2019-2020学年人教版八年级上册数学期末检测卷(有答案)-最新精品
新人教版2019-2020学年初二上册期末考试数学试卷及答案

新人教版2019-2020学年初二上册期末考试数学试卷及答案2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是()A.2a(2a)=8aB.(x)=x236C.6xy÷(−2xy)=XXX(x−y)=x−y2.如果把3222y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小5倍D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ayB.x−4x+4=x(x−4)+4C.x−16=(x+4)(x−4)D.10x−5x=5x(2x−1)4.一个多边形的内角和是720°,则这个多边形的边数是()A.5B.6C.7D.85.在下列图形中,对称轴最多的是()A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式x2+mx+422221为完全平方式,则m的值为()A.±2B.2C.±1D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:a−1= a(a-1).10.若分式2−|x|的值为零,则x的值为2或-2.11.已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=3.12.若a+b=−3,ab=2,则a2+b2的值为13.13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=40°.14.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△XXX分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画一条.三、解答题(5*5=25)15.计算:(2a−3b)(−2a−3b)=−4a2+9b2.16.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.证明:由题意可知,BE=CF,∠A=∠D,∠1=∠2,所以△ABE和△DCF全等,因此∠EAB=∠XXX,∠XXX∠FCD,所以△AEB和△DFC相似,因此AE/DF=AB/DC,又因为AB=DC,所以AE=DF,因此AC=AE+EC=DF+FC=DE.17.解分式方程:13/(2x−2)-4=1.13/(2x-2)-4=113/(2x-2)=52x-2=13/5x=11/5.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,设等腰三角形的腰长为x,底边长为y,则有:周长为2x+y。
人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区

2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠03.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C 6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab8.(3分)化简的结果是()A.x﹣2B.C.D.x+29.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±1010.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b212.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x元,则所列方程正确的是()A.B.C.D.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=.16.(3分)分式的计算结果是.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为cm.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y221.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.22.先化简,再求值:﹣,其中x=﹣2.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.4.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C【分析】根据角平分线得出∠CAB=∠DAB,隐含条件AB=AB,根据全等三角形的判定定理判断即可.【解答】解:∵AB平分∠DAC,∴∠CAB=∠DAB,A、根据DB=CB,BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;B、根据BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;C、∵在△CAB和△DAB中,∴△CAB≌△DAB(SAS),故本选项正确;D、根据BA=BA,∠CAB=∠DAB,∠D=∠C,根据AAS可证△CAB≌△DAB,根据本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.8.(3分)化简的结果是()A.x﹣2B.C.D.x+2【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+2.故选:D.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.【点评】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对【分析】根据题意表示出A、B的正确坐标,再根据坐标的关系确定A,B两点原来的位置关系.【解答】解:∵小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),∴A点的正确坐标为(b,a),∵另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a),∴B点的正确坐标为(b,﹣a),∴A,B两点原来的位置关系是关于x轴对称,故选:A.【点评】此题主要考查了关于x轴、y轴对称的点的坐标,关键是掌握:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.12.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x 元,则所列方程正确的是()A.B.C.D.【分析】设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程即可.