山东省诸城市2015届高三第一次检测数学(理)试题
山东省潍坊市诸城第一中学高三数学理联考试题含解析

山东省潍坊市诸城第一中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数在上是增函数,,若,则的取值范围是A. B. C. D.参考答案:B因为,所以函数为偶函数,因为函数在上是增函数,所以当时,,此时为减函数,所以当,函数单调递增。
因为,所以有,解得,即,选B.2. 某三棱锥的三视图如图所示,该三棱锥的表面积是A.28+6 B.60+12 C.56+12 D.30+6参考答案:D17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()(A)充分条件(B)必要条件(C)充分必要条件(D)既非充分又非必要条件参考答案:A 4. 已知函数f(x)=,则函数g(x)=f(1﹣x)﹣1的零点个数为()A.1 B.2 C.3 D.4参考答案:C【考点】根的存在性及根的个数判断.【分析】利用已知条件求出f(1﹣x)的表达式,利用函数的图象,求解两个函数图象交点个数即可.【解答】解:函数f(x)=,f(1﹣x)=,函数g(x)=f(1﹣x)﹣1的零点个数,就是y=f(1﹣x)与y=1交点个数,如图:可知两个函数的图象由三个交点,函数g(x)=f(1﹣x)﹣1的零点个数为3.故选:C.【点评】本题考查函数的零点个数的判断与应用,考查数形结合以及转化思想的应用,考查计算能力.5. 关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[-π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③参考答案:C因为,所以是偶函数,①正确,因为,而,所以②错误,画出函数在上的图像,很容易知道有零点,所以③错误,结合函数图像,可知的最大值为,④正确,故答案选C.6. 已知p、q是简单命题,则“p∧q是真命题”是“?p是假命题”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:A【考点】命题的否定;复合命题的真假;必要条件、充分条件与充要条件的判断.【分析】由p∧q为真命题,知p和q或者同时都是真命题,由?p是假命题,知p是真命题.由此可知“p∧q是真命题”是“?p是假命题”的充分不必要条件.【解答】解:∵p∧q为真命题,∴p和q或者同时都是真命题,由?p是假命题,知p是真命题.∴“p∧q是真命题”推出“?p是假命题”,反之不能推出.则“p∧q是真命题”是“?p是假命题”的充分而不必要条件.故选A.7. 已知关于x的函数f(x)=x2﹣2,若点(a,b)是区域内的随机点,则函数f (x)在R上有零点的概率为()A.B.C.D.参考答案:B【考点】几何概型.【分析】根据条件求出函数有零点的取值范围,利用几何概型的概率公式,求出相应的面积即可得到结论.【解答】解:若函数f(x)在R上有零点,则满足判别式△=4b﹣4a2≥0,即b>a2区域的面积S==18,由,解得x=2,y=4,即(2,4),则函数f(x)在R上有零点,区域的面积S===,∴根据几何概型的概率公式可知函数f(x)在R上有零点的概率为,故选:B.8. 某企业投入100万元购入一套设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业()年后需要更新设备.A. 10B. 11C.13 D. 21参考答案:A9. 在△ABC中,角A,B,C的对边分别为a,b,c,,且边,则△ABC面积的最大值为()A. B. C. D.参考答案:D【分析】由已知利用同角三角函数基本关系式可求,根据余弦定理,基本不等式可求的最大值,进而利用三角形面积公式即可求解.【详解】解:,可解得:,由余弦定理,可得,即,当且仅当时成立。
山东省实验中学2015届高三上学期第一次诊断性考试数学(理)试题及答案

第I 卷(共50分)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1.设i 是虚数单位,复数2a ii+-是纯虚数,则实数a = A. 2-B.2C. 12- D. 122.已知集合{}{}1,,2A y y x x R B x x ==-∈=≥,则下列结论正确的是 A. 3A -∈B. 3B ∉C. A B B ⋂=D. A B B ⋃=3.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知等比数列{}n a 的前三项依次为1,1,4,n a a a a -++=则A. 342n ⎛⎫⋅ ⎪⎝⎭B. 243n ⎛⎫⋅ ⎪⎝⎭C. 1342n -⎛⎫⋅ ⎪⎝⎭D. 1243n -⎛⎫⋅ ⎪⎝⎭5.右图给出的是计算111124620+++⋅⋅⋅+的值的一个框图,其中菱形判断横应填入的条件是A. 10i >B. 10i <C. 11i >D. 11i < 6.函数()21log f x x x=-的零点所在的区间为 A. ()0,1B. ()1,2C. ()2,3D. ()3,47.某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为A.3πB.C.D. 以上全错8.已知双曲线()22122:10,0x y C a b a b-=>>的离心率为2,若抛物线()22:20C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A. 23x y =B. 23x y =C. 28x y =D. 216x y =9.已知O是三角形ABC所在平面内一定点,动点P满足O P O A λ=+u u u r u u r (sin sin AB ACAB B AC C+uu u r uuu ruu u r uuu r)(()0λ≥,则P 点轨迹一定通过三角形ABC 的 A.内心B.外心C.垂心D.重心10.已知函数()f x 对任意x R ∈,都有()()()60,1f x f x y f x ++==-的图像关于()1,0对称,且()24,f =则()2014f = A.0 B.4-C.8-D.16-第II 卷(非选择题,共100分)二、填空题(本题包括5小题,共25分)11.设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为________3m12.在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是________13.观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为_______.14.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:516C x y -+=只有一个公共点M ,则PM 的最小值为_________.15.已知x y 、满足约束条件11,22x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_________. 三、解答题:本大题共6小题,共75分,解答应写出文字说明、演算步骤或证明过程.16.(本小题满分12分)已知向量()()()sin ,cos ,cos 0a x x b x x ωωωωω==>r r,函数()f x a b =⋅r r 的最小正周期为π.(I )求函数()f x 的单调增区间;(II )如果△ABC 的三边a bc 、、所对的角分别为A 、B 、C ,且满足()222b c a f A +=,求的值.17.(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23. (I )求甲至多命中2个且乙至少命中2个的概率;(II )若规定每投篮一次命中得3分,未命中得1-分,求乙所得分数η的概率分布和数学期望.18.(本小题满分12分)如图,在多面体111ABC A B C -中,四边形11ABB A 是正方形,AC=AB=1,1111111,//,2AC A B BC B C BC B C BC ===. (I )求证:111//AB AC C 面;(II )求二面角11C AC B --的余弦值的大小.19.(本小题满分12分)设数列{}n a 为等差数列,且355,9a a ==;数列{}n b 的前n 项和为,2n n n S S b +=且.(I )求数列{}n a ,{}n b 的通项公式; (II )若()nn n na c n N Tb +=∈,为数学{}nc 的前n 项和,求n T .20.(本小题满分13分)已知椭圆()2222:10x y C a b a b+=>>,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(I )求椭圆的方程;(II )过点()1,0Q -的直线l 交椭圆于A ,B 两点,交直线4x =-于点E ,.AQ QB AE EB λμ==u u u r u u u r u u u r u u u r ,判断λμ+是否为定值,若是,计算出该定值;不是,说明理由.21.(本小题满分14分)已知函数()22211ax a f x x +-=+,其中a R ∈. (I )当1a =时,求曲线()y f x =在原点处的切线方程;(II )求()f x 的单调区间;(III )若()[)0f x +∞在,上存在最大值和最小值,求a 的取值范围.山东省实验中学2012级第一次诊断性考试理科数学参考答案16.(I )()23cos 3cos sin 232-+=-⋅=x x x b a x f ωωω x x ωω2cos 232sin 21+=⎪⎭⎫ ⎝⎛+=32sin πωx ………………………3分∵()x f 的最小正周期为π,且ω>0。
2015山东高考数学(理)试题及答案

2015年普通高等学校招生全国统一考试(山东卷)(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=C(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数单位,则Z=A (A )1-i (B )1+i (C )-1-i (D )-1+i(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像(C ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位(4)已知菱形ABCD 的边长为a ,∠ABC=60o,则BD CD=D(A )- (B )- (C ) (D )(5)不等式|x-1|-|x-5|<2的解集是A(A )(-,4) (B )(-,1) (C )(1,4) (D )(1,5)(6)已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a=B(A )3 (B )2 (C )-2 (D )-3(7)在梯形ABCD 中,∠ABC=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为C(A ) (B ) (C )(D )2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ²),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)B(A)4.56% (B)13.59% (C)27.18% (D)31.74% (9)一条光线从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为(D)(A)或(B或(C)或(D)或(10)设函数f(x)=,则满足f(f(a))=的a的取值范围是(C (A)[,1](B)[0,1](C)[(D)[1, +第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考山东理科数学试题及答案解析课件.doc

