高考物理 考点汇总 考点11 电磁感应
高中物理-电磁感应知识点汇总

电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。
如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。
高考物理第十一章电磁感应知识点

高考物理第十一章电磁感应知识点高考物理第十一章电磁感应知识点其实,高考物理并不是很难,关键在于公式的总结和运用,还有对知识点的掌握。
物理第十一章电磁感应就是其中重要的环节。
下面是店铺为大家精心推荐的电磁感应的重点,希望能够对您有所帮助。
电磁感应必背知识点一、磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度B和平面面积S的乘积叫磁通量;1、计算式:φ=BS(B⊥S)2、推论:B不垂直S时,φ=BSsinθ3、磁通量的国际单位:韦伯,wb;4、磁通量与穿过闭合回路的磁感线条数成正比;5、磁通量是标量,但有正负之分;二、电磁感应:穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生,这种现象叫电磁感应现象,产生的电流叫感应电流;注:判断有无感应电流的方法:1、闭合回路;2、磁通量发生变化;三、感应电动势:在电磁感应现象中产生的电动势;四、磁通量的变化率:等于磁通量的变化量和所用时间的比值; △φ/t1、磁通量的变化率是表示磁通量的变化快慢的.物理量;2、磁通量的变化率由磁通量的变化量和时间共同决定;3、磁通量变化率大,感应电动势就大;五、法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比;1、定义式:E=n△φ/△t(只能求平均感应电动势);2、推论; E=BLVsinaθ(适用导体切割磁感线,求瞬时感应电动势,平均感应电动势)(1)V⊥L,L⊥B, θ为V与B间的夹角;(2) V⊥B,L⊥B, θ为V与L间的夹角(3) V⊥B,L⊥V, θ为B与L间的夹角3、穿过线圈的磁通量大,感应电动势不一定大;4、磁通量的变化量大,感应电动势不一定大;5、有感应电流就一定有感应电动势;有感应电动势,不一定有感应电流;六、右手定则(判断感应电流的方向):伸开右手,让大拇指和其余四指共面、且相互垂直,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动方向,四指指向感应电流的方向。
高中物理知识点总结电磁感应

高中物理知识点总结电磁感应
电磁感应: 1. 感应电动势:当静止的磁通线沿着一个电流通道移动时,会产生一个电动势; 2. 电感:电感是指在一个电路中,磁场变化引起的电动势; 3. 电感耦合:当两个电路相连时,它们之间的磁感耦合,使得磁场可以在两者之间传播; 4. 交流电的感应电流:当一个静止的磁通线沿着一个有电流的线路移动时,会产生一个和该电流周期性变化的电流; 5. 磁通闭环:将电流回路的一端,用一个磁通线或线圈绕制成一个闭环,就形成了一个磁通闭环; 6. 晶体管的感应原理:晶体管是由磁感耦合原理来实现信号放大的; 7. 电磁共振:当一个电流通过一个磁感耦合的电路时,会出现电磁共振的现象,即磁场的能量在电路的两端交替传递。
高三物理知识点详解电磁篇

高三物理知识点详解电磁篇电磁现象是物理学中的重要内容,在我们日常生活中也有着广泛的应用。
了解电磁现象,掌握相关的物理知识点对于高三学生来说至关重要。
本文将对高三物理知识点中与电磁有关的内容进行详解。
一、电磁感应电磁感应是指导体中的磁场发生变化时,会在导体中产生感应电流。
其中著名的法拉第电磁感应定律给出了感应电动势和磁通量变化的关系。
即感应电动势的大小与磁通量变化速率成正比。
公式表达为:$\varepsilon$ = -ΔΦ/Δt其中Φ表示磁通量,单位为Wb(韦伯),t表示时间,单位为s (秒)。
由此可见,感应电动势的产生离不开磁场的变化。
二、洛伦兹力洛伦兹力是指带有电荷的粒子在磁场中受到的力。
洛伦兹力的大小与电荷、电流和磁场的关系由洛伦兹力公式给出。
洛伦兹力公式为:F = q(v × B)其中F表示洛伦兹力大小,q表示电荷的大小,v表示电荷运动的速度,B表示磁场的向量。
洛伦兹力的方向垂直于电荷的速度和磁场的方向,并且符合右手定则。