【解答】解:设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,依题意有:2×=.故选:A.【点评】本题考查了分式方程的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)【分析】利用两点间的距离公式可得结果.【解答】解:设在x轴有一点P(x,0),则有(x﹣2)2+32=(x﹣4)2+1,解得,x=1,∴P(1,0);设在y轴有一点P(0,y),则有22+(y﹣3)2=42+(y﹣1)2解得,y=﹣1,∴P(0,﹣1)故选:A.【点评】本题主要考查了两点间的距离公式,熟记公式和坐标轴上点的特点是解答此题的关键.二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=3.【分析】本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p 为正整数);零指数幂:a0=1(a≠0).16.(3分)分式的计算结果是.【分析】先通分,再把分子相加减即可.【解答】解:原式=+==.故答案为:.【点评】本题考查的是分式的加减法,在解答此类问题时要注意通分及约分的灵活应用.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是1.【分析】先设=y,得出﹣2=,再去分母x﹣2﹣2(x﹣3)=y,最后根据此方程无解时x=3,再代入计算即可.【解答】解:设=y,则原方程可变形为:﹣2=,去分母得:x﹣2﹣2(x﹣3)=y,∵此方程无解,∴x=3,∴3﹣2﹣2×(3﹣3)=y,∴y=1;∴处的数应是1.故答案为:1.【点评】此题考查了分式方程的解,关键是求出分式方程无解时x的值,用到的知识点是解分式方程的步骤,是一道基础题.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为12cm.【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【解答】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=12cm,故答案为:12.【点评】本题考查了轴对称﹣最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是①②④.【分析】根据等腰三角形的性质,等边三角形的性质,直角三角形的性质判断.【解答】解:∵当AP⊥CE,∠C=60°,∴∠P AC=30°,∵B是线段AC的中点,∴AB=PB,∴∠APB=∠P AC=30°,故①正确;当CP=AC时,∠C=60°,∴三角形APC为等边三角形,∵B是线段AC的中点,∴∠APB=∠CPB=30°,故②正确;在射线CE上,使△APC为直角三角形的点P有2个,一个是∠APC=90°,另一个是∠P AC=90°时;故③错误;在射线CE上,使△APC为等腰三角形的点P有1个,使AC=PC=AP,故④正确;故答案为①②④.【点评】本题考查了等腰三角形的性质,等边三角形的性质,直角三角形的性质,解题的关键是熟练掌握它们的性质.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【分析】(1)首先计算乘法,然后再合并同类项即可;(2)先算完全平方和乘法,再去括号合并同类项即可.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.【点评】此题主要考查了整式的混合运算,关键是掌握计算法则和计算顺序.21.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【分析】根据因式分解点的方法即可求出答案.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.22.先化简,再求值:﹣,其中x=﹣2.【分析】根据分式的减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:﹣===,当x=﹣2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解答】解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及性质是解答此题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.【解答】解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.【点评】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.。
2019-2020学年人教版数学八年级(上)期末试卷及答案

人教版数学八年级(上)期末试卷学校:___________姓名:___________班级:___________考号:___________一.选择题(共12小题)1.在如图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.3.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9B.10C.11D.以上都有可能4.下列说法正确的是()A.面积相等的两个长方形全等B.周长相等的两个长方形全等C.形状相同的两个长方形全等D.能够完全重合的两个长方形全等5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE7.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°8.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°9.计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x610.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)211.使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2C.x>﹣2D.x<212.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣3C.D.二.填空题(共6小题)13.如图,一共有条线段,有个三角形.14.若正多边形的一个内角等于140°,则这个正多边形的边数是.15.如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=.16.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为度.17.计算:(﹣a3)2•a4=.18.当x=时,分式无意义.