2010年浙江省台州市中考数学试卷及答案

合集下载

浙江省台州市2010年中考数学试题(含答案)

浙江省台州市2010年中考数学试题(含答案)

2010年台州市初中学业水平考试数学试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。

请注意以下几点: 1.全卷共6页,满分150分,考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。

3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题。

本次考试不得使用计算器。

祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)7.梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是( ) A .3 B .4 C . 23 D .2+23 8.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 9.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N . 则DM +CN 的值为(用含a 的代数式表示)( ) A .a B .a54 C .a 22 D .a 2310.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )A .-3B .1C .5D .8二、填空题(本题有6小题,每小题5分,共30分)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)aN MCDA B (第9题)yxO(第10题)D CB (4,4)A (1,4)19.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?20.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象. (1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.21.果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:17cm(第19题)ABCDE F参考数据 cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95 乙地块杨梅等级分布扇形统计图49.5~59.859.5~69.769.5~79.679.5~89.589.5~99.5甲地块杨梅等级频数分布直方图6 7 频数 E x/小时y /千米600146OFEC D (第20题)(1)补齐直方图,求a的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.22.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(2 )=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量”{1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗? 在图1中画出四边形OABC . ②证明四边形OABC 是平行四边形.(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头Q (5,5),最后回到出发点O . 请用“平移量”加法算式表示它的航行过程.23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(第22题)yO图2Q (5, 5)P (2, 3)yO 图111 xx(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AMCKMK =+,请直接写出∠CDF 的度数和AMMK 的值.24.如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP=AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点, HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;图1图2图3(第23题)(M )EKDCA BF M EKDCABF MEKD C ABF 图 4LM EDC AB(F ,K )DEB P(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?2010年台州市初中学业水平考试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案A B A C A D B B C D二、填空题(本题有6小题,每小题5分,共30分)11.0≠x 12.)4)(4(-+x x 13. 100)1(1202=-x 14.甲2S <乙2S 15.相切(2分),-6π (3分) 16.(83+4)π 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(1)解:原式=2+1+1 …………………………………………………………3分 =4 ………………………………………………………………1分(2)解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分所以原方程的解是3=x . 18.(8分)⎩⎨⎧+>>-.12,026x x x 解①得,x <3, ……………………………………………………………………2分 解②得,x >1, ………………………………………………………………………2分 ∴不等式组的解集是1<x <3. ……………………………………………………2分 在数轴上表示 ………………………………………………………………………2分 19.(8分)(1) cos ∠D =cos ∠ABC =BCAB =25.44≈0.94, ………………………………… 3分∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分 20.(8分)(1)①当0≤x ≤6时, ………………………………………………………1分x y 100=; ………………………………………………………………………………2分②当6<x ≤14时, ……………………………………………………………………1分 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y …………………………………………………………2分(2)当7=x 时,5251050775=+⨯-=y , ……………………………………1分757525==乙v (千米/小时). ………………………………………………………1分 21.(10分)(1)画直方图 …………………………………………………………………2分a =10, 相应扇形的圆心角为:360°×10%=36°. ………………………………2分①②(2)5.8020155365575685595=⨯+⨯+⨯+⨯+⨯=甲x ,7520255465975285395=⨯+⨯+⨯+⨯+⨯=乙x , …………………………………2分甲x >乙x ,由样本估计总体的思想,说明通过新技术管理甲地块杨梅产量高于乙地块杨梅产量. ……………………………………………………………………………1分 (若没说明“由样本估计总体”不扣分) (3)P =3.0206=. ………………………………………………………………………3分22.(12分)(1){3,1}+{1,2}={4,3}. ……………………………………………2分 {1,2}+{3,1}={4,3}. …………………………………………………………………2分(2)①画图 …………………………………………………2分 最后的位置仍是B .……………………………………1分 ② 证明:由①知,A (3,1),B(4,3),C (1,2) ∴OC=AB =2221+=5,OA=BC =2213+=10,∴四边形OABC 是平行四边形.…………………………3分 (3){2,3}+{3,2}+{-5,-5}={0, 0}.……………………2分23.(12分)(1)① = ………………………………………………………………………2分② > …………………………………………………………………………………2分 (2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分 (3)∠CDF =15°,23=AMMK.…………………………………………………………2分24.(14分)(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,∴C HQD ∠=∠=90°,HD =HA ,∴A HDQ ∠=∠,…………………………………………………………………………3分 ∴△DHQ ∽△ABC . ……………………………………………………………………1分BPPBGM EKDCABF yO 11 xABC(2)①如图1,当5.20≤<x 时,ED =x 410-,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)410(212+-=⨯-=. …………………………………………3分当45=x 时,最大值3275=y .②如图2,当55.2≤<x 时, ED =104-x ,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)104(212-=⨯-=. …………………………………………2分当5=x 时,最大值475=y .∴y 与x 之间的函数解析式为⎪⎩⎪⎨⎧≤<-≤<+-=).55.2(41523),5.20(4152322x x x x x x yy 的最大值是475.……………………………………………………………………1分(3)①如图1,当5.20≤<x 时,若DE =DH ,∵DH =AH =x AQA 45cos =∠, DE =x 410-,∴x 410-=x 45,2140=x .显然ED =EH ,HD =HE 不可能; ……………………………………………………1分 ②如图2,当55.2≤<x 时, 若DE =DH ,104-x =x 45,1140=x ; …………………………………………1分若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ; ………………………1分 若ED =EH ,则△EDH ∽△HDA ,∴ADDH DHED =,xxxx 24545104=-,103320=x . ……………………………………1分 ∴当x 的值为103320,5,1140,2140时,△HDE 是等腰三角形. (其他解法相应给分)。