2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015 年山东,理1】已知集合 2{ x |x4x 3 0} ,B {x|2 x 4} ,则 A B ()(A)1,3 (B)1,4 (C)2,3 (D)2,4z(2)【2015 年山东,理2】若复数z满足i1 i,其中i 是虚数单位,则z ()(A)1 i (B)1 i (C) 1 i (D) 1 i(3)【2015 年山东,理3】要得到函数y sin(4x ) 的图象,只需将函数y sin 4x的图像()3(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位12 12 3 3(4)【2015 年山东,理4】已知菱形ABCD 的边长为 a ,ABC 60 ,则????·???=?()3 3 3 32 2 2 2a (B) a (C) a (D) a(A)2 4 4 2(5)【2015 年山东,理5】不等式| x 1| | x 5|2的解集是()(A)( ,4) (B)( ,1)(C)(1,4)(D)(1,5)x y 0(6)【2015 年山东,理6】已知x,y 满足约束条件x y 2 若z ax y 的最大值为4,则 a ()y 0(A)3 (B)2 (C)-2 (D)-3(7)【2015 年山东,理7】在梯形ABCD中,A BC ,AD / / B C ,BC 2AD 2AB 2.将梯形ABCD2绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()(A)23 (B)43(C)53(D)2(8)【2015 年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布 2N (0,3 ) ,从中随机取一件,其长度误差落在区间3,6 内的概率为()(附:若随机变量服从正态分布 2N(, ) ,则P( ) 6 8. 2 6,%P( 2 2 ) 95.44%)(A)4.56%(B)13.59%(C)27.18%(D)31.74%(9)【2015 年山东,理9】一条光线从点( 2, 3)射出,经y轴反射与圆 2 2(x3) (y2) 1相切,则反射光线所在的直线的斜率为()(A)53 或35(B)32或23(C)54或45(D)43或34(10)【2015 年山东,理10】设函数f ( x)3x1,x1,x2 ,x 1.则满足f (a)f ( f (a)) 2 的取值范围是()(A)2[ ,1]3(B)[0,1](C)2[ , )3(D)[1, )第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015 年山东,理11】观察下列各式:100C4;1011C C4;330122C C C4;55501233 C C C C4;7777照此规律,当n N*时,012n1C C C C.2n12n12n12n1(12)【2015年山东,理12】若“x[0,],tan x m”是真命题,则实数m的最小值为.4(13)【2015年山东,理13】执行右边的程序框图,输出的T的值为.x(14)【2015年山东,理14】已知函数f(x)a b(a0,a1)的定义域和值域都是[1,0],则a b.22x y(15)【2015年山东,理15】平面直角坐标系xOy中,双曲线C1:221(a0,b0)a b2C x py p交于点O,A,B,若OAB的垂心为C2的焦点,则C1的离心率为.2:2(0)C x py p交于点O,A,B,若OAB的垂心为C2的焦点,则C1的离心率为.三、解答题:本大题共6题,共75分.的渐近线与抛物线(16)【2015年山东,理16】(本小题满分12分)设(Ⅰ)求f(x)的单调区间;2f(x)sin xcosx cos(x).4A(Ⅱ)在锐角ABC中,角A,B,C的对边分别为a,b,c,若f()0,a1,求ABC面积.2(17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC中,AB2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD//平面FGH;(Ⅱ)若CF平面ABC,AB BC,CF DE,BAC45,求平面FGH与平面ACFD所成角(锐角)的大小.2na的前n项和为S n,已知2S33.(18)【2015年山东,理18】(本小题满分12分)设数列{}n n(Ⅰ)求数列{a}的通项公式;n(Ⅱ)若数列{b}满足a n b n log3a n,求数列{b n}的前n项和T n.n(19)【2015年山东,理19】(本小题满分12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.3(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy中,已知椭圆22x yC:1(a b0)22a b的离心率为32,左、右焦点分别是F1,F2,以F1为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相交,交点在椭圆C上.(Ⅰ)求椭圆C的方程;22x y,P为椭圆C上的任意一点,过点P的直线y kx m交椭圆E于A,B两点,(Ⅱ)设椭圆E:1224a4b射线PO交椭圆E于点Q.(i)求|OQ||OP|的值;(ii)求ABQ面积最大值.4(21)【2015年山东,理21】(本题满分14分)设函数(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;2f(x)ln(x1)a(x x),其中a R.(Ⅱ)若x0,f(x)0成立,求a的取值范围.52015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015 年山东,理1】已知集合{ x |x2 4x 3 0} ,B {x|2 x 4} ,则 A B ()(A)1,3 (B)1,4 (C)2,3 (D)2,4【答案】 C【解析】 2A { x | x 4x 3 0} { x |1 x 3} ,AB (2,3) ,故选C.z(2)【2015 年山东,理2】若复数z满足i1 i()1 i 1 i 1 i 1i A B C D()()()【答案】 A,其中i 是虚数单位,则z ()【解析】 2z (1 i)i i i 1 i ,z 1 i ,故选 A .(3)【2015 年山东,理3】要得到函数y sin(4x ) 的图象,只需将函数y sin 4x的图像()3(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位12 12 3 3【答案】 B【解析】y sin4( x ) ,只需将函数y sin4x的图像向右平移12 12个单位,故选B.(4)【2015 年山东,理4】已知菱形ABCD 的边长为 a ,ABC 60 ,则????·???=?()(A)322a (B)342a (C)342a (D)322a【答案】 D【解析】由菱形ABCD 的边长为 a ,ABC 60 可知BAD 180 60 120 ,2 23 2BD CD ( AD AB) ( A B) AB AD AB a a cos120 a a ,故选D.2(5)【2015 年山东,理5】不等式| x 1| | x 5| 2的解集是()(A)( ,4) (B)( ,1)(C)(1,4)(D)(1,5)【答案】 A【解析】当x 1时,1 x (5 x) 4 2成立;当 1 x 5 时,x 1 (5 x) 2x 6 2,解得x 4 ,则1 x 4 ;当x 5 时,x 1 ( x 5) 42 不成立.综上x 4 ,故选A.x y 0(6)【2015 年山东,理6】已知x, y满足约束条件若z ax y 的最大值为4,则a ()x y 2y 0(A)3(B)2 (C)-2(D)-3【答案】 B【解析】由z ax y 得y ax z ,借助图形可知:当 a 1,即a 1 时在x y 0时有最大值0,不符合题意;当0 a 1 ,即 1 a 0时在x y 1 时有最大值 a 1 4,a 3 ,不满足 1 a 0 ;当 1 a 0 ,即0 a 1 时在x y 1 时有最大值 a 1 4,a 3,不满足0 a 1;当 a 1,即a 1时在x 2,y 0 时有最大值2a 4,a 2 ,满足a 1,故选B.(7)【2015 年山东,理7】在梯形ABCD中,A BC ,AD / / B C ,BC 2AD 2AB 2.将梯形ABCD2绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()6(A)23 (B)43(C)53(D)2【答案】 C【解析】 2 1 2 5V 1 2 1 1 ,故选C.3 3(8)【2015 年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32 ) ,从中随机取一件,其长度误差落在区间3,6 内的概率为()(附:若随机变量服从正态分布 2N(, ) ,则P( ) 6 8. 2 6,%P( 2 2 ) 95.44%)(A)4.56%(B)13.59%(C)27.18%(D)31.74%【答案】 D【解析】1P(3 6) (95.44% 68.26%) 13.59%,故选D.2(9)【2015 年山东,理9】一条光线从点( 2, 3)射出,经y轴反射与圆 2 2(x3) (y2) 1相切,则反射光线所在的直线的斜率为()(A)53或35(B)32或23(C)54或45(D)43或34【答案】 D【解析】( 2, 3)关于y 轴对称点的坐标为(2, 3) ,设反射光线所在直线为y 3 k(x 2),即kx y 2k 3 0,则| 3k 2 2k 3 |2d 1,| 5k 5| k 12k 1,解得4k 或334,故选D.(10)【2015 年山东,理10】设函数 f (x) 3x 1,x 1,x2 , x 1.