三.解答题(共6小题)19.如图,在△ABC中,(1)如图,AB=4cm,AC=3cm,BC是能被3整除的偶数,求这个三角形的周长.(2)如图,BP、CP分别是∠ABC和∠ACB的角平分线.①当∠A=45°时,求∠BPC的度数;②当∠A=n°时,求∠BPC的度数;③若∠BPC=3∠A,求∠A的度数.20.如图,在△ADC中,∠A=30°,∠ADC=110°,BE⊥AC,垂足为E,求∠B的度数.21.如图,A、B、C、D四点在同一直线上,且△ABF≌△DCE.求证:(1)AF∥DE,BF∥CE;(2)AC=BD.22.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.23.阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.24.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.人教版2018-2019学年初中数学八年级(上)期末试卷参考答案与试题解析一.选择题(共12小题)1.在如图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、D都不符合高线的定义,C符合高线的定义.故选:C.2.如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.【解答】解:因为三角形具有稳定性,只有B构成了三角形的结构.故选B.3.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9B.10C.11D.以上都有可能【解答】解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1440°,解得n=10,∵截去一个角后边上可以增加1,不变,减少1,∴原多边形的边数是9或10或11.故选:D.4.下列说法正确的是()A.面积相等的两个长方形全等B.周长相等的两个长方形全等C.形状相同的两个长方形全等D.能够完全重合的两个长方形全等【解答】解:根据能够完全重合的两个图形是全等图形可知,能够完全重合的两个长方形全等,面积相等,周长相等,形状相同,都不一定能够完全重合.所以A、B、C选项不一定正确,D选项一定正确.故选:D.5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.6.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.7.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.8.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°【解答】解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.故选:C.9.计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x6【解答】解:(﹣x2)•x3=﹣x2+3=﹣x5.故选:B.10.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)2【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.11.使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2C.x>﹣2D.x<2【解答】解:∵x+2≠0,∴x≠﹣2.故选:B.12.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣3C.D.【解答】解:不等式组整理得:,由不等式组无解,得到a≤1,即a=﹣3,﹣1,1,,当a=﹣3时,分式方程为﹣=﹣1,去分母得:x﹣5=﹣x+3,解得:x=4,经检验x=4是分式方程的解,且为整数解,满足题意;当a=﹣1时,分式方程为﹣=﹣1,去分母得:x﹣3=﹣x+3,解得:x=3,经检验x=3是增根,分式方程无解,不满足题意;当a=1时,分式方程为﹣=﹣1,去分母得:x﹣1=﹣x+3,解得:x=2,经检验x=2是分式方程的解,且为整数解,满足题意,当a=时,分式方程为+=﹣1,去分母得:x﹣=3﹣x,解得:x=,不符合题意,则这5个数中所有满足条件的a的值之和为﹣3+1=﹣2,故选:A.二.填空题(共6小题)13.如图,一共有15条线段,有10个三角形.【解答】解:一共有15条线段,有10个三角形.故答案为:15、10.14.若正多边形的一个内角等于140°,则这个正多边形的边数是9.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.15.如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=95°.【解答】解:∵△ABC≌△ADC,∴∠DAC=∠BAC=60°,∵∠DAC+∠ACD+∠D=180°,∴∠D=180°﹣25°﹣60°=95°.故答案为95°.16.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为12度.【解答】解:由题意得:MN是AC的垂直平分线,∵MN是AC的垂直平分线∴AD=DC,∴∠A=∠ACD=52°,∵AB=AC,∴∠ACB=(180°﹣52°)÷2=64°,∴∠DCB=64°﹣52°=12°,故答案为:12.17.计算:(﹣a3)2•a4=a10.【解答】解:(﹣a3)2•a4=a6•a4=a10,故答案为:a10.18.当x=3时,分式无意义.【解答】解:根据题意知,分式没有意义,则3﹣x=0,所以x=3.故答案为x=3.三.解答题(共6小题)19.如图,在△ABC中,(1)如图,AB=4cm,AC=3cm,BC是能被3整除的偶数,求这个三角形的周长.(2)如图,BP、CP分别是∠ABC和∠ACB的角平分线.①当∠A=45°时,求∠BPC的度数;②当∠A=n°时,求∠BPC的度数;③若∠BPC=3∠A,求∠A的度数.【解答】解:(1)根据三角形的三边关系,得1<BC<7,又BC是能被3整除的偶数,则BC=6cm.∴这个三角形的周长=6+4+3=13cm.(2)①:延长CP交AB于点E,延长BP交AC于点D.∵BP、CP分别是△ABC的角平分线∴∠ABD=∠CBD,∠ACE=∠ECB;∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠CBD+2∠ECB=180°;∵∠A=45°,∴∠CBD+∠ECB=67.5°;在△BPC中,又∵∠BPC+∠CBP+∠PCB=180°,∴∠BPC=112.5°.②:同理∵∠A=n°,∴∠CBD+∠ECB=°;在△BPC中,又∵∠BPC+∠CBP+∠PCB=180°,∴∠BPC=(180﹣)°=(90+)°,③若∠BPC=3∠A,由②知∠BPC=90°+∠A,即3∠A=90°+∠A,解得:∠A=36°.20.