高考物理电磁感应现象的两类情况(大题培优)及答案

合集下载

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案
6.如图所示,MN、PQ为足够长的平行金属导轨.间距L=0.50m,导轨平面与水平面间夹角θ=37°,N、Q间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T.将一根质量m=0.05kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数 ,当金属棒滑至 处时,其速度大小开始保持不变,位置cd与ab之间的距离 .已知 , , .求:
【答案】(1) (2) (3)
【解析】
【详解】
解:(1)金属框相对于磁场的速度为:每边产生电动势:由欧姆定律得:
解得:
(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:
由平衡条件得: ,已知:
解得:
(3)电磁铁通过 字型线圈左边界时,电路情况如图1所示:
感应电动势: ,而
电流:
【解析】
【详解】
(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为
设小灯泡电阻为R,由
可得
解得
(2)设线框保持不动的时间为t,根据共点力的平衡条件可得
解得
产生的热量为
(3)线框刚好开始运动时
根据闭合电路的欧姆定律可得
根据电荷量的计算公式可得
8.如图(a)所示,平行长直金属导轨水平放置,间距L=0.4 m.导轨右端接有阻值R=1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场.若使棒在导轨上始终以速度v=1 m/s做直线运动,求:

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案
5s时拉力F的功率为:P=Fv
代入数据解得:P=1W
棒MN最终做匀速运动,设棒最大速度为vm,棒受力平衡,则有:
代入数据解得:
(2)解除棒PQ后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v′,则有:
设从PQ棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q,由能量守恒定律可得:
(1)前2s时间内流过MN杆的电量(设EF杆还未离开水平绝缘平台);
(2)至少共经多长时间EF杆能离开平台。
【答案】(1)5C;(2)4s
【解析】
【分析】
【详解】
解:(1)t=2s内MN杆上升的距离为
此段时间内MN、EF与导轨形成的回路内,磁通量的变化量为
产生的平均感应电动势为
产生的平均电流为
流过MN杆的电量
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F时完全相同。请写出F随时间t变化的函数表达式.
【答案】(1)2m/s (2)0.15J (3)F=0.75-1.25t(0<t<0.4s)
联立①②③式பைடு நூலகம்得: ④
(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I,根据欧姆定律:I= ⑤
式中R为电阻的阻值.金属杆所受的安培力为: ⑥
因金属杆做匀速运动,由牛顿运动定律得:F–μmg–f=0⑦
联立④⑤⑥⑦式得:R=
5.如图所示空间存在有界匀强磁场,磁感应强度B=5T,方向垂直纸面向里,上下宽度为d=0.35m.现将一边长L=0.2m的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m=0.1kg,电阻 .(g取10m/s2)求:

高考物理 电磁感应现象的两类情况 培优 易错 难题练习(含答案)含详细答案

高考物理 电磁感应现象的两类情况 培优 易错 难题练习(含答案)含详细答案

高考物理电磁感应现象的两类情况培优易错难题练习(含答案)含详细答案一、电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。

当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。

【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh产生的热量为金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh产生的热量为联立解得2.如图所示,质量为4m的物块与边长为L、质量为m、阻值为R的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

高考物理知识点过关培优易错试卷训练∶电磁感应现象的两类情况及详细答案

高考物理知识点过关培优易错试卷训练∶电磁感应现象的两类情况及详细答案

高考物理知识点过关培优易错试卷训练∶电磁感应现象的两类情况及详细答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案一、电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。

BC 边和AD 边为绝缘轻杆,质量不计。

线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。

在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。

在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。

锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。

当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。

(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL ;(3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。

高考物理电磁感应现象的两类情况(大题培优易错试卷)及详细答案

高考物理电磁感应现象的两类情况(大题培优易错试卷)及详细答案

高考物理电磁感应现象的两类情况(大题培优易错试卷)及详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22r r解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