则满足 f ( a )f ( f ( a)) 2 的取值范围是()(A)2[ ,1]3(B)[0,1] (C)2[ , )3(D)[1, )【答案】 C【解析】由 f ( a )f f a 可知 f (a) 1 ,则( ( )) 2 a 1a2 1或a 13a 1 1,解得 2a ,故选C.3第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015 年山东,理11】观察下列各式:0 0C 4 ;10 1 1C C 4 ;3 30 1 2 2C C C 4 ;5 5 50 1 2 3 3C C C C 4 ;7 7 7 7 照此规律,当n N* 时,0 1 2 n 1C C C C .2n 1 2 n 1 2n 1 2n 1n 1 【答案】 4【解析】10 1 2 n 1 0 1 2 n 1C C C C (2C 2C 2C 2C )2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1210 2n 1 1 2n 2 2 2n 3 n 1 n[(C C ) (C C ) (C C ) (C C )] 2n 1 2n 1 2n 1 2n 1 2 n 1 2n 1 2n 1 2 n 121 10 1 2 n 1 n 2n 1 2n 1 n 1(C C C C C C ) 2 42n 1 2n 1 2n 1 2n 1 2n 1 2n 12 2(12)【2015 年山东,理12】若“x [0, ],tan x m”是真命题,则实数m 的最小值为.4【答案】 1【解析】“x [0, ],tan x m ”是真命题,则m tan 1,于是实数m 的最小值为1.4 4(13)【2015 年山东,理13】执行右边的程序框图,输出的T 的值为.7【答案】1161 121111【解析】T1xdx x dx1.00236x(14)【2015年山东,理14】已知函数f(x)a b(a0,a1)的定义域和值域都是[1,0],则a b.【答案】32【解析】当a1时1a ba b1,无解;当a1时1abab1,解得1b2,a,则213a b2.22(15)【2015年山东,理15】平面直角坐标系xOy中,双曲线22x yC aba b1:221(0,0)的渐近线与抛物线2C x py p交于点O,A,B,若OAB的垂心为C2的焦点,则C1的离心率为.2:2(0)【答案】32【解析】22x yC1:221(a0,b0)a b的渐近线为byxa,则222pb2pb2pb2pbA(,),B(,)22a a a ap2C2:x2py(p0)的焦点F(0,),则2kAF22pbp2aa22apbb,即2b2a54,222cab22aa94,eca32.三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设(Ⅰ)求f(x)的单调区间;2f(x)sin xcosx cos(x).4A(Ⅱ)在锐角ABC中,角A,B,C的对边分别为a,b,c,若f()0,a1,求ABC面积.2解:(Ⅰ)由111111f(x)sin2x[1cos(2x)]sin2x sin2x sin2x,2222222由2k2x2k,k Z得k x k,k Z,2244则f(x)的递增区间为[,],k k k Z;44由32k2x2k,k Z得223k x k,k Z,44则f(x)的递增区间为[,3],k k k Z.44(Ⅱ)在锐角ABC中,()sin10,sin1Af A A,222A,而a1,6由余弦定理可得221b c2bccos2bc3bc(23)bc,当且仅当b c时等号成立,6即1bc23,2311123S bc sin A bc s in bc故ABC面积的最大值为ABC22644234.(17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC中,AB2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD//平面FGH;(Ⅱ)若CF平面ABC,AB BC,C F DE,BAC45,求平面FGH与平面ACFD所成角(锐角)的大小.解:(Ⅰ)证明:连接DG,DC,设DC与GF交于点T,8在三棱台DEF ABC 中,AB 2DE ,则AC 2DF ,而G 是AC 的中点,DF AC ,则DF / /GC ,所以四边形DGCF 是平行四边形,T是DC 的中点,DG FC .又在BDC ,是BC 的中点,则TH DB ,又BD 平面FGH ,TH 平面FGH ,故BD / / 平面FGH .(Ⅱ)由CF 平面ABC ,可得DG 平面ABC 而,AB BC ,BAC 45 ,则GB AC ,于是GB, G A, G C 两两垂直,以点G 为坐标原点,GA,GB, GC 所在的直线,分别为x, y,z轴建立空间直角坐标系,设AB 2,则DE CF 1, AC 2 2, AG 2 ,2 2B(0, 2,0), C(2,0,0), F ( 2,0,1), H ( , ,0) ,2 2则平面ACFD 的一个法向量为n,设平面FGH 的法向量为1 (0,1,0)n2 (x2 , y2 , z2 ) ,则n GH2n GF2,即2 2x y2 22 22x z 02 2,取x2 1,则y2 1, z2 2 ,n2 (1,1, 2) ,1 1cos ,n n ,故平面FGH 与平面ACFD 所成角(锐角)的大小为60 .1 221 1 2n (18)【2015 年山东,理18】(本小题满分12 分)设数列{a } 的前n 项和为S n ,已知2S 3 3.n n (Ⅰ)求数列{a } 的通项公式;n(Ⅱ)若数列{b } 满足n a b log a ,求数列{b } 的前n 项和n n 3 n nT .n1n解:(Ⅰ)由2S 3 3可得a1 S1 (3 3) 3,n21 1n n 1 n 1a S S (3 3) (3 3) 3 (n 2) ,n n n 12 2而3, n 11 1a1 3 3 ,则 1an n3 ,n 1.(Ⅱ)由3, n 1a b a 及 1log a,可得n n 3 n n n3 ,n 1bn1n 1log a 33 na n1nn 1n131 123 n 1T ,n 2 3 n 13 3 3 3 3 1 1 1 2 3 n 2 n 1 T ,n 2 2 34 n 1 n3 3 3 3 3 3 32 1 1 1 1 1 1 n 1 1 1 1 1 1 1 n 1 T ( )n 2 2 3 n 1 n 2 2 3 n 1 n3 3 3 3 3 3 3 3 3 3 3 3 3 3 31 1n2 3 3 n 1 2 1 3 n 1 13 2n 1n n n n19 1 3 9 2 2 3 3 18 2 3313 2n 1Tn n112 4 3(19)【2015 年山东,理19】(本小题满分12 分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567 等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被 5 整除,参加者得0 分;若能被 5 整除,但不能被10 整除,得-1 分;若能被10 整除,得 1 分.(Ⅰ)写出所有个位数字是 5 的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .解:(Ⅰ)125,135,145,235,245,345;9(Ⅱ)X 的所有取值为-1,0,1.甲得分X 的分布列为:3 2 1 1 2C 2 C 1 C C C 118 4 4 4 4P( X 0) , P( X 1) ,P(X 1)3 3 3C 3 C 14 C 429 9 9X 0 -1 1P 2311411422 1 11 4 EX 0 ( 1) 1 .3 14 42 21(20)【2015 年山东,理20】(本小题满分13 分)平面直角坐标系xOy中,已知椭圆2 2x yC : 1(a b 0)2 2a b的离心率为32,左、右焦点分别是F1,F2 ,以F1 为圆心,以 3 为半径的圆与以F2 为圆心,以 1 为半径的圆相交,交点在椭圆 C 上.(Ⅰ)求椭圆 C 的方程;(Ⅱ)设椭圆 E2 2x y: 12 24a 4b,P 为椭圆 C 上的任意一点,过点P 的直线y kx m 交椭圆 E 于A,B 两点,射线PO 交椭圆 E 于点Q .(i)求| OQ|| OP|的值;(ii)求ABQ面积最大值.解:(Ⅰ)由椭圆22xyC :1(ab0)22ab的离心率为32可知 eca右焦点分别是F1 ( 3b ,0), F2 ( 3b ,0) ,圆F1:(x 3b)2 y2 9,圆F2 :22(x 3b) y 1,由两圆相交可得 2 2 3b 4 ,即1 3b2,交点2 22 ( , 1( ) )3b 3b在椭圆C 上,则21 ( 3b)4 3b2 2 23b 4b b21,整理得 4 24b 5b 10,解得2 1b ,2 1b (舍去),4故 2 1b ,2 4a ,椭圆 C 的方程为2x42 1y .(Ⅱ)(i)椭圆E的方程为2 2x y16 41,设点P(x0,y0 ) ,满足2x42y0 1,射线yPO : y x( x0)x代入2 2x y16 41可得点Q( 2x0,2y0 ) ,于是22( 2x )( 2y )| OQ || OP | x y2 20 02.(ii )点Q( 2x , 2y ) 到直线AB距离等于原点O 到直线AB距离的 3 倍:0 0d | 2kx 2 y m | | m |0 032 21 k 1 ky kx m,x2 y2 ,得116 42 4( )216x kxm ,整理得 2 2 2(1 4k )x8kmx 4m16 0 .2 2 2 2 2 264k m 16(4 k 1)(m 4) 16(16k 4 m ) 0 ,21 k22 | AB | 16(16k 4 m )21 4k221 1 | m | |m|16k4 m2 2S | AB | d 3 4 16k 4 m 6222 2 1 4k 14k2 2 2m 16k 4 m61222(4k 1),当且仅当 2 2 2 2|m| 16k 4 m ,m8k 2等号成立.而直线y kx m 与椭圆2xC y 有交点P,则: 124y kx m2 4 2 4x y有解,10即24()24,(142)284240 x kx m k x kmx m有解,其判别式222222164k m16(14k)(m1)16(14k m)0,即22 14k m,则上述2822m k不成立,等号不成立,设 t|m|214k(0,1],则22|m|16k4mS66(4t)t214k在(0,1]为增函数,于是当2214k m时S max6(41)163,故ABQ面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数f(x)ln(x1)a(x2x),其中a R.(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若x0,f(x)0成立,求a的取值范围.解:(Ⅰ)2f(x)ln(x1)a(x x),定义域为(1,),21a(2x1)(x1)12ax ax1a f(x)a(2x1)x1x1x1,设2g(x)2ax ax1a,当a0时,()1,()10g x f xx1,函数f(x)在(1,)为增函数,无极值点.