如图,在△ADC中,∠A=30°,∠ADC=110°,BE⊥AC,垂足为E,求∠B的度数.【解答】解:∵△ADC中,∠A=30°,∠ADC=110°,∴∠C=180°﹣∠A﹣∠ADC=40°,∵BE⊥AC,∴∠BEC=90°,∴∠B=90°﹣∠C=50°.21.如图,A、B、C、D四点在同一直线上,且△ABF≌△DCE.求证:(1)AF∥DE,BF∥CE;(2)AC=BD.【解答】证明:(1)∵△ABF≌△DCE,∴∠A=∠D,∠ABF=∠DCE,∴AF∥DE,∠FBC=∠BCE,∴BF∥CE;(2)∵△ABF≌△DCE,∴AB=CD,∴AB+BC=CD+BC,即AC=BD.22.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.【解答】解:AB+BD=DE.理由是:∵AD⊥BC,BD=DC,∴AB=AC.又∵点C在AE的垂直平分线上,∴AC=EC.∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=EC+CD=DE.23.阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=2,log216=4,log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.【解答】解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).24.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.。
2019-2020学年人教版八年级上册期末数学试题含答案

2019-2020学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10 个小题,每小题2 分,共20 分)下列各题均有四个选项,其中只有一个是符合题意的.1.若代数式x 1x 1有意义,则x的取值范围是A.x 1且x 1B.x1C.x 1D.x≥-1且x 12.下列各式从左到右的变形正确的是x y x x 1x13x3x2 A.=-1B.=C.= D.()2= x y y y 1x y1y y y23.在实数223π,3,,39,3.14中,无理数有72A.2个B.3个C.4个D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是A.22B.19C.17D.17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是A.2311B.C.D.55327.下列事件中,属于必然事件的是A.2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B.某班级11名学生中,至少有两名同学的生日在同一个月份C.用长度分别为2cm,3cm,6cm的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数8.下列运算错误的是A.236B.623C.235D.(2)229.如图,AD是△ABC 的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则AC 长是△ABCA.9B.8C.7D.610.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8…31=332=933=27…新运算log2=1log4=2log8=3…log3=1log9=2log27=32 2 23 3 3…根据上表规律,某同学写出了三个式子:1①log16=4,②log25=5,③log=﹣1.其中正确的是2A.①②B.①③C.②③D.①②③二、填空题(共10 个小题,每小题2分,共20分)11.25的平方根是.12.计算:( 32)2=.13.若实数x,y满足x 3y 50,则代数式xy2的值是.14.已知:ABC中,AB AC,B A30,则A .15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:1①分别以B,C为圆心,以大于BC的同样长为半径画弧,两弧相交于两点M,N;2②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.MCB D AN(第17 题图)18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是系式是.14,则y与x 之间的关2521 1 2a 5a b 4b a 2b 4ab 3a 6b的值为.20.已知: 如图 △,ABC中,ABC 45, H是高 AD和 BE的交点,AD12 ,BC 17,则线段 BH的长为.三、解答题 (共 12 个小题,共 60 分)21.(4 分)51520 10 222.(5 分)计算:5( 515) ( 15 2 3)( 15 2 3)23.(4 分)已知:x y 1,( x 2 y )364,求代数式x y x 2 y2的值.24. (5 分)先化简,再求值:x 25x 3x 2 3x 2 6 x,其中 x 满足 x 2 3x 10 .25.(5 分).已知: 如图,点 B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5 分) 解关于 x的方程:3 2 x2x 1 x 1.27.(4 分) 在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为事件 A .请 完成下列表格:事件 Am 的值必然事件随机事件(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性 大小是 ,求 m 的值.28.(5 分) 某服装厂接到一份加工 3000 件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的 1.5 倍,结果提前 10 天完工.原计划每天加工 多少件服装?19.已知 3 ,则代数式29. (5 分) 在ABC中, AB,BC,AC三边的长分别为 5,3 2,17,求这个三角形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为 1),再在网格中画出格点 ABC 中,(即 ABC 三个顶点都在小正方形的顶点处),如图 1 所示,这样不需 要 ABC 高,借用网格就能计算出它的面积.(1)△ABC 的面积为;(2)如果MNP 三边的长分别为 10 , 2 5 , 26 ,请利用图 2 的正方形网格(每个小正方形的边长为 1)画出相应的格点MNP,并直接写出MNP的面积为.30.(5 分) 已知:如图,在ABC 中, C90.(1)求作: ABC 的角平分线 AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若 AC 6 , BC 8 ,求C D 的长.31.