2010年浙江省台州市中考动态数学试题赏析与教学启示

2010年浙江省台州市中考动态数学试题赏析与教学启示
题号 题型 分值 主要知识点 考查 目标 考试要求
1 0 1 6 2 2
2 3
选择题 填空题 解答题
解答 题
4 5 l 2
I 2
二次函数的表达式 ,图象 与性质 菱形的性质 ,图形旋转 ,弧 长计算公式 图形平移 ,平行四边 形的性 质。课题学 习内容
图形旋转 ,三角形 全等 ,勾股定理
价值在动态问题 中得到 了充分 的体现 ,数 学 中存在着 的动 、静 当抛 物线 移 到 最右 边 时 ,向右平 移 3个单 位 ,点 C到原 点 , 对立统一 ,也集 中体现了数学 的魅力.

点 D到 ( ,0 得解. 8 )

试 题 赏 析
【 反思】 这个 动态 问题考查 了学生对二次 函数解析 式及 图象
与 轴交于 c 、D两点 ( C在点 D 点 / I 的左侧) 点 c的横坐标最小值为一,则 / j , 3

\ \
发现过程 中,引导他们 分析 问题 ,鼓 励他们 自主探 究问题 ,帮
助 他 们 归纳 所 学 知 识 ,促 进 知 识 的 内 化 , 才 能使 学 生 对 所 学 的
例2 ( 1 第 6题)如图 2 ,在菱形 A C B D中 ,A B:2 C= , 个顶点旋 转 6 。 0 叫一次操作 ,则经过 3 6次这样 的操作菱形 中

还经过点 c 一 ,0 ,可用 顶点 式求 出 口值 ,再 找到 点 D 的坐 6 o (3 ) o ,菱形 A C B D在 直线 z 上方 ,向右作无 滑动的翻滚 ,每绕 着
1 .以平移 变换 为载体 ,考查二 次函数 图象及 性质 ,兼顾极 性质 的掌握 情况 ,同时还 检验 了学生灵活运用极端 值原理进行