三、电磁波电磁波是指由电场和磁场相互作用而形成的波动现象。
它们的传播速度都是光速,符号为c,即3×10^8 m/s。
电磁波可分为不同的频率范围,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
四、法拉第电磁感应定律法拉第电磁感应定律揭示了磁场与导体之间的相互作用。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,导体中会产生感应电动势和感应电流。
这个定律对于电磁感应现象的解释有着重要的意义。
五、电磁波谱电磁波谱是各种电磁波的分类和排列,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波谱按照波长和频率的不同进行了划分,同时也涵盖了人类目前所能观测到的所有电磁波。
六、电磁感应定律的应用电磁感应定律在实际生活中有着广泛的应用。
例如,变压器的工作原理就是基于电磁感应定律的。
电磁感应定律也应用于电磁铁、感应炉等电磁器件的制造和设计。
高考物理一轮复习11.1电磁感应--电磁感应现象和楞次定律(原卷版+解析)

考点35电磁感应现象楞次定律新课程标准1.知道磁通量。
通过实验,了解电磁感应现象,了解产生感应电流的条件。
知道电磁感应现象的应用及其对现代社会的影响。
2.探究影响感应电流方向的因素,理解楞次定律。
命题趋势高考对本专题的考查内容有电磁感应现象的分析与判断,主要体现对物理规律的理解,例如楞次定律,试题情境生活实践类真空管道超高速列车、磁悬浮列车、电磁轨道炮等各种实际应用模型学习探究类电磁感应的图像问题.考向一电磁感应现象考向二楞次定律考向三楞次定律推广应用考向四二次感应现象考向一电磁感应现象1.磁通量(1)定义:匀强磁场中,磁感应强度B与垂直磁场方向的面积S的乘积叫作穿过这个面积的磁通量,简称磁通。
我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:Φ=BS。
(3)公式的适用条件:①匀强磁场;②S是垂直磁场方向的有效面积。
(4)单位:韦伯(Wb),1 Wb=1T·m2。
(5)标量性:磁通量是标量,但有正负之分。
磁通量的正负是这样规定的:任何一个平面都有正、反两面,若规定磁感线从正面穿出时磁通量为正,则磁感线从反面穿出时磁通量为负。
(6)物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:①通过矩形abcd 的磁通量为BS 1cos θ或BS 3. ②通过矩形a ′b ′cd 的磁通量为BS 3. ③通过矩形abb ′a ′的磁通量为0. 2.磁通量的变化量(1)在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
(2)磁通量变化的常见情况变化情形 举例磁通量变化量 磁感应强度变化永磁体靠近或远离线圈、电磁铁(螺线管)内电流发生变化ΔΦ=ΔB·S有效面积变化有磁感线穿过的回路面积变化闭合线圈的部分导线做切割磁感线运动,如图ΔΦ=B·ΔS回路平面与磁场夹角变化线圈在磁场中转动,如图磁感应强度和有效面积同时变化弹性线圈在向外拉的过程中,如图ΔΦ=Φ2-Φ1磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt 。
2023年高考物理一轮考点复习第十一章电磁感应第1讲电磁感应现象、楞次定律

练案[29] 第十一章电磁感应第1讲电磁感应现象楞次定律一、选择题(本题共14小题,1~10题为单选,11~14题为多选)1.(2023·江苏模拟预测)电吉他的工作原理是在琴身上装有线圈,线圈附近被磁化的琴弦振动时,会使线圈中的磁通量发生变化,从而产生感应电流,再经信号放大器放大后传到扬声器。
其简化示意图如图所示。
则当图中琴弦向右靠近线圈时( C )A.穿过线圈的磁通量减小B.线圈中不产生感应电流C.琴弦受向左的安培力D.线圈有扩张趋势[解析]琴弦向右靠近线圈时,穿过线圈的磁通量增大,线圈中产生感应电流,由“来拒去留”可知琴弦受到向左的安培力,由“增缩减扩”可知线圈有收缩趋势,故ABD错误,C正确。
2.(2023·北京通州模拟预测)安装在公路上的测速装置如图,在路面下方间隔一定距离埋设有两个通电线圈,线圈与检测抓拍装置相连,车辆从线圈上面通过时线圈中会产生脉冲感应电流,检测装置根据两个线圈产生的脉冲信号的时间差计算出车速大小,从而对超速车辆进行抓拍。