(5 分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①(填写序号即可);x 1 a 2b x y a 2 b 2;② ;③ ;④ . 其中是“和谐分式”是x 2 1 a 2 b 2 x 2 y 2 ( a b ) 2(2)若 a 为正整数,且x 1 x 2ax 4为“和谐分式”,请写出 a 的值;(3) 在化简4a 2a b ab 2b 3b 4时,小东和小强分别进行了如下三步变形:小东:原式=4a2a44a24aab2b3b b ab2b3b24a2b24a ab 2b3ab 2b3b2小强:原式=4a2a44a24a4aab b b b b2a b b224aa ba b b2显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是:请你接着小强的方法完成化简.,32.(6分)已知:如图,D是ABC的边BA延长线上一点,且AD AB,E是边AC上一点,且DE BC.求证:DEA C.23数学试题答案及评分参考一、选择题题号答案1D2A3B4A5C6B7D8C9D10B二、填空题题号11121314151617181920答案5526154075253cm2105y 3x 51213三、解答题21.解:原式=5255=25………………………………………3分(各1 分)…………………………………………4分22.解:原式=553(1512)…………………………………4分(前2分后2 分)=853…………………………………………5 分23解:∵x y 1,(x 2y)364,∴x y 1x2y 4………………………………………………2分(各1 分)解得x 2y 1……………………………………………4分(各1 分)∴x y213x2y222125………………………………………5分24解:原式=(x 2)(x 2)5x 33x(x 2)………………………1分=x293x(x 2)x 2x 3……………………………………………2分x 2=(x 3)(x 3)3x(x 2)x 2x 3……………………………3分=3x29x……………………………………………4分∵∴x23x 10 x23x 1∴原式=3x29x 3(x23x)313……………………5分25.证明:∵BD AE,∴BD AD AE AD.即AB DE.……………………………………………………………… 1 分∵BC∥EF,∴B E.………………………………………………………………2分又∵C F………………………………………………………………3分在ABC和DEF中,B E,C F,AB DE,∴ABC≌DEF.………………………………………………………4分∴AC DF.……………………………………………………………5分26.解:方程两边同乘以(x 1)(x 1),……………………………………………1分3(x 1)2x(x 1)2(x 1)(x 1).……………………………………………2分3x+32x22x 2x22.……………………………………………3分解这个整式方程,得x5.……………………………………………4分检验:当x 5时,(x 1)(x 1)0.…………………………………………5分x5是原方程的解.27.解:(1)事件A必然事件随机事件m的值43,2…………………………………………… 3分(2)依题意,得解得6 m 410 5m 2…………………………………………… 4 分…………………………………………… 5 分所以 m 的值为 228. 解:设该服装厂原计划每天加工 x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得3000 300010x 1.5 x…………………………………3 分 解这个方程得 x 100 …………………………………………4 分 经检验, x 100 是所列方程的根. ………………………………5 分 答:该服装厂原计划每天加工 100 件服装.29. 解: (1)ABC 的面积为 4.5………………………………………… 2 分正确画图………………………………………4 分(2)MNP 的面积为 7………………………………………… 5 分30. 解:(1)如图………………1 分 (2)过点 D 作 DE ⊥AB 于 E .………………2 分∵DE ⊥AB ,∠C =90°∴由题意可知 DE =DC , ∠DEB =90°又∵DE =DC ,AD =AD∴AD -ED =AD -DC∴AE =AC =6 ………………3 分∵A B =10 ∴BE =AC -AE =4 ………………4 分 设 DE =DC =x ,则 BD =8-x∴在 △R t BED 中8x216x 2∴x =3 ………………5 分 ∴CD =3.31. (1)②………………1 分2 2 2 2(2)4,5………………3分(2)小强通分时,利用和谐分式找到了最简公分母.………………4分解:原式4a24a24a ba b b24a ba b b24aa b4ab a b b2………………5分32.证明:过点D作BC的平行线交CA的延长线于点F.………………1 分∴C F.∵点A是BD的中点,∴AD=AB.……………………………2 分在△ADF和△ABC中,C F,DAF BAC,AD AB,∴△ADF≌△ABC.…………………3分∴DF=BC.…………………………… 4 分∵DE=BC,∴DE=DF.∴F DEA.…………………………………………………………5分又∵C F,∴C DEA.……………………………………………………………6分其它证法相应给分。
2019-2020学年新人教版初二数学上册期末考试试卷及答案

2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL中的m、n的值同时扩大到原来的5倍,则此分式的值()9、分式+A、不变B、是原来的C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α二、填空题(每小题4分,共24分)11、若分式+有意义,则x的取值范围为。
12、分解因式:m2-3m=。
13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。
2019-2020学年新人教版八年级(上)期末数学试卷 (解析版)