边界相距 1.2m d =的两个范围足够大的磁场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。

高考物理知识点过关培优训练∶电磁感应现象的两类情况含答案

高考物理知识点过关培优训练∶电磁感应现象的两类情况含答案

高考物理知识点过关培优训练∶电磁感应现象的两类情况含答案一、电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有: ,
根据安培力公式有: ,
根据欧姆定律有: ,
解得: ;
(2)由牛顿第二定律有: ,
(3)棒在两边界之间运动时,框架所受摩擦力大小为
方向沿斜面向上棒进入PQ时,框架受到的安培力沿斜面向上,所受摩擦力大小为
向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。匀速运动时,框架所受安培力为
方向沿斜面向上。
摩擦力大小为
方向沿斜面向下。
综上可知,框架能够始终保持静止状态。
5.如图所示,两条平行的固定金属导轨相距L=1m,光滑水平部分有一半径为r=0.3m的圆形磁场区域,磁感应强度大小为 、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B=0.5T。金属棒PQ和MN的质量均为m=0.lkg,电阻均为 。PQ置于水平导轨上,MN放置于倾斜导轨上、刚好不下滑。两根金属棒均与导轨垂直且接触良好。从某时刻起,PQ棒在水平外力的作用下由静止开始向右运动,当PQ棒进人磁场 中时,即以速度v=16m/s;匀速穿过该区域。不计导轨的电阻,PQ始终在水平导轨上运动。取 , ;
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F时完全相同。请写出F随时间t变化的函数表达式.
【答案】(1)2m/s (2)0.15J (3)F=0.75-1.25t(0<t<0.4s)



(3)根据能量守恒有: ,
解得:
2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L,质量为m,电阻为R的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v后,线圈与传送带始终相对静止,并通过一磁感应强度为B、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L不变,匀强磁场的宽度为3L,求:
【解析】
【详解】
(1)导线框匀速穿出磁场过程中,感应电动势:
感应电流: ,
线框受到的安培力:
线框匀速穿出磁场,由平衡条件得:
解得:v=2m/s
(2)自导线框刚要进入磁场至刚要离开磁场的过程中,仅进人磁场过程中有焦耳热产生,由能量守恒得:
得:Q=0.15J
(3)导线框刚好完全进入磁场至刚好要离开磁场的过程
(1)求MN棒刚要滑动时,PQ所处的位置;
(2)求从PQ棒开始运动到MN棒刚要滑动的过程中通过PQ棒的电荷量;
(3)通过计算,定量画出PQ棒进人磁场 后在磁场中水平外力F随位移变化的图像。
【答案】(1) m;(2) C;(3)
【解析】
【分析】
【详解】
(1)开始 刚好不下滑时, 受沿倾斜导轨向上的最大静摩擦力 ,则
设 进入磁场 后切割磁感线的有效长度为 ,由法拉第电磁感应定律得 产生的感应电动势为
由闭合电路欧姆定律得整个回路中的感应电流为
则 所受的安培力为
棒刚要向上滑动时, 受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有
联立解得
m
即 棒刚要滑动时, 棒刚好运动到圆形磁场区域的直径位置。
(2)从 棒开始运动到 棒刚要滑动的过程中,穿过回路的磁通量的变化量为
(1)由右手定则可得,流过R的电流方向从M流到P
据乙图可得,R=0时,最大速度为2m/s,则Em= BLv = 4V
(2)设最大速度为v,杆切割磁感线产生的感应电动势E = BLv
由闭合电路的欧姆定律
杆达到最大速度时