台州市中考数学试卷及答案

台州市中考数学试卷及答案

2120172008年浙江省台州市中考数学试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确 选项,不选、多选、错选,均不给分) 3的相反数是( ) C.- 31. A. -3 B. 3 D.2. ) 5.8413 10 右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( x 亠4 3 不等式组 的解集在数轴上可表示为( x W1 ------- 1 ------ --------- 1 ------ i --------- 1 -------- ---------------------- 1 ------- -------- 1------- 0 ----- 1 ------- ► 0 12 0 1 2 D 6. 如图,在菱形ABCD 中,对角线BXC ,BD 相交于点0,E 为AB 的中点,’ 且OE A — _ 7. 四川5C12大地震后,灾区急需帐篷. ....... 竹 帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置 设该企业捐助甲种帐篷 16a cB . 1 :C12 大 则菱形ABCD 的周长为 C. 8a 一 孔灾区急需帐 某企2业急灾区所急,准备捐助甲、A 乙两 00人,x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( A X "2000 4x y = 9000 B x 4y 二 2000 〔6x + y = 9000 C x y 二 2000 gx +6y =9000 D |x + y = 2000 6x 4y=9000 F 列命题中,正确的是( ) ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③ 90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A.①②③ B.③④⑤ C.①②⑤ D.②④⑤ 9 .课题研究小组对附着在物体表面的三个微生物(课题小组成员把他 们分别标号为1, 2,3)的生长情况进行观察记录.这三个微生物第一 天各自一分为二,产生新的微生物(分别被标号为 4, 5, 6, 7, 8, 9), 接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的 微生物(课题组成员用如图所示的图形进行形象的记录) .那么标号为 100的微生物会出现在( ) A.第3天 B.第4天12 13 ;/14 ””10 16;「’19-18(第9题)C.第5天D.第6天10•把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我 们把这样的图形变换叫做滑动对称变换•在自然界和日常生活中,大量地存在这种图形变与小球运动时间t (单位:秒)的函数关系式是h=9.8t-4.9t 2,那么小球运动中的最大高 度h 最大=(用含有a, b 的代数式表示).用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有 新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径 AB 丄弦CD 于E ),设 AE =x ,BE =y ,他用含x, y 的式子表示图中的弦CD 的长度,通过比较运动的弦 CD 和 与之垂直的直径AB 的大小关系,发现了一个关于正数 x, y 的不等式,你也能发现这个不 等式吗?写出你发现的不等式三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22, 23题每题12 分,第24题14分,共80分) 17. (1)计算:-2 23 -tan4^x 16(2)解方程:=2x -2 2-x换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 过程中,两 个对应三角形(如图2)的对应点所具有的性质是( 对应点连线与对称轴垂直 对应点连线被对称轴平分对应点连线被对称轴垂直平分 对应占连线互相平行 、填空题(本题有6小题,每小题5分,共30分 111 .化简:—(2x -4y ) 2y =. 2A. B. C. D.12.因式分解:x 2-4二 13. 台州市某中学随机调查了部分九年级学生的年龄,并画出了这 些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是16岁的概率是 14. 如图,从地面垂直向上抛出一小球,小球的高度 h (单位: 米) 5C4C 3C 245 40 10 n 15岁16岁17岁18岁年龄(第13题)h(第14题) 长A ,B, N ,E ,F 五点 15 .如图, ABC ,NHMC 都是 分别为 在同一直线四边形 EFGH , 正方形,边 a , , b ; 上,贝U c= 16 .善于归纳和总结的小明发现,“数形结合” 是初中数学的基本思想方法,被广泛地应 )图2(第 10题)审人数(第 15 题) G b (第 16 题)18.