2019-2020学年新人教版八年级(上)期末数学试卷一、选择题1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,143.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.15.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.527.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=19.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.810.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正边形.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=°.14.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=.15.(4分)若x+=4,则的值是.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.18.(6分)先化简,再求值:()÷,其中x=.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=,∠P=;②若∠A=α,则∠O=,∠P=.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系.23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.参考答案一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,14解:A、4+5=9,不能组成三角形,故此选项错误;B、8+8>16,能组成三角形,故此选项正确;C、5+5=10,不能组成三角形,故此选项错误;D、6+7<14,不能组成三角形,故此选项错误;故选:B.3.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°解:∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°;故选:A.4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.1解:由题意可知:x﹣1=0且x+1≠0,∴x=1,故选:D.5.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)解:∵将线段AB沿坐标轴翻折后,若点A(1,3)的对应点A′的坐标为(﹣1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(﹣2,1)故选:C.6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.52解:∵a+b=6,ab=4,∴原式=(a+b)2+2ab=36+8=44,故选:B.7.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°解:由翻折可知:△BED≌△BCD,∴∠EBD=∠CBD,∠E=∠C=90°∵△EDF是等腰三角形,∴∠EFD=∠AFB=∠ABF=45°,∴∠CBF=45°,∴∠CBD=∠CBE=22.5°,∴∠BDC=67.5°,故选:C.8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=1解:∵a===,b=,∴a=b.故选:A.9.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.8解:如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.10.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣解:∵x1=,∴x2=﹣=﹣,x3=﹣=﹣,x4=﹣=,……∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x2020=x1=,故选:A.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=1.解:(﹣2)0=1.故答案为:1.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正8边形.解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故答案为:8.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=45°.解:∵∠BAC=90°,AB=AC,∴∠ABC=45°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD,∴∠ACE+∠DBC=∠ABD+∠DBC=∠ABC=45°,故答案为:4514.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=108°.解:∵CD=AC,∠A=48°,∴∠ADC=48°,由作图知MN是BC的垂直平分线,∴DB=DC,∴∠B=∠BCD=∠ADC=24°,则∠ACB=180°﹣∠A﹣∠B=108°,故答案为:108°.15.(4分)若x+=4,则的值是.解:原式==当x+=4时,原式=,故答案为:.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.解:如图,连接CD,DB,过点D作DM⊥AB于点M,∵AD平分∠FAB,∴∠FAD=∠DAM,且AD=AD,∠AFD=∠AMD,∴△AFD≌△AMD(AAS)∴AF=AM,FD=DM,∵DE垂直平分BC∴CD=BD,且DF=DM,∴Rt△CDF≌Rt△BDM(HL)∴BM=CF∵AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF∴8=5+2CF∴CF=故答案为:三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.解:(1)原式=a(a2﹣4)=a(a+2)(a﹣2);(2)方程两边同时乘以3(x+1)得:3x=2,解得:x=,经检验x=是分式方程的解.18.(6分)先化简,再求值:()÷,其中x=.解:()÷===,当x=时,原式==﹣1.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.解:设原计划每天铺设管廊x米,则实际每天铺设管廊(1+20%)x米,根据题意得:﹣=20,解得:x=50,经检验,x=50是所列方程的解,且符合题意,∴(1+20%)x=60.答:实际每天铺设管廊60米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长a﹣b.