下列说法正确的是( B )A.汽车经过线圈上方时,两线圈产生的脉冲电流信号时间差越长,车速越大B.汽车经过通电线圈上方时,汽车底盘的金属部件中会产生感应电流C.当汽车从线圈上方匀速通过时,线圈中不会产生感应电流D.当汽车从线圈上方经过时,线圈中产生感应电流属于自感现象[解析]汽车经过线圈上方时产生脉冲电流信号,车速越大,汽车通过两线圈间的距离所用的时间越小,即两线圈产生的脉冲电流信号时间差越小,故A错误;汽车经过通电线圈上方时,汽车底盘的金属部件通过线圈所产生的磁场,金属部件中的磁通量发生变化,在金属部件中产生感应电流,金属部件中的感应电流产生磁场,此磁场随汽车的运动,使穿过线圈的磁通量变化,所以线圈中会产生感应电流,故B正确,C错误;当汽车从线圈上方经过时,线圈中产生的感应电流并不是线圈自身的电流变化所引起的,则不属于自感现象,故D错误。
2022年高考物理总复习第一部分常考考点复习第十一章电磁感应第2讲法拉第电磁感应定律、自感现象

第2讲 法拉第电磁感应定律 自感现象【课程标准】1.通过实验,理解法拉第电磁感应定律。
2.通过实验,了解自感现象和涡流现象。
3.能举例说明自感现象和涡流现象在生产生活中的应用。
【素养目标】物理观念:法拉第电磁感应定律、涡流、电磁驱动、电磁阻尼、自感现象、互感现象。
科学思维:利用磁场、磁感线等模型综合分析电磁感应问题,从能量角度分析楞次定律,从动量角度分析电磁感应类问题。
一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =nt∆Φ∆,其中n 为线圈匝数。
3.导体切割磁感线的情形 切割方式 电动势表达式说明垂直切割 E =Blv ①导体棒与磁场方向垂直,磁场为匀强磁场 ②式中l 为导体切割磁感线的有效长度 ③旋转切割中导体棒的平均速度等于中点位置的线速度12l ω倾斜切割 E =Blv sin θ (θ为v 与B 的夹角)旋转切割 (以一端为轴) E =Bl v =12Bl 2ω命题·生活情境电磁炉已走进千家万户,为我们日常生活提供了方便,电磁炉工作利用了什么原理?提示:电磁炉利用了电磁感应原理产生涡流。
二、自感、涡流、电磁驱动、电磁阻尼1.自感现象:(1)概念:由于线圈本身的电流变化而在自身内产生的电磁感应现象称为自感。
(2)自感电动势:①定义:在自感现象中产生的感应电动势叫作自感电动势。
②表达式:E=L ΔIΔt。
(3)自感系数L:①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH=10-3 H,1 μH=10-6 H。
2.涡流、电磁阻尼、电磁驱动:涡流电磁阻尼电磁驱动内容块状金属放在变化磁场中时,金属块内产生的旋涡状感应电流导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的相对运动如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力而运动起来产生原因电磁感应角度1 法拉第电磁感应定律(1)导体棒在磁场中运动一定能产生感应电动势。
高考物理一轮复习知识清单:电磁感应

知识清单:电磁感应●知识点1——磁通量1.物理意义:磁通量表示穿过某个闭合面积的磁感线条数。
2.公式: Φ=BS cos θ ,(1)θ是磁场方向与平面法向量的夹角,(2)S 应是指闭合回路中有磁感线的那部分有效面积(3)磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数的影响 【例如】求图中穿过闭合回路abcd 的磁通量由θ=0º,S 等于S 2 得磁通量:Φ=BS 2 3.单位:韦伯,Wb4.磁通量与感应电流的关系:穿过闭合回路的磁通量发生变化,回路中就产生出感应电流,而且磁通量变化越快(即磁通量变化率ΔΦΔt越大)感应电流就越大。
