新人教版八年级数学下册教学参考课件19.2.2一次函数

合集下载

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x

-4
-2
0
2
4

y= 1 x 2

-2
-1
0
1
2

y=-1 x

人教版八年级下册 19.2.2 求一次函数的解析式—待定系数法 (共16张ppt)

人教版八年级下册 19.2.2   求一次函数的解析式—待定系数法 (共16张ppt)

解:设这个一次函数的解析式为y=kx+b.依题意得 14k+b=105.5 解之得 6k+b=45.5
K=7.5
b=0.5
∴函数的解析式为y=7.5x+0.5 当X=10时 y=7.5×10+0.5=75.5 答:当一条蛇的尾长为10 cm时,这条蛇的长度是75.5cm
说说你这节课的收获:
1、用待定系数法求一次函数 的解析式。 2、了解了数与形的关系 3、知道了可以用数学知识解决 生活中的问题。
分析:由表格知x=0时,y=1;x=1时,y=0得 y与x的函数关系式为y=-x+1.所以当x=-1时, y=2.所以空格中原来填的数是2
你会用所学知识解决生活中的问题吗? 生物学家研究表明: 某种蛇的长度y(cm)是其尾长x(cm)的一次函数; 当蛇的尾长为 14cm时, 蛇的长为105.5cm; 当蛇的尾长为6 cm时, 蛇的长为45.5 cm; 当蛇的尾长为10 cm时,这条蛇的长度是多少?
数学的思想方法:数形结合
巩固练习:
求出一次函数的解析式.
2、如图所示:分别求出直线a、b的解析式为
y 4 y
1、已知:一次函数的图象经过点(2,5)和点(1,3),
.
a
4
b
-2 0 2 x 0 6 x
巩固加深:
1、 若一次函数y=3x+b的图象经过点P(1,4),
则该函数图象的解析式为 y=3x+1 . 2、 已知一次函数y=kx+2,当x=5时,y的值 为4,则k= 求k、b的值. 3、已知直线 y=kx+b 经过点(9,0)和(24,20),
y
8 7 6 5 4 3 2 1
大家能否通过取直线上 的这两个点来求这条直线 的解析式呢?

最新人教版数学八年级下册 19.2.2 一次函数 课件

最新人教版数学八年级下册  19.2.2 一次函数  课件

正比例函数 y=kx(k≠0)的图象:是一条经过原点的直线
经过第一、三象限
经过第二、第四象限
直线从左至右呈上升趋 直线从左至右呈下降趋 势,y随x的增大而增大. 势,y随x的增大而减小
针对函数 y =kx+b,要研究什么?怎样研究?
研究函数 y =kx+b(k≠0)的图象和性质. 研究方法:画图象→观察图象→变量(坐标)意义解释.
函(数2)y2函= -数6x+y15=的-6图x 的像图与象y轴经交过于原点点 ,
(
),即它可以看作由直线 y1=2x
向 平移 个单位长度而得到.
0 ,5

5
y
4
2
-2 0 -2
y =-6x+5
2
-4
y =-6x
新知探究
(3)在同一直角坐标系中,直线 y =-6x +5与 y =-6x的
位置关系是 平行 . 由于一次函数的图像是直线,两点确定一条直线所
一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响? 当k>0时,直线y=kx+b由左到右逐渐上升,y随x的增大而增大.
① b>0时,直线经过第一、二、三象限; ② b<0时,直线经过第一、三、四象限.
当k<0时,直线y=kx+b由左到右逐渐下降,y随x的增大而减小.
① b>0时,直线经过第 一、二、四象限; ② b<0时,直线经过第二、三、四象限.
知识总结
习题精析
2、 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值: (1)函数值y 随x的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限;

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.

2019人教版八年级数学下册19.2.2一次函数(第1课时)优秀ppt课件

2019人教版八年级数学下册19.2.2一次函数(第1课时)优秀ppt课件

(3) y 8 (4)y0.5x1
(5) y
x
x 1
(6) y 2 13
2
x
(7)y=2(x-4)
(8) y x3 2
你能举出一些一次函数的例子吗?
例2.已知函数
y(m3)xm283
是一次函数,求其解析式。
解: 由题意得:
m 2 8 1 m 3 0
m 3
m
3
m3
∴一次函数的表达式为
括月租费22元和拨打电话 x min 的计时费(按0.1元/min
收取);
y=0.1x+22
(4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
y=-5x+50(0≤x≤10)
观察以上出现的四个函数解析式,很显然
它们不是正比例函数,这些函数关系式有什么 特点?
思考:
正比例函数与一次函数有什么区别和联系 呢?
区别: 一次函数有常数项,正比例函数没有常数 项。
联系: 正比例函数是特殊的一次函数,一次函数不 一定是正比例函数。
例1.下列函数关系式中,那些是一次函数?哪些是正比例函 数?
(1)y=2πx
(3) y 1 x
(5) y=8x2+x(1-8x)
(2)y=-x-4 (4)y=x2 -3x
y3x3
注意:利用定义求一次函数
y表达k式x时,b
必须保证: (1)k ≠ 0,
(2)自变量x的指数是“1”
1、在一次函数y=-3x-5中,k =___,b =____. -3
-5
2、若函数y=(m-3)x+2-m是一次函数,则m______ .