(用含a,b的式子表示)解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠D=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE(AAS),∴CE=AD=a,∵DC=CE+DE∴BE=CD=a+b(2)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE∴CE=AD=a,∵CD=CE﹣DE∴BE=CD=a﹣b,故答案为:a﹣b22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=115°,∠P=65°;②若∠A=α,则∠O=90°+α,∠P=90°﹣α.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系∠P=360°﹣(∠A+∠B+∠E+∠F).解:(1)①解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣50°)=115°;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣50°)]=65°;故答案为:115°;65°.②解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣α)=90°+α;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣α)]=90°﹣α;故答案为:90°+α;90°﹣α,(2)解:∠P=180°﹣(∠A+∠D).理由如下:∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠EBC+∠FCB)=180°﹣[360°﹣(∠ABC+∠DCB)]=(∠ABC+∠DCB)=(360°﹣∠A﹣∠D)=180°﹣(∠A+∠D).(3)∠P=180°﹣(∠GCD+∠HDC)=180°﹣(180°﹣∠BCD+180°﹣∠CDE)=(∠BCD+∠CDE)=[(6﹣2)×180°﹣(∠A+∠B+∠E+∠F)]=360°﹣(∠A+∠B+∠E+∠F).故答案为:∠P=360°﹣(∠A+∠B+∠E+∠F)23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=2x+1;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).解:(1)因为x+1>x,所以:(x+1)*x=(x+1)2﹣x2=2x+1故答案为:2x+1(2)因为x2+4x+9=(x+2)2+5>0,所以:0*(x2+4x+9)==﹣1;(3)当(3x﹣5)≥(x+3),即x≥4时.(3x﹣5)*(x+3)=(3x﹣5)2﹣(x+3)2=8x2﹣36x+16;当(3x﹣5)<(x+3),即x<4时.(3x﹣5)*(x+3)===.24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB。
2019-2020学年新人教版八年级数学上册期末考试试卷及答案

2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是( )A 、B 、C 、D 、2、下列图形中具有稳定性的是( )A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是( )A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A 、AB =2BD B 、AD ⊥BC C 、AD 平分∠BAC D 、∠B =∠C第6题 第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )A 、SASB 、ASAC 、AASD 、HL 9、分式2mn m +n中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A 、90°-12α B 、12α C 、90°+12α D 、360°-α二、填空题(每小题4分,共24分)11、若分式xx+2有意义,则x的取值范围为。
2019-2020学年人教版八年级上学期期末考试数学试题(含答案)

2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末检测卷一、选择题(本大题共10小题,每小题4分,满分40分)1.在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是2.已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为A.8 cm或10 cmB.8 cm或9 cmC.8 cmD.10 cm3.将点M(-5,y)向下平移6个单位长度后所得到的点与点M关于x轴对称,则y的值是A.-6B.6C.-3D.34.下列命题与其逆命题都是真命题的是A.全等三角形对应角相等B.对顶角相等C.角平分线上的点到角的两边的距离相等D.若a2>b2,则a>b5.把一副三角板按如图叠放在一起,则∠α的度数是A.165°B.160°C.155°D.150°6.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是A.AD=CFB.∠BCA=∠FC.∠B=∠ED.BC=EF7.已知函数y=kx+b的图象如图所示,则函数y=-bx+k的图象大致是8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是A.①②④B.①②③C.②③④D.①③9.如图,已知直线m⊥n,在某平面直角坐标系中,x轴∥直线m,y轴∥直线n,点A,B的坐标分别为(-4,2),(2,-4),点A,O4,B在同一条直线上,则坐标原点为A.O1B.O2C.O3D.O410.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于点D,DE⊥AB交AB 的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中正确的有A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.一副三角板如图放置,若∠1=90°,则∠2的度数为75°.12.在平面直角坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为7≤k≤ .13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为(-1,2).14.如图,∠1=∠2,∠C=∠B,下列结论中正确的是①④.(写出所有正确结论的序号)①△DAB≌△DAC;②CD=DE;③∠CFD=∠CDF;④∠BED=2∠1+∠B.三、(本大题共2小题,每小题8分,满分16分)15.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.解:如图所示.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点△AOB.