如图,正方形网格中的每个小正方形的边长都是 点.△ ABO 的三个顶点A ,B ,O 都在格点上.(1)画出△ ABO 绕点O 逆时针旋转90后得到的三角形; 1,每个小正方形的顶点叫做格 (2)求厶ABO 在上述旋转过程中所扫过的面积. 19.如图,一次函数y =kx • b 的图象与反比例函数直线AB 分别交x 轴、y 轴于D , C 两点.3A /图 象 交 L Or 3 1 Fr,n)两点,ND (第 18 题)----- ^D J ----------- x my 二—x(1) 求上述反比例函数和一次函数的解析式; AD (2) 求竺的值. CD 20.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法题)在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归 C B 善于学习的小明I 纳整理如下:* y y=k 1X+b 1气你根据以②数与中程内容在下 尸系' :O 亠③ / (2)如果点x +b 的坐标为(1,3),那么不 (^•20如图是 为2米,DM ,NEAB=30‘,N CDF =45 . 一次函数与不等式的求DM 和B 关系水平距离BM .(精确 (1 )一次函数的解析式就是一个二元一次 方字序号后写出相应的结论: (2)点B 的横坐标是方程①的解; 等式点 C D 的坐标賂的解集是x ,y 的值是方. 计程组 某宾馆大厅到二楼的楼梯 一 度DEEN 为平台的两根 DM ,EN 垂直于 AB ,垂足分别为—M (1)函数y = kx+b 的函数值y 大于0时, 自变量x 的取值范围就是不等式③的解集; 至((2)函数参k 数据的函数值1甲小于0时,CJ? 22.八年级(1)班开展了为期一周的 自敬父的取值范围就是不等式动④的并根据学生 家长做家务的时间来评价学生在活动中的表现,把结果划分成 级.老师通过家长调查了全班 50名学生在这次活动中帮父母做家 的频数分布表和扇形统计图. 学生帮父母做家务活动时间频数分布表 帮助父母做家务时间 频数 (小时) 等级 10 帮 ,D ,E 五个等 制作成如下 ,匸 C 务的时诉, _ N M B (第21 学生帮题母做家务活动 评价等级分布扇形统计 B D C40% (第 22题)E E(1) 求a, b 的值;(2) 根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务 2小时,他认为自己帮父母做家务的时间比班 级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由. 23. CD 经过.BCA 顶点C 的一条直线, CA 二CB . E , F 分别是直线 CD 上两点,且 _BEC - CFA =亠(1) 若直线CD 经过.BCA 的内部,且E ,F 在射线CD 上,请解决下面两个问题: ①如图 1,若.BCA =90:,: =90,贝 U BE ____ CF ; EF __________ BE —AF (填“ A ”,“C ”或“=”); ②如图2,若0;:::. BCA <180,请添加一个关于与.BCA 关系的条件②当x 取何值时,重叠部分的面积等于矩形面积的 —?2716. x y > 2 xy ,或(x y)2 > 4xy ,或 x 2 y 2 > 2xy ,或、、xy W三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12 分,第24题14分,共80分)17. 解:(1) -2 23 -tan45-"6 =2 8-1-4 =5⑵亠丄=2 ,x -22 —x去分母,得:x-1=2(x-2)①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD 经过.BCA 的外部,• :• 一 BCA ,请提出EF ,BE ,AF 三条线段 数量关系的合理猜想(不要求证明). 24.如图,在矩形ABCD 中,A 电9,AD =3」3,点¥是边BC 上的动点(点P 不与点B , (1) (2) (3) C应点是R 点,设CP 的(图1)求.CQP 的度数;(图2)(第 3 题)当x 取何值时,点 ①求y 与x 之间的函数关系式;把△ PQC 沿着动直线PQ 对折,CPQR 与矩形ABCD 重叠部分的面积为y . 图3) R 落在矩形ABCD 的AB 边上? D、选择题(本题有题号 1 答案 AA F二、填空题(本题有‘6小题, 5P第C24题)尺2008年浙江省台州市中考数学参考答 小题,每小题4 11. x 12. (x 2)(x -2)6 7 C D B 备用 每小题5,)备用 13. 0.45 图分) B(备用图2)14. 4.9 米15. a 2 b 2乍直线PQ//点C 的△ x AE ,交DCD 边于石点,Q2 3 共 40 分) 8 9 C.反比例函数的解析式为1x2(2) 过点A 作AE _ x 轴于点E . v A 点的纵坐标为1, AE =1 .OC =~ .2在 Rt △ OCD 和 Rt △ EAD 中, COD = AED 二 Rt , CDO = ADE , Rt ^OCD s Rt A EAD .AD AE 小 2 .CD COy = kx + b20解:(1)① kx b=。