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

y Ox
y随x的增大而减小
函数的图象随着x的增大从左到右 下降
图象与y轴相交 于正半轴,图 象只经过一、 二、四象限, 不经过第三象 限。
图象与y轴相交 于负半轴,图象 只经过二、三、 四象限,不经过 第一象限。
*k越小直线相对于x轴越陡峭。
y
y
Ox
Ox
根据图象确定k,b的取值
K> 0 b= 0
K <0 b= 0

k>0
k<0
y
y
Ox
Ox

性质:k>0,y 随x 的增大 而增大;k<0,y 随 x 的 增大而减小.
针对函数 y =kx+b,大家想研 究什么?应该怎样研究?
画一画
y =2x
画一次函数 y =2x-3 的图象.
x … -2 -1 0 1 2 … y=2x-3 … -7 -5 -3 -1 1 … y
求一次函数y=kx+b(k≠0)的图象与两坐标轴的交点的方法是; 令x=0,则得y=b,而得与y轴的交点坐标为(0,b); 令y=0,则得x=-b/k,而得与x轴的交点坐标为(-b/k,0)
K:决定直线倾斜的方向。 |k|越大,函数图象越靠近 y轴。
b: 决定直线与y轴相交的 交点的位置。当b>0时,交 点在y轴正半轴;当b˂0时, 交点在y轴负半轴。
2 1
得 x=1.
-2 -1 O
过点(0,3)、(1,0)画一条直线,
-1 -2
123
x
这条直线就是函数y=-3x+3的图像.
-3
-4 y=-3x+3
思思思考考考1:23::画画把一一直次次线函函y数=数y-=y3=2xx怎-3样1x-的平3 图移像得的选到图取函像哪数选两y=取点-哪比3两较x+点方3比便的较?图方像便?? 2

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数课件(新版)新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数课件(新版)新人教版
图19-2-2-2-3 (1)根据图象分别求出y1、y2与x的函数关系式; (2)根据图象直接回答:哪个商场付给员工的工资多一些.
解析 (1)设y1与x的函数关系式为y1=k1x(k1≠0),将(40,600)代入,得600=4 0k1,解得k1=15,故y1与x的函数关系式为y1=15x(x≥0且x为整数). 设y2与x的函数关系式为y2=k2x+400(k2≠0),将(40,600)代入,得600=40k2+4 00,解得k2=5,故y2与x的函数关系式为y2=5x+400(x≥0且x为整数). (2)根据图象可知, 当销售件数大于40时,甲商场付给员工的工资多一些; 当销售件数小于40时,乙商场付给员工的工资多一些; 当销售件数等于40时,甲商场与乙商场付给员工的工资一样多. 点拨 一次函数表达式的确定通常有以下几种情况: (1)通过分析数量(等量)关系得出一次函数表达式. (2)利用函数图象,根据直线上两点的坐标确定k,b的值,求出一次函数表
所以y=-x+1,当x=0时,y=1,所以p=1,故选A.
2.如图19-2-2-2-4,一次函数y=kx+b(k≠0)的图象与正比例函数y=2x的图
象平行且经过点A(1,-2),则kb=
.
图19-2-2-2-4 答案 -8 解析 因为y=kx+b的图象与y=2x的图象平行,所以k=2,即y=2x+b.又由其 图象过点A(1,-2),可得-2=2×1+b,解得b=-4,故kb=-8.
0.8, 15,
∴y=0.8x-15.
综上所述,y= 00..685x x(105( xx 110000))., (2)用户月用电量在0度到100度之间时,每度电收费0.65元;月用电量超
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用两点法在同一坐标系中画出函数y=2x-1 y 与y=-0.5x+1的图象. 6
x y=2x-1
5 4 3 2 1
x y= - 0.5x+1
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4 -5 -6
o 1
2
3
4
5
6 x
实践:用两点法在同一坐标系中画出函数y=2x-1
与y=-0.5x+1的图象.
x
1 y x2 2
1 y x 2
1 y x2 2
1 y x 2
K相同 b不同 直线(图象)平行
y 3 x 2 y 3x
一次函数y=kx+b的图象是经过(0,b)点且平行于 直线y=kx的一条直线, ( 0 ,b) y y=x+2
3 0 2
y=x-2 x
y=x 我们称它为直线y=kx+b,它可以看作由直线y=kx平 移|b|个单位长度得到. (当b>0时,向上平移;当 b<0时,向下平移)
0
1
x
平移