(顶点是网格线的交点)(1)画出将△AOB沿y轴翻折得到的△AOB1,则点B1的坐标为(-3,0);(2)画出将△AOB沿射线AB1方向平移2.5个单位得到的△A2O2B2,则点A2的坐标为(-1.5,2);(3)请求出△AB1B2的面积.解:(1)△AOB1如图所示.(2)△A2O2B2如图所示.(3)△AB 1B 2的面积=4.5×6-1 ×3×4-1 ×1.5×6-1×4.5×2=12.四、(本大题共2小题,每小题8分,满分16分)17.如图,已知CD 是AB 的中垂线,垂足为D ,DE ⊥AC 于点E ,DF ⊥BC 于点F. (1)求证:DE=DF ;(2)若线段CE 的长为3 cm,BC 的长为4 cm,求BF 的长. 解:(1)∵CD 是AB 的中垂线, ∴AC=BC ,∴∠ACD=∠BCD , ∵DE ⊥AC ,DF ⊥BC , ∴DE=DF.(2)∵DE ⊥AC ,DF ⊥BC ,∴∠AED=∠BFD=90°,在Rt △ADE 和Rt △BDF 中, , , ∴Rt △ADE ≌Rt △BDF (HL ), ∴AE=BF ,∵CE=3 cm,BC=4 cm,∴BF=AE=AC-CE=BC-CE=1 cm .18.已知:如图1,在Rt △ABC 和Rt △A'B'C'中,AB=A'B',AC=A'C',C=∠C'=90°. 求证:Rt △ABC 和Rt △A'B'C'全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A'B'C'拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A'重合,点C 与点C'重合.)(3)请你选择你拼成的其中一种图形,证明该命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图①使点A与点A'重合,点B与点B'重合.图②使点A与点B'重合,点B与点A'重合.(3)在图①中,∵点A和点A'重合,点B和点B'重合,连接CC'.∵AC=A'C',∴∠ACC'=∠AC'C,∵∠ACB=∠A'C'B'=90°,∴∠ACB-∠ACC'=∠A'C'B'-∠AC'C,即∠BCC'=∠BC'C,∴BC=B'C'.在Rt△ABC和Rt△A'B'C'中,, , ,∴△ABC≌△A'B'C'(SSS).五、(本大题共2小题,每小题10分,满分20分)19.小明平时喜欢玩“宾果消消乐”游戏.本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2)观察(1)中所描点的位置关系,猜想y与x之间的函数关系,并求出所猜想的函数表达式;(3)若小明继续沉溺于“宾果消消乐”游戏,照这样的发展趋势,请你估计元月(此时x=13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.解:(1)如图.(2)猜想:y 是x 的一次函数.设y=kx+b ,把点(9,90),(10,80)代入得 9 90,10 0,解得 -10, 1 0,∴y=-10x+180. 经验证,点(11,70)和(12,60)均在直线y=-10x+180上, ∴y 与x 之间的函数表达式为y=-10x+180. (3)∵当x=13时,y=50,∴估计元月份的考试中小明的数学成绩是50分. 建议:不要再沉迷于游戏,要好好学习.20.如图,在Rt △ABC 中,∠ACB=90°,∠A=22.5°,斜边AB 的垂直平分线交AC 于点D ,点F 在AC 上,点E 在BC 的延长线上,CE=CF ,连接BF ,DE.则线段DE 和BF 在数量和位置上有什么关系?请说明理由. 解:DE=BF ,DE ⊥BF.理由如下: 连接BD ,延长BF 交DE 于点G. ∵点D 在线段AB 的垂直平分线上, ∴AD=BD ,∴∠ABD=∠A=22.5°.在Rt △ABC 中,∵∠ACB=90°,∠A=22.5°, ∴∠ABC=67.5°,∴∠CBD=∠ABC-∠ABD=45°, ∴△BCD 为等腰直角三角形,∴BC=DC.在△ECD 和△FCB 中, ,∠∠ , ,∴△ECD ≌△FCB (SAS ), ∴DE=BF ,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°, ∴∠EGB=90°,即DE ⊥BF.六、(本题满分12分)21.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t 分后甲、乙两遥控车与B 处的距离分别为d 1,d 2(单位:米),则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v 2= 40 米/分; (2)写出d 1与t 的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?解:(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,∴d1=-6060 01 , 60-60 1(3)由已知可得AB=60米,BC=120米,v1=60米/分,v2=40米/分,并且在0≤t≤ 时,乙车始终在甲车前面,当0≤t<1时,甲车未达到B点,所以甲、乙两遥控车的距离为40t-60t+60=-20t+60>10,解得t<2.5.所以0≤t<1时,两车距离始终大于10米,信号不会产生相互干扰.当1≤t≤ 时,甲车经过B点向C点行驶,此时甲、乙两遥控车的距离为40t+60-60t>10,解得t<2.5,所以1≤t<2.5时,两车不会产生信号干扰.∴当0≤t<2.5时,两遥控车的信号不会产生相互干扰.七、(本题满分12分)22.在平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三角形的点C有几个?(2)如图2,过点A,B向过原点的直线l作垂线,垂足分别为M,N,试判断线段AM,BN,MN之间的数量关系,并说明理由.解:(1)如图,当以AB为腰时,有3个;当以AB为底时,有1个,∴使△ABC为等腰三角形的点C有4个.(2)AM+BN=MN.理由:由已知可得OA=OB,∠AOM=90°-∠BON=∠OBN,在△AOM和△OBN中,∠∠,∠∠,,∴△AOM≌△OBN(AAS),∴AM=ON,OM=BN,∴AM+BN=ON+OM=MN.八、(本题满分14分)23.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,∴∠BAP=∠CAQ,在△ABP和△ACQ中,,∠∠,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,∴CQ⊥BC.(2)当点P为BC的中点或与点C重合时,△ACQ是直角三角形.(3)①当BP=AB时,△ABP是等腰三角形;②当AB=AP时,点P与点C重合;③当AP=BP时,点P为BC的中点.∵△ABP≌△ACQ,∴当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.。