中考数学分类(含答案)新概念型问题

中考数学分类(含答案)新概念型问题

中考数学分类(含答案)新概念形一、选择题1.(2010安徽蚌埠)记n S =n a a a 21,令12nn S S S T n,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为A .2004B .2006C .2008D .2010【答案】 C 2.(2010浙江杭州)定义[,,a b c ]为函数2y axbx c 的特征数, 下面给出特征数为[2m ,1 –m , –1–m ]的函数的一些结论:①当m = –3时,函数图象的顶点坐标是(31,38);②当m > 0时,函数图象截x 轴所得的线段长度大于23;③当m < 0时,函数在x >41时,y 随x 的增大而减小;④当m0时,函数图象经过同一个点.其中正确的结论有A. ①②③④ B. ①②④ C. ①③④ D. ②④【答案】 B 3.(2010浙江宁波)《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础. 它是下列哪位数学家的著作(A)欧几里得(B)杨辉(C)笛卡尔(D)刘徽【答案】A4.(2010 山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行【答案】 B5.(2010鄂尔多斯)定义新运算:a ⊕b=)0()(1bb aba b aa 且,则函数y=3⊕x 的图象大致是【答案】B 6.(2010四川达州)在平面直角坐标系中,对于平面内任一点(m,n ),规定以下两种变换:①(,)(,)f m n m n ,如(2,1)(2,1)f ;②(,)(,)g m n m n ,如(2,1)(2,1)g . 按照以上变换有:3,43,43,4f g f,那么3,2g f 等于A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)【答案】A 二、填空题1.(2010安徽蚌埠)若x 表示不超过x 的最大整数(如3322,3等),则200120002001132312121_________________。

2010年台州市数学中考题目

2010年台州市数学中考题目

C(第3题)2010年台州市初中学业水平考试数学试题卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.4-的绝对值是( )A .4B .4-C .41 D .41- 2.下列立体图形中,侧面展开图是扇形的是( )3.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是( ) A .2.5 B .3 C .4 D .5 4.下列运算正确的是( ) A .22a a a =⋅B .33)(ab ab = C .632)(a a = D .5210a a a =÷5.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 ( ) A .25° B .30° C .40° D .50° 6.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查.7.梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是( ) A .3 B .4 C . 23 D .2+23 8.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<, 则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<9.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N . 则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 2310.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,DA .B .C .D .(第5题)ABO CD与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( ) A .-3 B .1 C .5 D二、填空题(本题有6小题,每小题5分,共30分) 11.函数xy 1-=的自变量x 的取值范围是 . 12.因式分解:162-x = .13.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 . 14.如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S ,乙2S 之间的大小关系是 .15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是 ,阴影部分面积为(结果保留π) .16.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)计算:)1()2010(40---+;(2)解方程:123-=x x .(第16题)lABDOE(第15题)(第 14 题)678910 12 3 4 5 6 7 8 9 1018.解不等式组⎩⎨⎧+>>-12026x x x ,并把解集在数轴上表示出来.19.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?20.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.21.果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,(第19题)DC,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(第21题)(1)补齐直方图,求a的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.22.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(2-)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}ca+b+=,.,+,c{}d}{dab{解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.②证明四边形OABC是平行四边形.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”). ②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.24.如图,Rt△ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP=AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点, HQ ⊥AB 于Q ,图1图2图3(第23题)EEE图4A交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?。

中考数学试题梯形专题02

中考数学试题梯形专题02

中考数学试题专题梯形真题试题汇编一、选择题1.(2010安徽芜湖)如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于()A .9B .10C .11D .12【答案】B2.(2010山东日照)已知等腰梯形的底角为45o ,高为2,上底为2,则其面积为(A )2 (B )6 (C )8 (D )12【答案】C3.(2010山东烟台)如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是A 、等腰梯形B 、矩形C 、菱形D 、正方形【答案】C4.(2010山东威海)如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .52 【答案】A 5.(2010台湾)如图(十五)梯形ABCD 的两底长为AD =6,BC =10,中线为EF , C A B DO且∠B=90︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则△EFP 与梯形ABCD 的面积比为何?(A) 1:6 (B) 1:10 (C) 1:12 (D) 1:16 。