比较两个函数解析式,你能说出这两个函数图 象有平移关系的道理吗? 相同点: 1.这两个函数解析式都是自 y=-6x+5 变量x的 (常数)倍, 与一个常数的和。
y=-6x
不同点: 2.这两个函数解析式仅在 联系: 3.对于自变量x的任一值,这两个函数相应 的y值总相差 。 有区别。
请比较下列函数y=x, y=x+2,y=x-2的图 象有什么异同点?
0
y 6
0.5
5
y=2x-1 -1
0
y=2x-1
y=-0.5x+1
4 3 2 1
经过(0,-1)和(0.5,0) 两点
x y= -0.5x+1
0
1
2 0
-6
-5
-4
-3
-2
-1 -1 -2 -3
o 1
2
3
4
5
6 x
经过(0,1)和(2,0)两 点
-4 -5 -6
2 函数y=3x-2的图象 画出一次函数 y x 1 的图象 是否也有这种现象 3
(2)直线y=2x+5与直线y=-3x+5都 经过轴上的同一点(___,___). 0 5 (3)将直线y=-2x-1向上平移3个单 位,得到的直线是y=-2x+2 ______.
(4)直线y=3x-2可由直线y=3x向 下 2 平移 单位得到。
(5)直线y=x+2可由直线y=x-1向 3 平移 单位得到。 上
12 17
-1
6 11
0
0 5
1
-6 -1
2
-12 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5
17
11
y=-6x
5
两个函数 图象有什 么关系?
0
X
-7
合作探究(一)
比较上面两个函数的图象的相同点与不同点 . 问题 3:请大家观察这两个函数图象的形状,倾斜程度 你有什么发现? y 相同点: 5 y=-6x+5 1.这两个函数的图象形状都 y=-6x 是 , 并且倾斜程度 . 不同点: 2.函数y=6x的图象经过原点, 函数y=-6x+5的图象与y轴交 于点 . 联系: 3.函数y=-6x+5可以看作由直线y=-6x向 单位长度而得到.
(1)直线y=2x-3可以由直线y=2x经过 ____________ 向下平移3个单位 而得到; 直线y=-3x+2可以由直线y=-3x经过 _______________ 向上平移 2个单位 而得到; 直线y=x+2可以由直线y=x-3经过 向下平移5个单位 而得到. _________________
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?
y=kx
图 象
y


K>0
x
经过一、三象限 y随x增大而增大
K<0
y x
经过二、四象限 y随x增大而减小
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
例2.画出函数y =-6x与 y =-6x +5的图 象。
x y=-6x y=-6x+5 -2
这几个函数的图象形状都 是 直线 ,并且倾斜程度__相同 _
函数y=x的图象经过原点, 函数y=x+2的图象与y轴交于 点 ____ ,即它可以看作由 ( 0 , 2) 上平移 2 个单位 直线y=x向__ 长度而得到.函数y=x-2的 ( 0,-2__ ), 图象与y轴交于点 _ 即它可以看作由直线y=x向 下 平移____ 2 个单位长度而得 到.
(6)函数y=2x - 4与y轴的交点为 ( 0,-4 ),与x轴交于( 2, 0 )
Hale Waihona Puke 选取适当两点作图:y
y kx b(k 0)
常取点 o x
(0, b )(1,k+b)
b (0, b ) ( ,0) k
y=kx﹙k≠0﹚
常取点 ﹙0,0﹚ ﹙1,,k﹚
2、用两点法画一次函数图像
对于直线y=k1x+b1与直线 y=k2x+b2 比较下列一对一次函数的图象有什么共同点, 当k1=k2 , b1≠b2 时,两直线平行 ; 有什么不同点? 当k1 ≠ k2 , b1=b2 时,两直线相交于点(0,b) ; 直线(图象)平行 K相同 b不同
y 3 x 2 y 3x
K不同 b相同 直线(图象)相交
一次函数的图像和性质
y
0
x
提问复习,引入新课
1、什么叫正比例函数、一次函数?它们之间 有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数,叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 y=kx 当b=0时,y=kx+b就变成了 ,
所以说正比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是 经过原点的一条直线 ( )
2 . . . . .
.
y=x+2 . . x . . . y= . . . y=x-2
y
.0
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
1 y 2 x与
y 2x 3
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
2 y 2 x 1与
1 y x 1 2
推广:
一条直线;
(1)所有一次函数y=kx+b的图象都是______ (3)直线 y=kx+b可以看作由直线y=kx 平移 b 个单位 而得到 _________ 当b>0,向上平移b个单位; 当b<0,向下平移b个单位。
互相平行 ; (2)直线 y=kx+b与直线y=kx__________
其中,b叫做直线 y=kx+b在y轴上的截距。
相关文档
最新文档