当a0时,a28a(1a)9a28a,若08a时0,g(x)0,f(x)0,函数f(x)在(1,)为增函数,无极值点.9若8a时0,设g(x)0的两个不相等的实数根x1,x2,且x1x2,91x x,而g(1)10,则且12211x x,所以当x(1,x1),g(x)0,f(x)0,f(x)单调124递增;当x(x,x),g(x)0,f(x)0,f(x)单调递减;当x(x2,),g(x)0,f(x)0,f(x)单调递增.12因此此时函数f(x)有两个极值点;当a0时0,但g(1)10,x11x2,所以当x(1,x),g(x)0,f(x)0,f(x)单调2递増;当x(x2,),g(x)0,f(x)0,f(x)单调递减,所以函数只有一个极值点.综上可知当08a时f(x)的无极值点;当a0时f(x)有一个极值点;当98a时,f(x)的有两个9极值点.8(Ⅱ)由(Ⅰ)可知当0a时f(x)在(0,)单调递增,而f(0)0,9则当x(0,)时,f(x)0,符合题意;当81a时,g(0)0,x20,f(x)在(0,)单调递增,而f(0)0,9则当x(0,)时,f(x)0,符合题意;当a1时,g(0)0,x0,所以函数f(x)在(0,x2)单调递减,而f(0)0,2则当x(0,x)时,f(x)0,不符合题意;2当a0时,设h(x)x ln(x1),当x(0,)时()110xh xx11x h(x)在(0,)单调递增,因此当x(0,)时h(x)h(0)0,ln(x1)0,,于是22f(x)x a(x x)ax(1a)x,当x11a时2(1)0ax a x,此时f(x)0,不符合题意.综上所述,a的取值范围是0a1.另解:(Ⅰ)2f(x)ln(x1)a(x x),定义域为(1,),21a(2x1)(x1)12ax ax1a f(x)a(2x1)x1x1x111当a0时,1f(x)0,函数f(x)在(1,)为增函数,无极值点.x1设222g(x)2ax ax1a,g(1)1,a8a(1a)9a8a,当a0时,根据二次函数的图像和性质可知g(x)0的根的个数就是函数f(x)极值点的个数.若a(9a8)0,即08a时,g(x)0,f(x)0函数在(1,)为增函数,无极值点.9若a(9a8)0,即8a或a0,而当a0时g(1)09此时方程g(x)0在(1,)只有一个实数根,此时函数f(x)只有一个极值点;当8a时方程g(x)0在(1,)都有两个不相等的实数根,此时函数f(x)有两个极值点;9综上可知当8a时f(x)的极值点个数为0;当a0时f(x)的极值点个数为1;当98a时,9f(x)的极值点个数为2.(Ⅱ)设函数2f(x)ln(x1)a(x x),x0,都有f(x)0成立,即2ln(x1)a(x x)0当x1时,ln20恒成立;ln(x1)20当x1时,x x,a2x xln(x1)20当0x1时,x x,2x x 0;a0;由x0均有ln(x1)x成立.故当x1时,,l n(x1)12x x x1(0,),则只需a0;当0x1时,l n(x1)12x x x1(,1),则需1a0,即a1.综上可知对于x0,都有f(x)0成立,只需0a1即可,故所求a的取值范围是0a1.另解:(Ⅱ)设函数2f(x)ln(x1)a(x x),f(0)0,要使x0,都有f(x)0成立,只需函数函数f(x)在(0,)上单调递增即可,于是只需x0,1f(x)a(2x1)0x1成立,当1x时2a1(x1)(2x1),令2x1t0,2g(t)(,0)t(t3),则a0;当1x时212f()0;当231x,2a1(x1)(2x1),令2x1t(1,0),g(t)2t(t3)关于t(1,0)单调递增,则2g(t)g(1)1,则a1,于是0a1.1(13)又当a1时,g(0)0,x0,所以函数f(x)在(0,x2)单调递减,而f(0)0,2则当x(0,x2)时,f(x)0,不符合题意;当a0时,设h(x)x ln(x1),当x(0,)时1xh(x)10x11x,h(x)在(0,)单调递增,因此当x(0,)时h(x)h(0)0,ln(x1)0,于是22f(x)x a(x x)ax(1a)x,当x11a时2(1)0ax a x,此时f(x)0,不符合题意.综上所述,a的取值范围是0a1.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a的讨论来研究函数的单调性,进一步确定参数的取值范围;二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可12确定所求.13。
15年高考真题——理科数学(山东卷)

2015年普通高等学校招生全国统一考试数学试卷(山东卷)一.选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|430A x x x =-+<,{}|24B x x =<<,则A B = ( ) (A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42.若复数z 满足1zi i=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+3.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图像( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位4.已知菱形ABCD 的边长为a ,060ABC ∠=,则BD CD ⋅= ( )(A )232a - (B )234a - (C )234a (D )232a 5.不等式|1||5|2x x ---<的解集是( )(A )(),4-∞ (B )(),1-∞ (C )()1,4 (D ) ()1,56.已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )(A )3 (B )2 (C )2- (D )3-7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===。
将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 8.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间()3,6内的概率为(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=)( )(A )4.56% (B )13.59% (C )27.18% (D )31.74%9.一条光线从点()2,3--射出,经y 轴反射与圆()()22321x y ++-=相切,则反射光线所在的直线的斜率为( ) (A )53-或35- (B )32-或32- (C )54-或45- (D )43-或34- 10.设函数()()()31121xx x f x x -<⎧⎪=⎨≥⎪⎩,则满足()()()2f a f f a =的取值范围是( ) (A )[]2 (B )[]0,1 (C )[)2+∞ (D )[)1,+∞二.填空题:本大题共5小题,每小题5分,共25分 。
山东省潍坊市诸城一中2015届高三上学期10月份考试数学试题(理)

高三数学试题(理科)本试卷共5页.分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试时间120分钟.第I 卷(选择题,共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案中,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需发动,用橡皮擦干净后,再改涂其它答案标号.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U R =,集合{}{}13,2A x x B x x =<<=>,则U A C B ⋂= A.{}12x x << B.{}12x x <≤ C.{}x x 2<<3 D.{}2x x ≤ 2.已知a R ∈且0a ≠,则“11a<”是“1a >”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若集合{}0,P y y P Q P =≥⋃=,则集合Q 不可能是 A.∅B.{}2,y y x x R =∈C.{}2,xy y x R =∈D.{}2log ,0y y x x =>4.已知,x y R ∈,则A.()121212x yx y g g g +=+ B.()1221212x y xy g g g =g gC.()121212x yx y g g g +=g D.()1221212x y xy g g g +=g5.已知命题:p 存在x R ∈,使得101x gx ->;命题q :对任意x R ∈,都有20x >,则A.命题“p 或q ”是假命题B.命题“p 且q ”是真命题C.命题“非q ”是假命题D.命题“p 且‘非q ’”是真命题6.设函数()()()12211log 1xx f x x x -⎧≤⎪=⎨->⎪⎩,则满足()2f x x ≤的的取值范围是A.[]1,2-B.[]0,2C.[)0,+∞D.[)1,+∞7.若函数()()()01x x f x ka a a a -=->≠-∞+∞且在,上既是奇函数又是增函数,则()()log a g x x k =-的图象是8.<,a b 应满足的条件是A.0ab a b <>且B.0ab a b >>且C.0ab a b <<且D.0ab a b >>且或0ab a b <<且9.设变量,x y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则1y x s x -=+的取值范围是A.10,2⎡⎤⎢⎥⎣⎦B.1,02⎡⎤-⎢⎥⎣⎦C.1,12⎡⎤-⎢⎥⎣⎦D.[]0,110.已知函数()y f x =是定义在R 上的奇函数,且当()0,x ∈+∞时,()()xf x f x '<-成立,若()()2211,1313,loglog 44a b g f g c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是A.c b a <<B.c a b <<C.a b c <<D.a c b <<第II 卷(非选择题,共100分)二、填空题(本大题共5个小题,每小题5分,共25分) 11.若2111ln dx x a=-⎰,则实数a 的值是________; 12.若函数()()32102f x x ax =-+在,内单调递减,则实数a 的取值范围是_________; 13.已知()()()312log .f x x f a f b a b a b==≠+,若且则的取值范围是_______; 14.若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是________; 15.设定义域为[]0,1的函数()f x 同时满足以下三个条件时称()f x 为“友谊函数”: (1)对任意的[]()0,10x f x ∈≥,总有; (2)()11f =;(3)若12120,01x x x x ≥≥+≤且,则有()()()1212f x x f x f x +≥+成立,则下列判断正确的有_________.①()f x 为“友谊函数”,则()00f =; ②函数()g x x =在区间[]0,1上是“友谊函数”;③若()f x 为“友谊函数”,且()()121201x x f x f x ≤<≤≤,则.