【答案】D6.(2010 浙江省温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是(▲) .A .5B .6C .7D .8【答案】B7.(2010 浙江台州市)梯形ABCD 中,AD ∥BC ,AB=CD=AD=2,∠B=60°,则下底BC 的长是(▲)A .3B .4C . 23D .2+23【答案】B8.(2010浙江金华) 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD的面积为( ▲ ) A .33cm2 B .6 cm2C .36cm2D .12 cm2 【答案】A9.(2010湖北省咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.【答案】D10.(2010湖北恩施自治州)如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移 D C BAE F P图(十五) ACBD (第10题图)到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为:A. 7B. 14C. 21D. 28【答案】B11.(2010四川内江)(2010四川内江,12,3分)如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =2.7,AF =4,AB =6,则CE 的长为A .2 2B .23-1C .2.5D .2.3【答案】D12.(2010 湖南湘潭)在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=2cm ,则BC 的长是A .2cmB .3cmC .4cmD .5cm【答案】C13.(2010湖北十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面积为6cm2,则梯形ABCD 的面积为( )A .12 cm2B .18 cm2C .24 cm2D .30 cm2【答案】C14.(2010 湖北咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.AD BC EF (第7题) A B C DE F【答案】D15.(2010四川达州) 如图4,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C 的小路(M 、N 分别是AB 、CD 中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了图4A. 7米B. 6米C. 5米D. 4米【答案】B16.(2010湖南娄底)下列说法中错误的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 等腰梯形的对角线相等【答案】B1二、填空题1.(2010甘肃兰州) 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .【答案】52.(2010浙江宁波)如图,在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD. 若∠ABC=60°,BC=12,则梯形ABCD 的周长为 ▲.图4DCBA【答案】303.(2010湖南长沙)等腰梯形的上底是4cm,下底是10cm,一个底角是60 ,则等腰梯形的腰长是cm.【答案】64.(2010江苏无锡)如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC 交EF于G,若BC=10cm,EF=8cm,则GF的长等于▲cm.【答案】35.(2010 黄冈)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为_____cm2.【答案】186.(2010湖北武汉)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N,下列结论:①BH=DH;②CH=)1EH;③EBHENHS EHS EC∆∆=.其中正确的是()A、①②③B、只有②③C、只有②D、只有③G FEDC BA(第17题)【答案】 B7.(2010湖南怀化)如图5,在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD ,AB=1cm , AD=6cm ,CD=9cm ,则BC= cm .【答案】108.(2010江苏扬州)如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________. 【答案】39.(2010湖北随州)如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.【答案】1810.(2010云南昆明)如图,在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点, 若△ABC 的周长为10 cm ,则△DEF 的周长是 cm .【答案】511.(2010陕西西安)如图,在梯形ABCD 中,DC ∥AB ,∠A +∠B=90°。

浙江省台州市中考数学真题试题(含解析)

浙江省台州市中考数学真题试题(含解析)

浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.(4分)台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109 4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11 5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC 相切,则⊙O的半径为()A.2B.3 C.4 D.4﹣8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=.12.(5分)若一个数的平方等于5,则这个数等于.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).18.(8分)先化简,再求值:﹣,其中x=.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY 22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.【点评】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.(4分)台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.【点评】此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.【点评】本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC 相切,则⊙O的半径为()A.2B.3 C.4 D.4﹣【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C =∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=BAC=30°,∴∠AOC=90°,∴OC=AC=4,∵OE⊥AC,∴OE=OC=2,∴⊙O的半径为2,故选:A.【点评】本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.【分析】由“ASA”可证△CDM≌△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两张纸片交叉所成的角a最小,可求CM=,即可求tanα的值.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.【点评】本题考查了矩形的性质,菱形的判定,勾股定理,全等三角形的判定和性质,求CM的长是本题的关键.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【分析】函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;①正确;点(,﹣2)关于y=2对称的点为点(,6),在函数y=上,②正确;y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,可得4﹣y1=,4﹣y2=,当x1>x2>0或0>x1>x2,有y1>y2;④不正确;【解答】解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.【点评】本题考查反比例函数图象及性质;熟练掌握函数关于直线后对称时,对应点关于直线对称是解题的关键.10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:2【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.【点评】本题考查图形的拼剪,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.12.(5分)若一个数的平方等于5,则这个数等于±.【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:±.故答案为:±.【点评】此题主要考查了平方根,正确把握相关定义是解题关键.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.【分析】画出树状图然后根据概率公式列式即可得解.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.【点评】此题主要考查了圆内接四边形的性质以及三角形的外角,正确得出∠AEC的度数是解题关键.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.【点评】此题主要考查了推理与论证,正确得出每次砸掉的和余下的金蛋个数是解题关键.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.18.(8分)先化简,再求值:﹣,其中x=.【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:﹣==,当x=时,原式==﹣6.【点评】本题考查的是分式的化简求值,掌握同分母分式的减法法则是解题的关键.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【解答】解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(真)②若AD=BE=CF,则六边形ABCDEF是正六边形.(真)【分析】(1)①由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌EAB得出∠ABC=∠BCD=∠CDE =∠DEA=∠EAB,即可得出结论;②由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE =∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA =∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;(2)①证明△AEF≌△CAB≌△ECD得出∠F=∠B=∠D,∠FEA=∠FAE=∠BAC=∠BCA =∠DCE=∠DEC,由等边三角形的性质得出∠EAC=∠ECA=∠AEC=60°,设∠F=∠B=∠D=y,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=x,则y+2x=180°①,y﹣2x =60°②,求出y=120°,x=30°,得出∠F=∠B=∠D=∠BAF=∠BCD=∠DEF=120°,即可得出结论;②证明△BFE≌△FBC得出∠BFE=∠FBC,证出∠AFE=∠ABC,证明△FAE≌△BCA得出AE =CA,同理:AE=CE,得出AE=CA=CE,由①得:六边形ABCDEF是正六边形.【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;真命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=EA,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),∴∠F=∠B=∠D,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC,∵AC=CE=EA,∴∠EAC=∠ECA=∠AEC=60°,设∠F=∠B=∠D=y,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=x,则y+2x=180°①,y﹣2x=60°②,①+②得:2y=240°,∴y=120°,x=30°,∴∠F=∠B=∠D=120°,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=30°,∴∠BAF=∠BCD=∠DEF=30°+30°+60°=120°,∴∠F=∠B=∠D=∠BAF=∠BCD=∠DEF,∴六边形ABCDEF是正六边形;故答案为:真;②若AD=BE=CF,则六边形ABCDEF是正六边形;真命题;理由如下:如图4所示:连接AE、AC、CE,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△FAE和△BCA中,,∴△FAE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:六边形ABCDEF是正六边形;故答案为:真.【点评】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c =0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象,数形结合解题是关键.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.【分析】(1)设AP=FD=a,通过证明△AFP∽△DFC,可得,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH=AF,由“SAS”可证△PAF≌△HDF,可得PF=FH,由勾股定理可求CE=EP=,可得CM=CH=﹣1,由“SAS”可证△FCM≌△FCH,可得FM=FH=PF;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B'Q'的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD。