⎩⎨⎧Φ不变→无感应电流Φ变化→⎩⎪⎨⎪⎧回路闭合,有感应电流不闭合,无感应电流,但有感应电动势●知识点2——感应电流方向1.楞次定律:2.右手定则:让磁感线垂直从右手掌心进入,并使拇指指向导线切割磁感线的方向,四指所指的方向就是感应电流的方向.3.楞次定律的推论——(1)增反减同(2)强斥缩、弱吸胀内容例证阻碍原磁通量变化“增反减同”磁铁靠近线圈,B感与B原方向相反阻碍相对运动“来拒去留”磁铁与线圈靠近时排斥,远离时吸引使回路面积有变化“增缩减扩”P、Q是光滑固定导轨,a、b是可动金属棒,磁铁下移,a、b靠近阻碍原电流的变化“增反减同”合上S,B先亮4.一定律、三定则的比较适用范围基本现象右手螺旋定则电流的磁效应电流、运动电荷周围产生磁场左手定则磁场力磁场对电流、运动电荷的作用右手定则电磁感应部分导体做切割磁感线运动楞次定律闭合回路的磁通量发生变化●知识点3——感应电动势1.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一回路的磁通量的变化率成正比 (2)公式:E =n ΔΦΔt,其中n 为线圈匝数(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r2.导体棒平动切割磁感线引起的感应电动势E = B L v sin α sin βsin γ(1)这里L 是导轨架之间的导体棒直线长度(有效长度)(2)这里的α 、β、γ是 B 、L 、 v 任两个量的夹角 (3)若B 、L 、v 相互垂直,则E =BLv(4)导体棒相当于电源,感应电流在导体棒中从负极流向正极3.导体棒转动切割磁感线引起的感应电动势E =12Bωl 2 (l 是导体棒的长度)4.磁感应强度变化引起的感应电动势E = n S ΔBΔt (S 是闭合回路中磁场的面积)5.多匝矩形线框在匀强磁场中匀速转动引起的感应电动势(1)中性面的三大特征:①Φ=BS (最大) ②电动势电流为0 ③改变电流方向 (2)峰值面的三大特征:①Φ = 0(最小)②电动势E m =n BS ω 、电流I m =E mR +r(最大)规律物理量 (用途) t=0时刻是中性面 t=0时刻是峰值面图像瞬时电动势 瞬时输出电压 瞬时电流 e =E m sin ωt u =U m sin ωt i =I m sin ωte =E m cos ωt u =U m cos ωt i =I m cos ωt峰值电动势 (计算电容器的击穿电压) E m =n BS ωE m =n BS ω电动势有效值 电压有效值 电流有效值 (计算电功率)E =E m 2U =U m 2I =I m 2E =E m 2U =U m 2I =I m 2平均值 (用于计算通过导体的电荷量)E =BL v E =n ΔΦΔtI =ER +r E =BL v E =n ΔΦΔtI =ER +r●知识点4——通过导体的电荷量q1.已知导体棒的位移xq =I tI =ER +r q =n ∆ΦR+r q =nLxR+rE =n ΔΦΔt2.已知导体棒只在安培阻力作用下的运动时间,利用动量定理,有-(I L B )t= 0 - mv 0 得 qLB = m v 0 q =mv 0LB●知识点5——电磁感应中的动力学问题1.安培力的大小、方向:⎭⎪⎬⎪⎫安培力公式:F A =BIl感应电动势:E =Bl v 感应电流:I =ER F 安=B 2l 2vR安培力的方向一定与导体切割磁感线的运动方向相反(安培力是阻力)2.外力克服安培力做功,将机械能转化为电能,电流(导线中电场力)做功再将电能转化为其他形式的能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点11 电磁感应一、选择题1. (2012·新课标全国卷·T19)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率tB∆∆的大小应为 ( )A.πω4BB.πω2BC.πωBD.πω2B【解题指南】分别求出导线框以角速度ω匀速转动产生的电流大小的表达式和磁感应强度大小随时间线性变化时电流大小的表达式,建立等式求解tB∆∆的大小.【解析】选C. 设导线框半径为l,导线框以角速度ω匀速转动产生的电流大小为:RlBRlBI221221ωω==;导线框中磁感应强度大小随时间线性变化时产生的电流大小为:tBRlRtBlI∆∆π∆∆π⋅=⋅=221222,因为I1=I2,所以πω∆∆BtB=,故选项C正确.2. (2012·新课标全国卷·T20)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头方向相同,则i随时间t变化的图线可能是 ( )【解题指南】解答本题可按以下思路分析:【解析】选A.