5x+5
=-4x
把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的
和,且字母部分不变。

注意:1、若两个同类项的系数互为相反数,则两项的和等于零,如:
2+3ab2=(-3+3)ab2=0×ab2=0。

-3ab
2、多项式中只有同类项才能合并,不是同类项不能合并。

3、通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或
2+5x+5 或写5+5x-4x2。

者从
小到大(升幂)的顺序排列,如:-4x
(3)什么叫整式?
让学生回顾总结,形整式:
成知识体系。

单项式(定义系数次数)
多项式(项同类项次数升降幂排列)
2、整式的加减:
去(添)括号。

合并同类项。

法则顺口溜:去括号,看符号:是“+号”,不变号;是“―”号,全变号。

二、范例学习
例1:找出下列代数式中的单项式、多项式和整式。

2n
z+y+z 1 m 1 1
2+x+
5
3 ,4xy, 2 ,x x ,0,-2x ,m,―2.01 ×10
a ,
x
2
2n
m
5;多项式有z+y+z 解:单项式有4xy, 2 ,0,m,―2.01 ×10
3 ;
2n
m z+y+z
5
整式有4xy,
2 ,0,m,-2.01 ×10
, 3 。

3y5z
-x
2,3
5,例2:指出下列单项式的系数、次数:ab,―x 5 xy
3 。

2
解:ab:系数是1,次数是2;―x:系数是―1,次数是2;
3y5z
-x
3 5:系数是3 1
5 xy 5 ,次数是6; 3 ,次数是9。

3 :系数是―
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+号”或“―号”,次数是“指数之和”。

3
2b―ab2+b3―1是几次几项式,最高次项、常数项各例3:指出多项式 a
―a
是什么?
3、―a2b、―ab2、b3,常数项是―1。

解:是三次五项式,最高次项有: a
例4:化简,并将结果按x 的降幂排列:
1
4 2 3 2
(1)(2x ―5x ―4x+1) ―(3x―5x ―3x);(2) ―[―( ―x+
2 )]―(x ―1);
1
2)+ 1
2
2 2)
(3)―3(2 x 2 (2x
―2xy+y ―xy―2y
3
4 2
解:(1)原式=2x ―3x 2 ;(3)原式=―
―x+1;(2)原式=―2x+
2。

xy―4y 1
2+11
2 2 x
通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时
分配律的使用问题。

2+1 2,其中a=1
2 例
5:化简、求值:5ab―2[ 3ab―(4ab 2 ab)]―5ab 2 ,b=―
3 。

2
2
解:化简的结果是:3ab
3 。

,求值的结果是
3+4x2y+5y3 后,得x3―x2y+3y3,求这个多项式,例6:一个多项式加上―2x
并求当x=―1 1
2 ,y=
2 时,这个多项式的值。

3―5x2y―2y3;值为―5
解:此多项式为3x
4 。

一.对有理数进行复习:
1.有理数1
2
的倒数()
2.如果 a 的相反数是2,那么 a 等于()
3.如果a a,b b,则有理数 a 与有理数 b 的关系是()
4.近似数 4
4. 02 10 精确到()位
5.已知a 1 5,则 a 的值是()
6.若a c 0 b ,则abc 与0 的大小关系式()
b
7.若a 1 b 3 0,则 1
a
的值是()
1
8.计算: 2.5 ( 0.4) 4 ( 2 ) ()
2
9.计算:
1.4
3
11
3
11
1.4 1
1
7
1
2
2
7
二.对整式相关内容练习:
1.一个三位数,它的个位数是0,十位数字是a,百位数字是b, 用代数式表示这个三位数是()
2.如果x 是一个三位数,现在把数字 1 放在它的右边,得到一个四位数,这个四位数是()
3.已知x - 2y -2 , 则3-x2y 的值是()
4.正方形边长为a, 其各边均增加 3 后,面积增加()
5.已知a-b3, c d 2, 则(b c) -(a - d) 的值为()
6.代数式 2
100 (2a 6) 的最大值是(),此时a=()
1
7.已知x 3,则代数式
x x
1
x
2
x 6
1
x
的值为()
a b
8.已知a, b 互为相反数, c , d 互为倒数,m 的绝对值等于2,求m 2cd 的值。

c d
2 2
2 b 1 2 3
9.a, b, c 满足:(1 )(a 5) 5c 0; (2 )2x y 与3x y 是同类项。


3
2 ab b a abc b2 c2
2 2
(2a 3 6 ) (3 9 4 ) 的值。

相关文档
最新文档