2010年浙江台州中考数学试卷及答案

2010年浙江台州中考数学试卷及答案

C(第3题)2010年台州市初中学业水平考试 数学试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。

请注意以下几点: 1.全卷共6页,满分150分,考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。

3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题。

本次考试不得使用计算器。

祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)(10浙江台州)1.4-的绝对值是(▲) A .4 B .4- C .41 D .41- (10浙江台州)2.下列立体图形中,侧面展开图是扇形的是(▲)(10浙江台州)3.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 则AP 长不可能...是(▲) A .2.5 B .3 C .4 D .5 (10浙江台州)4.下列运算正确的是(▲) A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a=÷ (10浙江台州)5.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 (▲) A .25° B .30° C .40° D .50° (10浙江台州)6.下列说法中正确的是(▲)A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查.(10浙江台州)7.梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是(▲) A .3 B .4 C . 23 D .2+23 (10浙江台州)8.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<, 则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<A .B .C .D .(第5题) ABO CD(10浙江台州)9.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N . 则DM +CN 的值为(用含a 的代数式表示)(▲) A .a B .a 54C .a 22D . a 23 (10浙江台州)10.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为(▲)A .-3B .1C .5D .85分,共30(10浙江台州)11.函数xy 1-=的自变量x (10浙江台州)12.因式分解:162-x = ▲ .(10浙江台州)13.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ▲ . (10浙江台州)14.如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S ,乙2S 之间的大小关系是 ▲ . (10浙江台州)15.如图,正方形ABCD 边长为4,以BC为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O的位置关系是 ▲ ,阴影部分面积为(结果保留π) ▲ .(10浙江台州)16.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) ▲ .(第16题)lABDOE(第15题)D(第 14 题)1 2 3 4 56 7 8 9 10三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)(10浙江台州)17.(1)计算:)1()2010(40---+;(2)解方程:123-=x x .(10浙江台州)18.解不等式组⎩⎨⎧+>>-12026x x x ,并把解集在数轴上表示出来.(10浙江台州)19.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?(第19题)D(10浙江台州)20.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.(10浙江台州)21.果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A,B,C,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(第21题)(1)补齐直方图,求a的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果; (3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B 的概率.(10浙江台州)22.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(2-)=1. 若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”;“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量”{1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗? 在图1中画出四边形OABC . ②证明四边形OABC 是平行四边形.(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头Q (5,5),最后回到出发点O . 请用“平移量”加法算式表示它的航行过程.(第22图1(10浙江台州)23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”). ②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.图1图2图3(第23题)EEE图4A(10浙江台州)24.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A 运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?H(第24题)2010年台州市初中学业水平考试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)11.0≠x 12.)4)(4(-+x x 13. 100)1(1202=-x 14.甲2S <乙2S 15.相切(2分),-6π (3分) 16.(83+4)π三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(8分)(1)解:原式=2+1+1 …………………………………………………………3分 =4 ………………………………………………………………1分(2)解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分所以原方程的解是3=x . 18.(8分)⎩⎨⎧+>>-.12,026x x x解①得,x <3, ……………………………………………………………………2分解②得,x >1, ………………………………………………………………………2分 ∴不等式组的解集是1<x <3. ……………………………………………………2分 在数轴上表示 ………………………………………………………………………2分19.(8分)(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, ………………………………… 3分∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分①②20.(8分)(1)①当0≤x ≤6时, ………………………………………………………1分x y 100=; ………………………………………………………………………………2分②当6<x ≤14时, ……………………………………………………………………1分设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y .∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y …………………………………………………………2分(2)当7=x 时,5251050775=+⨯-=y , ……………………………………1分757525==乙v (千米/小时). ………………………………………………………1分 21.(10分)(1)画直方图 …………………………………………………………………2分a =10, 相应扇形的圆心角为:360°×10%=36°. ………………………………2分(2)5.8020155365575685595=⨯+⨯+⨯+⨯+⨯=甲x ,7520255465975285395=⨯+⨯+⨯+⨯+⨯=乙x , …………………………………2分甲x >乙x ,由样本估计总体的思想,说明通过新技术管理甲地块杨梅产量高于乙地块杨梅产量. ……………………………………………………………………………1分 (若没说明“由样本估计总体”不扣分) (3)P =3.0206=. ………………………………………………………………………3分 22.(12分)(1){3,1}+{1,2}={4,3}. ……………………………………………2分 {1,2}+{3,1}={4,3}. …………………………………………………………………2分(2)①画图 …………………………………………………2分最后的位置仍是B .……………………………………1分 ② 证明:由①知,A (3,1),B(4,3),C (1,2) ∴OC=AB =2221+=5,OA=BC =2213+=10, ∴四边形OABC 是平行四边形.…………………………3分(3){2,3}+{3,2}+{-5,-5}={0, 0}.……………………2分23.(12分)(1)① = ………………………………………………………………………2分② > …………………………………………………………………………………2分 (2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G ,连接GK ,GM ,GD , 则CD =GD ,GK = CK ,∠GDK =∠CDK ,∵D 是AB 的中点,∴AD =CD =GD .∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°,∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分 (3)∠CDF =15°,23=AMMK .…………………………………………………………2分24.(14分)(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,∴C HQD ∠=∠=90°,HD =HA ,∴A HDQ ∠=∠,…………………………………………………………………………3分∴△DHQ ∽△ABC . ……………………………………………………………………1分(2)①如图1,当5.20≤<x 时,ED =x 410-,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)410(212+-=⨯-=. …………………………………………3分当45=x 时,最大值3275=y .②如图2,当55.2≤<x 时,ED =104-x ,QH =x A AQ 43tan =∠,此时x x x x y 4152343)104(212-=⨯-=. …………………………………………2分当5=x 时,最大值475=y .∴y 与x 之间的函数解析式为⎪⎩⎪⎨⎧≤<-≤<+-=).55.2(41523),5.20(4152322x x x x x x yy 的最大值是475.……………………………………………………………………1分 (3)①如图1,当5.20≤<x 时,若DE =DH ,∵DH =AH =x A QA 45cos =∠, DE =x 410-,∴x 410-=x 45,2140=x . 显然ED =EH ,HD =HE 不可能; ……………………………………………………1分②如图2,当55.2≤<x 时,(图1)C(图2)若DE =DH ,104-x =x 45,1140=x ; …………………………………………1分 若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ; ………………………1分 若ED =EH ,则△EDH ∽△HDA , ∴AD DH DH ED =,x x x x 2454104=-,103320=x . ……………………………………1分 ∴当x 的值为103320,5,1140,2140时,△HDE 是等腰三角形. (其他解法相应给分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C(第3题)2010年台州市初中学业水平考试 数学试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。