分析A图,如图甲所示,在0~t2时间内,直导线中的电流在线框处产生的磁场方向垂直于纸面向里,由楞次定律可知此过程中线框中的感应电流方向为顺时针方向,由左手定则可判断出线框的左边所受安培力较大,方向向左,线框的右边所受安培力较小,方向向右,线框所受合力方向向左,如图乙所示.在t2~t1时间内,直导线中的电流在线框处产生的磁场方向垂直于纸面向外,由楞次定律可知此过程中线框中的感应电流方向为顺时针方向,由左手定则可判断出线框的左边所受安培力较大,方向向右,线框的右边所受安培力较小,方向向左,线框所受合力方向向右,如图丙所示.故选项A正确,B、C、D错误.3.(2012·北京理综·T19)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后.将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是( )A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同【解题指南】解答本题可按以下思路分析:【解析】选D.无论是接到直流电源还是交流电源,在开关闭合的瞬间,穿过线圈的磁通量都是增加的,因此,环跳起与否跟线圈接在了交流电源还是直流电源上无关,A错误;电源电压越高,线圈匝数越多,开关闭合的瞬间磁场越强,越有利于环的跳起,B、C错误;如果环的质量过大或者导电性能太差都会使得环受到的安培力小于环的重力,环就不会跳起,D正确.4.(2012.山东理综T14)以下叙述正确的是( )A.法拉第发现了电磁感应现象B.惯性是物体的固有属性,速度大的物体惯性一定大闭合开关穿过环的磁通量增加环产生感应电流感应电流在磁场中受安培力环向上跳起判断线框处磁场方向利用楞次定律分析线框电流判断符合线框中的电流方向的选项C.牛顿最早通过理想斜面实验得出力不是维持物体运动的原因D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果 【解题指南】解答本题应把握以下三点:(1)熟悉有关电磁感应和理想斜面实验的物理学史内容. (2)知道惯性的大小与什么因素有关. (3)深刻理解能量守恒定律的内涵.【解析】选A 、D.1831年,法拉第通过实验发现了电磁感应现象,得出了磁生电的基本原理,A 正确;质量是衡量物体惯性大小的惟一因素,速度大的物体惯性不一定大,B 错误;伽利略最早通过理想斜面实验得出力不是维持物体运动的原因,C 错误;利用楞次定律能判断感应电流的方向,电磁感应现象是其他形式的能转化为电能的过程,遵守能量守恒定律,D 正确.5.(2012.山东理综T20)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是 ( )A.P=2mgvsinθB.P=3mgvsinθC.当导体棒速度达到2v 时加速度大小为sin 2gθD.在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功【解题指南】根据导体棒的运动情况,对导体棒正确受力分析,结合安培力的知识,利用能量守恒定律求功率,分析焦耳热;利用牛顿第二定律求加速度a.【解析】选A 、C.当导体棒以速度v 匀速运动时:R vL B mg 22sin =θ①,当导体棒以速度2v 匀速运动时:vR vL B v mg P 222sin 22⋅⋅=⋅+θ②,联立①②解得:P=2mgvsinθ,A 对,B 错;当导体棒速度达到2v 时,由牛顿第二定律得:mgsinθ-222B L v ma R •= ③,联立①③ 解得:gsin 2a θ=,C 对;当速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力和重力所做的功之和,D 错.6.(2012·福建理综·T18)如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图乙中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是( )【解题指南】解答本题时应明确以下三点:(1)条形磁铁周围磁感线分布特点=中B与v相互垂直(2)公式E BLv(3)感应电流方向可用右手定则或楞次定律判断【解析】选B.闭合铜环下落过程的侧视图如图所示, 据右手定则或楞次定律可知闭合铜环在原点O上方和下方时电流方向相反,D错.闭合铜环从Ⅰ位置到Ⅱ位置过程电动势E变大,Ⅲ位置速度与磁感线平行,E=0,闭合铜环下落过程加速运动,且在原点O下方速度较大,电动势E的最大值比上方E的最大值大,A、C错,B 对.7.(2012·海南单科·T5)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过。