三、解答题(本大题共6个小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知p :不等式220x x m -->解集为R ,q :集合{}2210,A x x x m x R =+--=∈,且.A p q ≠∅∧且为真,求实数m 的取值范围.设()1212x x f x a+-+=+(a 为实常数).(I )当a=1,证明:()f x 不是奇函数;(II )当a=2,若()f x k <对一次实数x 成立,求k 的取值范围.18.(本小题满分12分)为了降低能耗,新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()()01035kC x x x =≤≤+,若不建隔热层,每年能耗费用为8万元.设()f x 为隔热层建造费用与20年的能耗费用之和. (I )求k 的值及()f x 的表达式;(II )隔热层修建多厚时,总费用()f x 达到最小,并求最小值.19.(本小题满分12分) 设函数()ln ,mf x x m R x=+∈. (I )当m e =(e 为自然对数的底数)时,若函数()()()1,11f x a a a -+>在上有极值点,求实数a 的范围. (II )若函数()()3xg x f x '=-有两个零点,试求m 的取值范围.已知函数()()()()21log log 012a a f x ax a x a a =>≠g 且. (I )解关于x 不等式()0f x >;(II )若函数()y f x =在[]2,8上最大值是1,最小值是18-,求a 的值.21.(本小题满分14分)已知函数()22ln 2f x x x x =-+,(I )求函数()f x 的图像在1x =处的切线的方程; (II )若函数()()321423g x x x f x x m x ⎡⎤'=++-+⎢⎥⎣⎦在区间()1,3上不是单调函数,求m 的取值范围.(III )若在区间(1,+∞)上,函数h(x)=()212f x ax x +-的图像恒在直线y=2ax(a ∈R)的下方,求实数a 的取值范围。
15年高考真题——理科数学(山东卷)

2015年普通高等学校招生全国统一考试数学试卷(山东卷)一.选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|430A x x x =-+<,{}|24B x x =<<,则AB =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42.若复数z 满足1zi i=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+3.要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需将函数sin 4y x =的图像( ) (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位4.已知菱形ABCD 的边长为a ,060ABC ∠=,则BD CD ⋅=( ) (A )232a -(B )234a - (C )234a (D )232a5.不等式|1||5|2x x ---<的解集是( )(A )(),4-∞ (B )(),1-∞ (C )()1,4 (D ) ()1,56.已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )(A )3 (B )2 (C )2- (D )3- 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===。
将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 8.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间()3,6内的概率为(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=)( )(A )4.56% (B )13.59% (C )27.18% (D )31.74%9.一条光线从点()2,3--射出,经y 轴反射与圆()()22321x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或32- (C )54-或45- (D )43-或34- 10.设函数()()()31121xx x f x x -<⎧⎪=⎨≥⎪⎩,则满足()()()2f a f f a =的取值范围是( ) (A )[]23,1 (B )[]0,1 (C )[)23,+∞ (D )[)1,+∞二.填空题:本大题共5小题,每小题5分,共25分 。
山东省潍坊市高三数学一模试卷 理(含解析)

2015年山东省潍坊市高考数学一模试卷(理科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•潍坊一模)集合M={x|()x≥1},N={x|y=lg(x+2)},则M∩N等于()A.[0,+∞)B.(﹣2,0] C.(﹣2,+∞)D.(﹣∞,﹣2)∪[0,+∞)【考点】:交集及其运算.【专题】:集合.【分析】:求出M和N,再利用两个集合的交集的定义求出M∩N.【解析】:解:因为集合M={x|≥1}={x|≥},所以M={x|x≤0},N={x|y=lg(x+2)}={x|x>﹣2},所以A∩B={x|x≤0}∩{x|x>﹣2}={x|﹣2<x≤0},故选:B.【点评】:本题考查解指数不等式、求对数的定义域以及集合的交集的定义与求算,属基础题.2.(5分)(2015•潍坊一模)设复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1﹣2i,则的虚部为()A.B.﹣C.D.﹣【考点】:复数代数形式的乘除运算;复数的基本概念.【专题】:数系的扩充和复数.【分析】:利用复数的对称性求出z2,然后利用复数的乘除运算法则化简复数求出虚部即可.【解析】:解:复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1﹣2i,z2=﹣1﹣2i,则====.复数的虚部为:.故选:D.【点评】:本题考查复数的基本运算,复数的对称性,乘除运算,基本知识的考查.3.(5分)(2015•潍坊一模)如果双曲线﹣=1(a>0,b>0)的一条渐近线与直线x ﹣y+=0平行,则双曲线的离心率为()A.B.C.2 D.3【考点】:双曲线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:渐近线与直线3x﹣y+=0平行,得a、b关系,再由双曲线基本量的平方关系,得出a、c的关系式,结合离心率的定义,可得该双曲线的离心率.【解析】:解:∵双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣y+=0平行∴双曲线的渐近线方程为y=±x∴=,得b2=3a2,c2﹣a2=3a2,此时,离心率e==2.故选:C.【点评】:本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.4.(5分)(2015•潍坊一模)已知函数y=f(x)的定义域为{x|x≠0},满足f(x)+f(﹣x)=0,当x>0时,f(x)=1nx﹣x+1,则函数)y=f(x)的大致图象是()A.B.C.D.【考点】:函数的图象.【专题】:作图题.【分析】:利用已知条件判断函数的奇偶性,通过x>0时,f(x)=1nx﹣x+1判断函数的图象,然后判断选项即可.【解析】:解:因为函数y=f(x)的定义域为{x|x≠0},满足f(x)+f(﹣x)=0,所以函数是奇函数,排除C、D.又函数当x>0时,f(x)=1nx﹣x+1,当x=10时,y=1﹣10+1=﹣8,就是的图象在第四象限,A正确,故选A.【点评】:本题考查函数的图象的判断,注意函数的奇偶性以及函数的图象的特殊点的应用,考查判断能力.5.(5分)(2015•潍坊一模)某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜偏爱肉类合计50岁以下4 8 1250岁以上16 2 18合计20 10 30则可以说其亲属的饮食习惯与年龄有关的把握为()附:参考公式和临界值表:Χ2=K 2,.706 3,.841 6,.636 10,.828P(Χ2≥k)0,.10 0,.05 0,.010 0,.001A.90% B.95% C.99% D.99.9%【考点】:独立性检验.【专题】:应用题;概率与统计.【分析】:计算观测值,与临界值比较,即可得出结论.【解析】:解:设H0:饮食习惯与年龄无关.因为Χ2==10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.故选:C.【点评】:本题考查独立性检验,考查学生利用数学知识解决实际问题,利用公式计算观测值是关键.6.(5分)(2015•潍坊一模)下列结论中正确的是()①命题:∀x∈(0,2),3x>x3的否定是∃x∈(0,2),3x≤x3;②若直线l上有无数个点不在平面α内,则l∥α;③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(0<ξ<1)=0.2;④等差数列{an}的前n项和为Sn,若a4=3,则S7=21.A.①②B.②③C.③④D.①④【考点】:命题的真假判断与应用.【专题】:综合题;推理和证明.【分析】:对四个命题分别进行判断,即可得出结论.【解析】:解:①命题:∀x∈(0,2),3x>x3的否定是∃x∈(0,2),3x≤x3,正确;②若直线l上有无数个点不在平面α内,则l∥α或l与α相交,故不正确;③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(ξ>2)=0.2,P(0<ξ<1)=0.5﹣0.2=0.3,不正确;④等差数列{an}的前n项和为Sn,若a4=3,则S7==7a4=21,正确.故选:D.【点评】:本题考查命题的真假判断与应用,考查学生分析解决问题的能力,知识综合性强.7.(5分)(2015•潍坊一模)如图,在△ABC中,点D在AC上,AB⊥BD,BC=3,BD=5,sin∠ABC=,则CD的长为()A.B.4 C.2D.5【考点】:余弦定理;正弦定理.【专题】:解三角形.【分析】:由条件利用诱导公式求得cos∠CBD的值,再利用余弦定理求得CD的值.【解析】:解:由题意可得sin∠ABC==sin(+∠CBD)=cos∠CBD,再根据余弦定理可得CD2=BC2+BD2﹣2BC•BD•cos∠CBD=27+25﹣2×3×5×=22,可得CD=,故选:B.【点评】:本题主要考查诱导公式、余弦定理,属于基础题.8.(5分)(2015•潍坊一模)某几何体的三视图是如图所示,其中左视图为半圆,则该几何体的体积是()A.π B.C.π D.π【考点】:由三视图求面积、体积.【专题】:计算题;空间位置关系与距离.