请注意以下几点: 1.全卷共6页,满分150分,考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。

3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题。

本次考试不得使用计算器。

祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)(10浙江台州)1.4-的绝对值是(▲) A .4 B .4- C .41 D .41-(10浙江台州)2.下列立体图形中,侧面展开图是扇形的是(▲)(10浙江台州)3.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 则AP 长不可能...是(▲) A .2.5 B .3 C .4 D .5 (10浙江台州)4.下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ (10浙江台州)5.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 (▲) A .25° B .30° C .40° D .50° (10浙江台州)6.下列说法中正确的是(▲)A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖;C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查.(10浙江台州)7.梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是(▲)A .3B .4C . 23D .2+23 (10浙江台州)8.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<A .B .D(第5题)ABO D(10浙江台州)9.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)(▲) A .a B .a54 C .a22 D .a23(10浙江台州)10.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为(▲)A .-3B .1C .5D .85分,共30(10浙江台州)11.函数xy 1-=的自变量x (10浙江台州)12.因式分解:162-x = ▲ .(10浙江台州)13.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ▲ . (10浙江台州)14.如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S ,乙2S 之间的大小关系是 ▲ . (10浙江台州)15.如图,正方形ABCD 边长为4,以BC为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O的位置关系是 ▲ ,阴影部分面积为(结果保留π) ▲ .(10浙江台州)16.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) ▲ .(第16题)lABOE(第15题)D(第 14 题)1 2 3 4 5 6 7 89 10三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)(10浙江台州)17.(1)计算:)1()2010(40---+;(2)解方程:123-=x x.(10浙江台州)18.解不等式组⎩⎨⎧+>>-12026x x x ,并把解集在数轴上表示出来.(10浙江台州)19.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?(10浙江台州)20.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.(10浙江台州)21.果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A,B,C,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(第21题)(1)补齐直方图,求a的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.(10浙江台州)22.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(2-)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}a++b,.d,+,=c{}{}{dcba 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.②证明四边形OABC是平行四边形.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.(10浙江台州)23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AMCKMK =+,请直接写出∠CDF 的度数和AMMK 的值.图1图2图3(第23题)EEE图4A(10浙江台州)24.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A 运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?H(第24题)2010年台州市初中学业水平考试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.0≠x 12.)4)(4(-+x x 13. 100)1(1202=-x 14.甲2S <乙2S 15.相切(2分),-6π (3分) 16.(83+4)π三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(8分)(1)解:原式=2+1+1 …………………………………………………………3分 =4 ………………………………………………………………1分(2)解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分 所以原方程的解是3=x .18.(8分)⎩⎨⎧+>>-.12,026x x x解①得,x <3, ……………………………………………………………………2分解②得,x >1, ………………………………………………………………………2分 ∴不等式组的解集是1<x <3. ……………………………………………………2分 在数轴上表示 ………………………………………………………………………2分 19.(8分)(1) cos ∠D =cos ∠ABC =BCAB =25.44≈0.94, ………………………………… 3分∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分①②共需台阶28.9×100÷17=170级. ………………………………………………1分 20.(8分)(1)①当0≤x ≤6时, ………………………………………………………1分x y 100=; ………………………………………………………………………………2分②当6<x ≤14时, ……………………………………………………………………1分设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y …………………………………………………………2分(2)当7=x 时,5251050775=+⨯-=y , ……………………………………1分757525==乙v (千米/小时). ………………………………………………………1分 21.(10分)(1)画直方图 …………………………………………………………………2分 a =10, 相应扇形的圆心角为:360°×10%=36°. ………………………………2分 (2)5.8020155365575685595=⨯+⨯+⨯+⨯+⨯=甲x ,7520255465975285395=⨯+⨯+⨯+⨯+⨯=乙x , …………………………………2分甲x >乙x ,由样本估计总体的思想,说明通过新技术管理甲地块杨梅产量高于乙地块杨梅产量. ……………………………………………………………………………1分 (若没说明“由样本估计总体”不扣分) (3)P =3.0206=. ………………………………………………………………………3分22.(12分)(1){3,1}+{1,2}={4,3}. ……………………………………………2分 {1,2}+{3,1}={4,3}. …………………………………………………………………2分(2)①画图 …………………………………………………2分最后的位置仍是B .……………………………………1分 ② 证明:由①知,A (3,1),B(4,3),C (1,2) ∴OC=AB =2221+=5,OA=BC =2213+=10,∴四边形OABC 是平行四边形.…………………………3分 (3){2,3}+{3,2}+{-5,-5}={0, 0}.……………………2分23.(12分)(1)① = ………………………………………………………………………2分 ② > …………………………………………………………………………………2分(2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分 (3)∠CDF =15°,23=AMMK.…………………………………………………………2分24.(14分)(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,∴C HQD ∠=∠=90°,HD =HA ,∴A HDQ ∠=∠,…………………………………………………………………………3分 ∴△DHQ ∽△ABC . ……………………………………………………………………1分(2)①如图1,当5.20≤<x 时,ED =x 410-,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)410(212+-=⨯-=. …………………………………………3分当45=x时,最大值3275=y .②如图2,当55.2≤<x 时,ED =104-x ,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)104(212-=⨯-=. …………………………………………2分当5=x 时,最大值475=y .∴y 与x 之间的函数解析式为⎪⎩⎪⎨⎧≤<-≤<+-=).55.2(41523),5.20(4152322x x x x x x yy 的最大值是475.……………………………………………………………………1分(3)①如图1,当5.20≤<x 时,若DE =DH ,∵DH =AH =x A QA 45cos =∠, DE =x 410-,∴x 410-=x 45,2140=x .显然ED =EH ,HD =HE 不可能; ……………………………………………………1分(图1)C(图2)厦门学子教育顾问机构 高效学习专攻名校系列辅导材料操云老师博客:/caoyun 资料下载: 中国教育网盘http://michaelcy 11 ②如图2,当55.2≤<x 时,若DE =DH ,104-x =x 45,1140=x ; …………………………………………1分若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ; ………………………1分若ED =EH ,则△EDH ∽△HDA , ∴AD DH DH ED =,xx x x 24545104=-,103320=x . ……………………………………1分 ∴当x 的值为103320,5,1140,2140时,△HDE 是等腰三角形. (其他解法相应给分)。

相关文档
最新文档