现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ。
设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则 ( )A.T1>T2 ,T2>mg B.T1<T2 ,T2<mgC. T1>mg,T2<mgD. T1<mg,T2>mg【解题指南】感应电流的磁场总是阻碍引起感应电流磁通量的变化;阻碍的结果实现了机械能向电能的转化。
【解析】选A.无论环经过磁铁上端还是下端,通过环的磁通量变化,环里感应出电流,环受到向上的阻力,对环做负功,使环的机械能减小,电能增加,根据牛顿第三定律,环对磁铁有向下的作用力,细线的拉力大于磁铁重力,选项A正确,其它选项错误.二、计算题1. (2012·天津理综·T11)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻.一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.棒在水平向右的外力作用下,由静止开始以22/a m s =的加速度做匀加速运动,当棒的位移x=9m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求(1)棒在匀加速运动过程中,通过电阻R 的电荷量q; (2)撤去外力后回路中产生的焦耳热Q 2; (3)外力做的功W F .【解题指南】解答本题时要注意以下三点: (1) 求通过电阻的电荷量时要用到电流的平均值(2) 求焦耳热Q 时,要利用功能关系,本题不适合用焦耳定律求焦耳热 (3) 外力F 做的功等于回路产生的焦耳热【解析】(1)棒匀加速运动过程中,回路的磁通量变化量为:Blx φ∆= ○1由法拉第电磁感应定律得,回路中的平均感应电动势为:E t φ∆=∆ ○2由闭合电路欧姆定律得,回路中的平均电流为:EI R r =+ ○3则通过电阻R 的电荷量为:q I t =∆ ○4 由以上各式联立,代入数据解得:q=4.5C ○5 (2)设撤去外力时棒的速度为v :则由运动学公式得:22v ax = ○6由动能定理得,棒在撤去外力后的运动过程中安培力做功为:2102W mv =- ○7 由功能关系知,撤去外力后回路中产生的焦耳热为: Q 2=-W ○8 联立○6○7○8式,代入数据得:Q 2=1.8J ○9(3)因为撤去外力前后回路中产生的焦耳热之比为:Q 1:Q 2=2:1, 所以: Q 1=3.6J ○10 由功能关系可知,在棒运动的整个过程中: W F =Q 1+Q 2 ○11 联立○9○10○11式得:W F =5.4J ○12 【答案】(1)4.5C (2)1.8J (3)5.4J2.(2012·浙江理综·T25)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘辐条构成.后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r 2、张角θ=6π.后轮以角速度ω=2πrad/s 相对于转轴转动.若不计其他电阻,忽略磁场的边缘效应.(1)当金属条ab 进入“扇形”磁场时,求感应电动势E,并指出ab 上的电流方向. (2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图.(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差U ab 随时间t 变化的U ab -t 图象.(4)若选择的是“1.5V 、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价. 