【分析】:根据几何体的三视图,得出该几何体是平放的半圆锥,结和数据求出它的体积即可.【解析】:解:根据几何体的三视图,得;该几何体是平放的半圆锥,且圆锥的底面半径为1,母线长为3,∴圆锥的高为=2;∴该几何体的体积为V半圆锥=×π×12×2=π.故选:A.【点评】:本题考查了利用空间几何体的三视图的求体积的应用问题,是基础题目.9.(5分)(2015•潍坊一模)已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.2﹣2 B.2C.2﹣2 D.2+2【考点】:抛物线的简单性质;抛物线的标准方程.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x﹣y+2=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.【解析】:解:点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x﹣y+2=0的垂线,此时d1+d2最小,∵F(2,0),则d1+d2=﹣2=2﹣2,故选:C.【点评】:本题主要考查了抛物线的简单性质,点到直线距离公式的应用,正确运用抛物线的定义是关键.10.(5分)(2015•潍坊一模)对于实数m,n定义运算“⊕”:m⊕n=,设f(x)=(2x﹣1)⊕(x﹣1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是()A.(﹣,0)B.(﹣,0)C.(0,)D.(0,)【考点】:函数的零点与方程根的关系.【专题】:综合题;函数的性质及应用.【分析】:由新定义,可以求出函数的解析式,进而求出x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根时,实数m的取值范围,及三个实根之间的关系,进而求出x1•x2•x3的取值范围.【解析】:解:由2x﹣1≤x﹣1,得x≤0,此时f(x)=(2x﹣1)*(x﹣1)=﹣(2x﹣1)2+2(2x﹣1)(x﹣1)﹣1=﹣2x,由2x﹣1>x﹣1,得x>0,此时f(x)=(2x﹣1)*(x﹣1)=(x﹣1)2﹣(2x﹣1)(x﹣1)=﹣x2+x,∴f(x)=(2x﹣1)⊕(x﹣1)=,作出函数的图象可得,要使方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,不妨设x1<x2<x3,则0<x2<<x3<1,且x2和x3,关于x=对称,∴x2+x3=2×=1.则x2+x3≥2,0<x2x3<,等号取不到.当﹣2x=时,解得x=﹣,∴﹣<x1<0,∵0<x2x3≤,∴﹣<x1•x2•x3<0,即x1•x2•x3的取值范围是(﹣,0),故选:A.【点评】:本题考查根的存在性及根的个数判断,根据已知新定义,求出函数的解析式,并分析出函数图象是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)(2015•潍坊一模)|x+3|+|x﹣1|≥6的解集是{x|x≤﹣4或x≥2}.【考点】:绝对值不等式的解法.【专题】:不等式的解法及应用.【分析】:根据绝对值的意义求得不等式|x+2|+|x﹣1|≤3的解集.【解析】:解:由于|x+3|+|x﹣1|表示数轴上的x对应点到﹣3、1对应点的距离之和,而2和﹣4对应点到﹣3、1对应点的距离之和正好等于6,故|x+3|+|x﹣1|≥6的解集是{x|x≤﹣4或x≥2},故答案为:{x|x≤﹣4或x≥2}.【点评】:本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.12.(5分)(2015•潍坊一模)运行右面的程序框图,如果输入的x的值在区间[﹣2,3]内,那么输出的f(x)的取值范围是[,9].【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序,可得其功能是求分段函数f(x)=的值,根据实数x的取值范围即可求出函数的值域.【解析】:解:模拟执行程序,可得其功能是求分段函数f(x)=的值,所以,当x∈[﹣2,2]时,f(x)=2x∈[,4],当x∈(2,3]时,f(x)=x2∈(4,9].故如果输入的x的值在区间[﹣2,3]内,那么输出的f(x)的取值范围是[,9].故答案为:[,9].【点评】:本题考查了程序框图的运行过程的问题,解题时应读懂框图,得出分段函数,从而做出正确解答,属于基础题.13.(5分)(2015•潍坊一模)若变量x,y满足约束条件,且z=x+3y的最小值为4,则k=1.【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【解析】:解:由z=x+3y,得,作出不等式对应的可行域,平移直线,由平移可知当直线,经过点B时,直线,的截距最小,此时z取得最小值为4,即x+3y=4,由,解得,即B(1,1),B同时也在直线y=k上,则k=1,故答案为:1【点评】:本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.14.(5分)(2015•潍坊一模)对于实数x,[x]表示不超过x的最大整数,观察下列等式:.按照此规律第n个等式的等号右边的结果为2n2+n.【考点】:归纳推理.【专题】:推理和证明.【分析】:由[x]表示不超过x的最大整数,分别研究等式的左边和右边,归纳出规律即可求出第n个等式的等号右边的结果.【解析】:解:因为[x]表示不超过x的最大整数,所以=1,=2,…,因为等式:,,,…,所以第1个式子的左边有3项、右边1+1+1=1×3=3,第2个式子的左边有5项、右边2+2+2+2+2=2×5=10,第3个式子的左边有7项、右边3×7=21,则第n个式子的左边有(2n+1)项、右边=n(2n+1)=2n2+n,故答案为:2n2+n.【点评】:本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.15.(5分)(2015•潍坊一模)如图,正方形ABCD中,E为AB上一点,P为以点A为圆心,以AB为半径的圆弧上一点,若=x+y(xy≠0),则以下说法正确的是:①④(请将所有正确的命题序号填上)①若点E和A重合,点P和B重合,则x=﹣1,y=1;②若点E是线段AB的中点,则点P是圆弧的中点;③若点E和B重合,且点P为靠近D点的圆弧的三等分点,则x+y=3;④若点E与B重合,点P为上任一点,则动点(x,y)的轨迹为双曲线的一部分.【考点】:命题的真假判断与应用.【专题】:数形结合;转化思想;平面向量及应用;圆锥曲线的定义、性质与方程.【分析】:以AB为x轴,AD为y轴建立直角坐标系,设正方形ABCD的边长为1,①,若点E和A重合,点P和B重合,可求得E、P的坐标及向量=(0,﹣1),=(1,0),利用=x+y(xy≠0)及向量的坐标运算可求得x=﹣1,y=1,从而可判断①;②,若点E是线段AB的中点,点P是圆弧的中点,同理可求得,此方程组无解,从而可判断②;③,若点E和B重合,且点P为靠近D点的圆弧的三等分点,可求得x+y=,可判断③;④,若点E与B重合,点P(a,b)为上任一点,=x+y⇒(1,1)=x(1,﹣1)+y(a,b),利用a2+b2=1可得:+=1,整理得:﹣x2=1,从而可判断④.【解析】:解:以AB为x轴,AD为y轴建立直角坐标系,设正方形ABCD的边长为1,如图,则A(0,0),B(1,0),C(1,1),D(0,1),=(1,1).因为=x+y(xy≠0),所以,对于①,若点E和A重合,点P和B重合,则E(0,0),P(1,0),=(0,﹣1),=(1,0),=x+y⇒(1,1)=x(0,﹣1)+y(1,0),即,故①正确;则x=﹣1,y=1;对于②,若点E是线段AB的中点,则E(,0),=(,﹣1);若点P是圆弧的中点,则P(cos45°,sin45°),即P(,),=(,),=x+y⇒(1,1)=x(,﹣1)+y(,),即,此方程组无解,故②错误;对于③,若点E和B重合,则E(1,0),=(1,﹣1);又点P为靠近D点的圆弧的三等分点,则P(cos60°,sin60°),即P(,),=(,),=x+y⇒(1,1)=x(1,﹣1)+y(,),即,解得,则x+y=,故③错误;对于④,若点E与B重合,则E(1,0),=(1,﹣1);又点P(a,b)为上任一点,则=(a,b)(0≤a≤1,0≤b≤1,a2+b2=1),=x+y⇒(1,1)=x(1,﹣1)+y(a,b),即,由a2+b2=1得:+=1,整理得:﹣x2=1,则动点(x,y)的轨迹为双曲线的一部分,故④正确.综上所述,说法正确的是①④,故答案为:①④.【点评】:本题考查命题的真假判断与应用,着重考查向量的数量积的坐标运算,考查等价转化思想、方程思想与运算求解能力、作图能力,属于难题.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)(2015•潍坊一模)已知函数f(x)=sin(2wx﹣)﹣4sin2wx+2(w>0),其图象与x轴相邻两个交点的距离为.(1)求函数f(x)的解析式;(2)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),求当m取得最小值时,g(x)在[﹣,]上的单调增区间.【考点】:函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】:三角函数的图像与性质.【分析】:(1)由条件利用三角函数的恒等变换求得f(x)=sin(2wx+),再根据正弦函数的周期性求出ω的值,可得函数f(x)的解析式.(2)由条件根据函数y=Asin(ωx+φ)的图象变换规律、g(x)的图象恰好经过点(﹣,0),求得g(x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围可得函数的增区间,再结合合x∈[﹣,],进一步确定g(x)的增区间.【解析】:解:(1)函数f(x)=sin(2wx﹣)﹣4sin2wx+2(w>0)=sin2wx﹣cos2wx ﹣4•+2=sin2wx+cos2wx=sin(2wx+),根据图象与x轴相邻两个交点的距离为,可得函数的最小正周期为2×=,求得ω=1,故函数f(x)=sin(2x+).(2)将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)=sin[2(x+m)+]=sin(2x+2m+)的图象,再根据g(x)的图象恰好经过点(﹣,0),可得sin(2m﹣)=0,故m=,g(x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ﹣,故函数g(x)的增区间为[kπ﹣,kπ﹣],k∈z.再结合x∈[﹣,],可得增区间为[﹣,﹣]、[,].【点评】:本题主要考查三角函数的恒等变换,三角函数的周期性和求法,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于中档题.17.(12分)(2015•潍坊一模)如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=AF,BC=AB,∠CBA=,P为DF的中点.