结合函数图像解得:m = 0.8kg、r = 2Ω
(3)由题意:由感应电动势E = BLv和功率关系
(1)线圈匀速通过磁场,产生的感应电动势为E=BLv,则每个线圈通过磁场区域产生的热量为
(2)对于线圈:做匀加速运动,则有S1=vt/2
对于传送带做匀速直线运动,则有S2=vt
故S1:S2=1:2
(3)线圈与传送带的相对位移大小为
线圈获得动能EK=mv2/2=fS1
传送带上的热量损失Q/=f(S2-S1)=mv2/2
(1)解除锁定前回路中电流的大小及方向;
(2)滑到导轨末端时的加速度大小;
(3)运动过程中产生的焦耳热.
【答案】⑴ ,顺时针方向或b→a;⑵g- ;⑶
【解析】
【分析】
【详解】
⑴导体棒被锁定前,闭合回路的面积不变, =k
由法拉第电磁感应定律知:E= = =
由闭合电路欧姆定律知:I= =
由楞次定律知,感应电流的方向:顺时针方向或b→a
⑵导体棒刚离开导轨时受力如图所示
根据法拉第电磁感应定律有:E=
根据闭合电路欧姆定律知:I=
根据安培力公式有:F=
解得:F=
由牛顿第二定律知:mg-F=ma
解得:a=g-
⑶由能量守恒知:mgh= +Q
由几何关系有:h=
解得:Q= -
9.如图,两足够长的平行金属导轨平面与水平面间夹角为 ,导轨电阻忽略不计,二者相距 =1m,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m=0.1kg的光滑导体棒ab,并通过细线、光滑滑轮与一质量为2m、边长为 正方形线框相连,金属框下方h=1.0m处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R上产生的热量为 =0.318J,且金属框刚好能匀速通过有界磁场。已知两磁场区域的磁感应强度大小相等。定值电阻R=1Ω。导体棒ab和金属框单位长度电阻r=1Ω/m,g=10m/s2,求
(1)cd边刚到达 时的速度 ;
(2)cd边从 运动到 过程中,线框所产生的热量Q;
(3)当cd边刚进入磁场H时,线框的加速度大小 。
【答案】(1) (2) (3)
【解析】
【分析】
【详解】
(1)cd边刚到达 时有
解得
(2)已知当cd边刚要进入磁场Ⅱ的前一瞬间,由牛顿第二定律得
解得
由能量守恒得
解得
(3)当cd边刚进入磁场II时,ab,cd两边分别在两磁场中切割磁感线,则有此时线圈中的电动势变为只有cd切割时的两倍,电流也为两倍,由左手定则可知,ab,cd两边受的安培力相同,方向沿斜面向上,线圈此时受的安培力变为原来的4倍,则有


再由动能定理

4.如图所示,足够长的U型金属框架放置在绝缘斜面上,斜面倾角 ,框架的宽度 ,质量 ,框架电阻不计。边界相距 的两个范围足够大的磁场I、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为 。导体棒ab垂直放置在框架上,且可以无摩擦的滑动。现让棒从MN上方相距 处由静止开始沿框架下滑,当棒运动到磁场边界MN处时,框架与斜面间摩擦力刚好达到最大值 (此时框架恰能保持静止)。已知棒与导轨始终垂直并良好接触,棒的电阻 ,质量 ,重力加速度 ,试求:
平均感应电动势
平均感应电流
通过 棒的电荷量
C
(3)当 棒进入磁场 后的位移为 时,切割磁感线的有效长度为
回路中的电流为
受到的安培力为
由题意知外力为
故有
因此 棒所受水平外力 随位移变化的图像如图所示
6.如图所示空间存在有界匀强磁场,磁感应强度B=5T,方向垂直纸面向里,上下宽度为d=0.35m.现将一边长L=0.2m的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m=0.1kg,电阻 .(g取10m/s2)求:
高考物理电磁感应现象的两类情况(大题培优)及答案
一、电磁感应现象的两类情况
1.如图所示,光滑的长平行金属导轨宽度d=50cm,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T.金属棒ab从上端由静止开始下滑,金属棒ab的质量m=0.1kg.(sin37°=0.6,g=10m/s2)
(1)棒由静止开始沿框架下滑到磁场边界MN处的过程中,流过棒的电量q;
(2)棒运动到磁场Ⅰ、Ⅱ的边界MN和PQ时,棒的速度 和 的大小;
(3)通过计算分析:棒在经过磁场边界MN以后的运动过程中,U型金属框架能否始终保持静止状态?
【答案】(1) ;(2) , ;(3)框架能够始终保持静止状态
【解析】
【分析】
解得

8.如图,POQ是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP=OQ=L.整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B=B0-kt(其中k为大于0的常数).一质量为m、长为L、电阻为R、粗细均匀的导体棒锁定于OP、OQ的中点a、b位置.当磁感应强度变为 B0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v.导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g.求导体棒:
得:导线框刚好完全进入磁场的速度v0=1m/s
导线框进入磁场的过程由
得:a=2.5m/s2
得:t0=0.4s
取向下为正方向有:
得:F=0.75-1.25t(0<t<0.4s)
7.如图所示,在倾角为 的光滑斜面上存在两个磁感应强度均为B的匀强磁场区域。磁场Ⅰ的方向垂直于斜面向下,其上下边界 与 的间距为H。磁场H的方向垂直于斜面向上,其上边界 与 的间距为h。线有一质量为m、边长为L(h<L<H)、电阻为R的正方形线框由 上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。已知当cd边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为 ,不计空气阻力,求:
相关文档
最新文档