【解题指南】根据法拉第电磁感应定律计算感应电动势,用右手定则判断电流方向;画电路图时,切割磁感应线的导体相当于电源,其它导体是外电路;确定金属条离开磁场时刻和下一金属条进入磁场时刻,画出U ab -t 图象.【解析】(1)金属条ab 进入磁场切割磁感应线,所构成的回路的磁通量也会变化,设经过时间△t 磁通量的变化量为△φ,则)2121(2122θθφ∆-∆=∆=∆r r B S B由法拉第电磁感应定律得,V r r B t E 22122109.4)(21-⨯=-=∆∆=ωφ根据右手定则,可知电流方向为b→a(2)金属条ab 进入磁场,金属条ab 相当于一个电源,电路如图所示.(3)由电路图可得电路总电阻343RRRR=+=总ab两端的电势差VERREEIREUab2102.14-⨯==-=-=总以ab刚进入磁场区域为t=0时刻,设ab离开磁场区域的时刻为t1,下一根金属条进入磁场区域的时刻为t2,则st1211==ωθst4122==ωπ轮子转一周的时间sT12==ωπ在T=1s内,金属条有四次进出,后三次与第一次相同,画出Uab-t图象如图所示.(4)“闪烁”装置不能正常工作.因为金属条的感应电动势只有4.9×10-2V,远小于小灯泡的额定电压,小灯泡不能发光.由)(212122rrBtE-=∆∆=ωφ可知,增大B,可提高感应电动势E,但增大B是有限度的;增大r2,可提高感应电动势E,但增大r2也是有限度的;增大ω,可提高感应电动势E,但增大ω也是有限度的;增大θ,E不变,不能提高感应电动势E.【答案】(1)4.9×10-2V b→a(2)电路如图所示.(3)画出U ab-t图象如图所示.(4)“闪烁”装置不能正常工作.增大B ,可提高感应电动势E ,但增大B 是有限度的; 增大r 2,可提高感应电动势E ,但增大r 2也是有限度的; 增大ω,可提高感应电动势E ,但增大ω也是有限度的; 增大θ,E 不变,不能提高感应电动势E.3.(2012·江苏物理·T13)某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab=cd=l 、bc=ad=2l .线圈以角速度ω绕中心轴匀速转动,bc 和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B 、方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小E m . (2)线圈切割磁感线时,bc 边所受安培力的大小F. (3)外接电阻上电流的有效值I.【解题指南】解答本题时可按以下思路分析: (1) 根据导体棒切割磁感线计算电动势; (2) 根据BIl F = 计算安培力的大小; (3) 根据电流的热效应计算电流的有效值.【解析】(1)bc 、ad 边的运动速度2l v ω=感应电动势m E =4NBlv解得m E =2NBl2ω(2)电流mE I r R =+安培力F=2NBI m l解得223 4N B lFr Rω=+(3)一个周期内,通电时间t=49TR上消耗的电能W=mIRt且W=I2RT,解得243()NBlIr Rω=+【答案】(1)ω22NBlEm=(2) RrlBNF+=ω3224(3)()RrNBlI+=342ω4.(2012·广东理综·T35)如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板.R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.【解题指南】解答本题要通过对物体受力分析,利用物体平衡条件、感应电动势、闭合电路欧姆定律及安培力公式进行求解.特别要注意板间电压应是电阻R x两端电压,而非电源电动势.【解析】(1)当R x=R时,棒沿导轨匀速下滑时,由平衡条件sinMg Fθ=安培力F BIl=解得sinMgIBlθ=ab切割产生的感应电动势E Blv=由闭合欧姆定律得回路中电流2EIR=解得222sinMgRvB lθ=(2)微粒水平射入金属板间,能匀速通过,由平衡条件U mg qd =棒沿导轨匀速,由平衡条件1sin Mg BI l θ=金属板间电压1x U I R =解得sin x mldB R Mq θ=【答案】(1)sin Mg Bl θ ,222sin MgR B l θ(2)sin mldB Mq θ。