(1)求证:PE∥平面ABCD;(2)求平面DEF与平面ABCD所成角(锐角)的余弦值.【考点】:二面角的平面角及求法;直线与平面平行的判定.【专题】:空间位置关系与距离;空间向量及应用.【分析】:(I)如图所示,取AD的中点M,连接MP,MB.又P为DF的中点.利用三角形的中位线定理可得,验证,可得,四边形BMPE为平行四边形,得到PE∥BM,可得PE∥平面ABCD;(II)连接AC,在△ABC中,由余弦定理可得AC=AB,AC⊥AB.由平面ABCD⊥平面ABEF,可得AC⊥平面ABEF.分别以AB,AF,AC为x,y,z轴建立空间直角坐标系,可设AB=1,设平面DEF的法向量为=(x,y,z),则,可得.取平面ABCD的一个法向量=(0,1,0),利用=,即可得出.【解析】:(I)证明:如图所示,取AD的中点M,连接MP,MB.又P为DF的中点.∴,又∵,∴,∴四边形BMPE为平行四边形,∴PE∥BM,而PE⊄平面ABCD,BM⊂平面ABCD,∴PE∥平面ABCD;(II)解:连接AC,在△ABC中,BC=AB,∠CBA=,由余弦定理可得:AC2=BC2+AB2﹣2BC•ABcos∠CBA==AB2,∴AC=AB,∴△ABC是等腰直角三角形,AC⊥AB.∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴AC⊥平面ABEF.分别以AB,AF,AC为x,y,z轴建立空间直角坐标系,设AB=1,则A(0,0,0),B(1,0,0),E(1,1,0),C(0,0,1),D(﹣1,0,1),F (0,2,0).∴=(2,1,﹣1),=(1,2,﹣1).设平面DEF的法向量为=(x,y,z),则,∴,令x=1,则y=1,z=3.∴=(1,1,3).取平面ABCD的一个法向量=(0,1,0),则===.∴平面DEF与平面ABCD所成角(锐角)的余弦值为.【点评】:本题考查了线面平行与垂直的判定与性质定理、三角形的中位线定理、平行四边形的判定与性质定理,考查了通过建立空间直角坐标系利用线面垂直的性质定理、向量垂直与数量积的关系及平面的法向量的夹角求出二面角的方法,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.18.(12分)(2015•潍坊一模)某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变量X,求X的分布列及数学期望EX.【考点】:离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】:应用题;概率与统计.【分析】:(1)根据频率分布直方图,求出a的值,计算成绩在各分数段内的学生数,计算满足条件的事件的概率即可;(2)根据题意得出X的可能取值,计算对应的概率,求出X的分布列与数学期望即可.【解析】:解:(1)由频率分布直方图,得;10a=1﹣(++)×10=,解得a=;∴成绩在[80,90)分的学生有36××10=3人,成绩在[90,100)分的学生有36××10=6人,成绩在[100,110)分的学生有36××10=18人,成绩在[110,120)分的学生有36××10=9人;记事件A为“抽取3名学生中同时满足条件①②的事件”,包括事件A1=“抽取3名学生中,1人成绩不低于110分,0人在[90,100)分之间”,事件A2=“抽取3名学生中,1人成绩不低于110分,1人在[90,100)分之间”,且A1、A2是互斥事件;∴P(A)=P(A1+A2)=P(A1)+P(A2)=+=+=;(2)随机变量X的可能取值为0,1,2,3;∴P(X=0)==,p(X=1)==,P(X=2)==,P(X=3)==;∴X的分布列为X 0 1 2 3P数学期望为EX=0×+1×+2×+3×=2.【点评】:本题考查了频率分布直方图的应用问题,也考查了互斥事件的概率以及离散型随机变量的分布列与数学期望的计算问题,是综合性题目.19.(12分)(2015•潍坊一模)已知各项为正数的等比数列数列{an}的前n项和为Sn,数列{bn}的通项公式bn=(n∈N*),若S3=b5+1,b4是a2和a4的等比中项.(1)求数列{an}的通项公式;(2)求数列{an•bn}的前n项和为Tn.【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)由已知得b5=6,b4=4,,,从而q=2,a1=1,由此能求出数列{an}的通项公式.(2)当n为偶数时,利用分组求和法和错位相减法能求出+=(n ﹣)•2n+.当n为奇数,且n≥3时,Tn=Tn﹣1+(n+1)•2n﹣1==+,由此能求出Tn.【解析】:解:(1)∵数列{bn}的通项公式bn=(n∈N*),∴b5=6,b4=4,设各项为正数的等比数列数列{an}的公比为q,q>0,∵S3=b5+1=7,∴,①∵b4是a2和a4的等比中项,∴,解得,②由①②得3q2﹣4q﹣4=0,解得q=2,或q=﹣(舍),∴a1=1,.(2)当n为偶数时,Tn=(1+1)•20+2•2+(3+1)•22+4•23+(5+1)•24+…+[(n﹣1)+1]•2n﹣2+n•2n﹣1=(20+2•2+3•22+4•23+…+n•2n﹣1)+(20+22+…+2n﹣2),设Hn=20+2•2+3•22+4•23+…+n•2n﹣1,①2Hn=2+2•22+3•23+4•24+…+n•2n,②①﹣②,得﹣Hn=20+2+22+23+…+2n﹣1﹣n•2n=﹣n•2n=(1﹣n)•2n﹣1,∴Hn=(n﹣1)•2n+1,∴+=(n﹣)•2n+.当n为奇数,且n≥3时,Tn=Tn﹣1+(n+1)•2n﹣1==+,经检验,T1=2符合上式,∴Tn=.【点评】:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意分类讨论思想、分组求和法和错位相减法的合理运用.20.(13分)(2015•潍坊一模)已知点M是圆心为C1的圆(x﹣1)2+y2=8上的动点,点C2(1,0),若线段MC2的中垂线交MC1于点N.(1)求动点N的轨迹方程;(2)若直线l:y=kx+t是圆x2+y2=1的切线且l与N 点轨迹交于不同的两点P,Q,O为坐标原点,若•=μ且≤u≤,求△OPQ面积的取值范围.【考点】:轨迹方程;平面向量数量积的运算;直线与圆锥曲线的关系.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:(1)利用椭圆的定义,可得动点N的轨迹是以C1,C2为焦点,以2为长轴长的椭圆,即可求出动点N的轨迹方程;(2)利用韦达定理确定|PQ|的范围,即可求出△OPQ面积的取值范围.【解析】:解:(1)由已知得|MN|=|NC2|,则|NC1|+|NC2|=|NC1|+|MN|=2>|C1C2|=2,故动点N的轨迹是以C1,C2为焦点,以2为长轴长的椭圆,a=,c=1,b2=1,动点N的轨迹方程为+y2=1;(2)∵直线l:y=kx+t是圆x2+y2=1的切线,∴=1,∴t2=k2+1,直线l:y=kx+t代入椭圆方程可得(1+2k2)x2+4ktx+2t2﹣2=0,设P(x1,y1),Q(x2,y2),则△=8k2>0可得k≠0.∴x1+x2=﹣,x1x2=,∴y1y2=(kx1+t)(kx2+t)=,∵t2=k2+1,∴x1x2=,y1y2=,∴•=μ=x1x2+y1y2=,∵≤μ≤,∴≤≤,∴≤k2≤1,∵|PQ|=•=2令λ=k4+k2,∵≤k2≤1∴λ∈[,2].|PQ|==2•在[,2]上单调递增,∴≤|PQ|≤,∵直线PQ是圆x2+y2=1的切线,∴O到PQ的距离为1,∴S△OPQ=|PQ|,即≤|PQ|≤].故△OPQ面积的取值范围是[,].【点评】:本题考查椭圆的定义域方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,正确运用韦达定理是关键.21.(14分)(2015•潍坊一模)已知函数f(x)=x﹣﹣alnx(1)若f(x)无极值点,求a的取值范围;(2)设g(x)=x+﹣(lnx)2,当a取(1)中的最大值时,求g(x)的最小值;(3)证明不等式:>ln(n∈N*).【考点】:不等式的证明;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【专题】:综合题;导数的综合应用;推理和证明.【分析】:(1)求导函数,函数f(x)无极值,等价于方程x2﹣ax+1=0在(0,+∞)上无根或有唯一根,由此即可求a的取值范围;(2)先证明x>0时,|x﹣|≥|2lnx|=|lnx2|,再换元,即可求函数g(x)的最小值;(3)先证明>ln,再利用放缩法,即可得到结论.【解析】:(1)解:求导函数,可得f′(x)=,∵函数f(x)无极值,∴方程x2﹣ax+1=0在(0,+∞)上无根或有唯一根,∴方程a=x+在(0,+∞)上无根或有唯一根,又x+≥2(x=1取等号),故(x+)min=2,∴a≤2;(2)解:a=2时,f(x)=x﹣﹣2lnx,g(x)=x+﹣(lnx)2,由(1)知,f(x)在(0,+∞)上是增函数,当x∈(0,1)时,f(x)=x﹣﹣2lnx<f(1)=0,即x﹣<2lnx<0;当x∈(1,+∞)时,f(x)=x﹣﹣2lnx>f(1)=0,即x﹣>2lnx>0;∴x>0时,|x﹣|≥|2lnx|=|lnx2|,令x2=t>0,∴|﹣|≥|lnt|,平方得t+﹣2≥(lnt)2,∴t>0时,t+﹣2≥(lnt)2成立,当且仅当t=1时取等号,∴当x=1时,函数g(x)取最小值2;(3)证明:由上知,x>1时,x+﹣(lnx)2>2,∴x>1时,﹣>lnx成立,令x=,得﹣>ln,即>ln,∴不等式:>ln+…+ln>ln+…+ln=ln(2n••…•)=ln即>ln(n∈N*).【点评】:本题考查导数知识的运用,函数函数的单调性与极值,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学试题(理科)2014.10.9本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分150分。
考试用时120分钟。
第Ⅰ卷(共50分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2、每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再改涂其它他答案标号。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R ,集合}31|{<<=x x A ,{|2}B x x =>,则U A C B 等于( )A .}21|{<<x xB .{|12}x x <≤C .}32|{<<x xD .}2|{≤x x2.已知R a ∈且0≠a ,则“11<a”是“1>a ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 若集合}0|{≥=y y P ,P Q P = ,则集合Q 不可能是A .∅B .},|{2R x x y y ∈=C .},2|{R x y y x ∈=D .}0,log |{2>=x x y y 4. 已知x ,y R ∈,则A .y x yx 2lg 2lg )2lg(+=+ B .yx y x 2lg 2lg )22lg(∙=∙ C .y x y x 2lg 2lg )2lg(∙=+D .yx y x 2lg 2lg )22lg(+=∙5. 已知命题p :存在x R ∈,使得x x lg 10>-;命题q :对任意x R ∈,都有02>x ,则A .命题“p 或q ”是假命题B .命题“p 且或q ”是真假命题C .命题“非q ”是假命题D .命题“p 且‘非q ’”是真命题6. 设函数⎩⎨⎧>-≤=-)1(,log 1)1(,2)(21x x x x f x ,则满足)(x f ≤2的x 取值范围是A .]2,1[-B .]2,0[C .),0[+∞D .),1[+∞7.若函数0()(>-=-a a ka x f x x 且)1≠a 在(-∞,+∞)上既是奇函数又是偶函数,则)(log )(k x x g a -=的图象是8. 要使333b a b a -<-成立,a ,b 应满足的条件是A . 0<ab 且b a >B . 0>ab 且b a >C .0<ab 且b a <D . 0>ab 且b a >或0<ab 且b a <9. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则1+-=x x y s 的取值范围是A .]21,0[B .]0,21[-C .]1,21[- D .]1,0[ 10. 已知函数=y ()f x 是定义在R 上的奇函数,且当),0(+∞∈x 时,)()(x f x f x -<'成立,若)3(3f a =,)3(lg )3(lg f b =,)41(log )41(log 22f c =,则a ,b ,c 的大小关系是A .a b c <<B .b a c <<C .c b a <<D .b c a <<第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分。
请把正确答案填在题中横线上) 11. 若1ln 121-=⎰dx ax 则实数a 的值是 。
12. 若函数1)(23+-=ax x x f 在(0,2)内单调递减,则实数a 的取值范围是 .13.已知|log |)(3x x f =,若)()(b f a f =且b a ≠。
则ba 21+的取值范围是_________. 14.若存在实数x 使|1|||-+-x a x ≤3成立,则实数a 的取值范围是 . 15.设定义域为[0,1]的函数)(x f 同时满足以下三个条件时称)(x f 为“友谊函数”: (1)对任意∈x [0,1],总有)(x f ≥0; (2)1)1(=f ;(3)若1x ≥0,2x ≥0且1x +2x ≤1,则有(f 1x +2x )≥(f 1x )+(f 2x )成立,则下列判断正确的有 。
①)(x f 为“友谊函数”,则0)0(=f ;②函数x x g =)(在区间[0,1]上是“友谊函数”;③若)(x f 为“友谊函数”,且0≤1x <2x ≤1,则(f 1x )≤(f 2x )。
三、解答题(本大题共6小题,共75分。
解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知p :不等式022>--m x x 解集为R ,q :集合},012|{2R x m x x x A ∈=--+=,且∅≠A .且p q ∧为真,求实数m 的取值范围17. (本小题满分12分)设ax f x x ++-=+1212)((a 为实常数)(I )当1=a 时,证明:)(x f 不是奇函数;(Ⅱ)当2=a 时,若k x f <)(对一切实数x 成立,求k 的取值范围 18. (本小题满分12分)为了降低能耗,新建住宅的屋顶和外墙都要求建造隔热层。
某幢建筑物要建造可使用20年的隔热层,每厘米的隔热层建造成本为6万元。
该建筑物每年的能耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:53)(+=x kx C (0≤x ≤10),若不建隔热层,每年能耗费用为8万元。
设)(x f 为隔热层建造费用与20年的能耗费用之和。
(I )求k 的值及)(x f 的表达式; 。
(Ⅱ)隔热层修建多厚时,总费用)(x f 达到最小,并求最小值 19. (本小题满分12分) 设函数R m xmx x f ∈+=,ln )( (I )当e m =(e 为自然对数的底数)时,若函数)(x f 在()1)(1,1>+-a a a 上有极值点,求实数a 的范围; (Ⅱ)若函数3)()(xx f x g -'=有两个零点,试求m 的取值范围。
20. (本小题满分13分)已知函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1).(1)解关于x 的不等式0)(>x f ;(2)若函数)(x f 在[2,8]上的最大值是1,最小值是-18,求a 的值21.(本小题满分14分)已知函数x x x x f 2ln 2)(2+-=(I )求函数)(x f 的图像在1=x 处的切线的方程;(II )若函数]42)([31)(23m xx x f x x x g +-+'+=在区间(1,3)上不是单调函数,求m 的取值范围;(III )若在区间(1,+∞)上,函数x ax x f x h -+=2)(21)(的图像恒在直线)(2R x ax y ∈=的下方,求实数a 的取值范围。
高三数学试题(理科)参考答案及评分标准一、选择题: BBDAD CADCB 二、填空题: 11.2112.a ≥3 13.),22[+∞ 14.2-≤a ≤4 15. ①②③ 三、解答题:16. 解答:若p :不等式022>--m x x 解集为R ,则1,044-<∴<+=∆m m ………………………………4分 若q :集合},012|{2R x m x x x A ∈=--+=,且∅≠A . 则方程0122=--+m x x 有实根∴△=)1(44++m ≥0,m ≥-2 ……………………8分 又p q ∧为真,故p 、q 均为真命题。
∴m <-1且m ≥-2,∴-2≤m <-1…………………12分17. 解:(Ⅰ)1212)(1++-=+x x x f ,511212)1(2-=++-=f ,412121)1(=+-=-f所以)1()1(f f -≠-,)(x f 不是奇函数 ………………5分(Ⅱ)2212)(1++-=+x x x f =12121++-x ,因为02>x ,所以112>+x,<0121+x <1,从而21-<)(x f <21 ………………………………………………10分要使k x f <)(对一切实数x 成立,须k ≥21……………………………12分 18. 解:(Ⅰ)当0=x 时,8)0(=C ,即85=k,所以40=k ,…………2分 所以5340)(+=x x C , 所以)(x f =x 6+534020+⨯x =x 6+53800+x (0≤x ≤10)…………………………5分(Ⅱ))(x f =x 6+53800+x =)53(2+x +53800+x -10≥53800)53(22++x x -10=70 …………………………………………………………10分 当且仅当)53(2+x =53800+x ,即5=x 时等号成立,因此最小值为70 所以当隔热层修建5cm 厚时总费用最小,最小值为70元。
……………………12分19. 解:(Ⅰ)当e m =时,xex x f +=ln )(,其定义域为(0,+∞)………1分 221)(xex x e x x f -=-=' …………………………2分 当e x <<0时,0)(2<-='x e x x f ;当ex >时,0)(2>-='x ex x f 故)(x f 在(0,e )单调递减,在(e ,+∞)上单调递增…………4分 若函数)(x f 在()1)(1,1>+-a a a 上有极值点,须⎪⎩⎪⎨⎧>>+<-111a e a ea ,解得11+<<-e a e , ………………………6分 (Ⅱ)3)()(x x f x g -'==312x x m x --=23333xx m x --,其定义域为(0,+∞)……7分 令0)(=x g ,得x x m +-=331 设x x x h +-=331)(,其定义域为(0,+∞)。
则)(x g 的零点为)(x h 与m y =的交点。
……………………………………………9分)1)(1(1)(2-+-=+-='x x x x h故当1=x 时,)(x h 取得最大值时3)1(=h ……………………10分作出)(x h 的图像,可得当320<<m 时,)(x g 有两个零点。
………………12分20. 解:(Ⅰ)f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2),令f (x )>0,即log 2a x +3log a x +2>0,解得2log 2-<x 或1log ->x a ……4分 当10<<a 时,不等式解集为a x x 10|{<<或21ax >} 当1>a 时,不等式解集为210|{ax x <<或a x 1>}………………6分 (Ⅱ)由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1). ∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =312-, 此时f (x )取得最小值时,x =(2-13)-32=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12, 此时f (x )取得最小值时,x =(12)32-=22∈[2,8],符合题意,∴a =12.21. 解:(I )222)(+-='x xx f ,切点坐标(1,1),切线的斜率2)1(='=f k , 则切线方程为)1(21-=-x y ,即12-=x y ………………3分(II ) ]42)([31)(23m x x x f x x x g +-+'+==x x m x 2)2(3123-++ ∴)(x g '=2)2(22-++x m x∵)(x g 在区间(1,3)上不是单调函数,且02)0(<-='g∴⎩⎨⎧>'<'0)3(0)1(g g …………………………………………7分∴⎪⎪⎩⎪⎪⎨⎧->-<61923m m 故m 的取值范围是(619-,23-)(III )若在区间(1,+∞)上,函数x ax x f x h -+=2)(21)(的图像恒在直线)(2R x ax y ∈=的下方等价于对任意∈x (1,+∞),不等式02ln )21(2<-+-ax x x a 恒成立设=)(x ϕax x x a 2ln )21(2-+-,∈x (1,+∞)则=')(x ϕx a x a 12)12(+--=)112)(1(xa x --- ……………………9分 当∈x (1,+∞)时,01>-x ,110<<x①若12-a ≤0,即a ≤21,0)(<'x ϕ,函数)(x ϕ在区间[1,+∞)为减函数,则当任意∈x (1,+∞)时,)(x ϕ<)1(ϕ=a a 221--=a --21,只需a --21≤0,即当21-≤a ≤21时,=)(x ϕ02ln )21(2<-+-ax x x a 恒成立。