太原市2018年初中毕业班综合测试(一)数学卷

合集下载

【2018中考数学真题】山西试题及解析【2018数学中考真题解析系列】

【2018中考数学真题】山西试题及解析【2018数学中考真题解析系列】

山西省2018年中考数学真题试题第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》 【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2 = -a 6B. 2a 2 + 3a 2 = 6a 2C. 2a 2 ⋅ a 3 = 2a 6D. 2633()2b b aa -=- 【 答案】 D【考点】 整式运算【解析】 A . (- a 3 )2 = a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后 ,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A 【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种, ∴ P ( 两 次 都 摸 到 黄 球 ) =498. 如 图 ,在 Rt △ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6【答案】 D 【考点】 旋 转 , 等 边 三 角 形 性 质 【解析 】连接 BB ’ ,由 旋 转 可 知 AC=A ’ C ,BC=B ’ C ,∵ ∠ A=60°,∴ △ ACA ’ 为 等 边 三 角 形 ,∴∠ ACA ’ =60°, ∴ ∠ BCB ’ =60°∴ △ BCB ’ 为 等 边 三 角 形 , ∴ BB ’ =BC= 6 3 .9. 用配方法将二次函 数y = x 2 - 8x - 9 化为 y = a (x - h )2 + k 的形式为()A. y = (x - 4)2 + 7B. y = (x - 4)2 - 25C. y = (x + 4)2 + 7D. y = (x + 4)2- 25【答案】 B 【考点】 二 次 函 数 的 顶 点 式【解析】 y = x 2 - 8x - 9 = x 2 - 8x +16 -16 - 9 = (x - 4)2- 2510. 如图,正方形 ABCD 内 接 于 ⊙ O , ⊙ O 的 半 径 为 2,以点 A 为 圆 心 , 以 AC 为 半 径 画 弧 交 AB 的 延长线于点 E ,交 AD 的延长线于点 F , 则 图 中 阴 影 部 分 的 面 积 是 ( )A.4π -4B. 4π -8C. 8π -4D. 8π -8【答案】 A 【考点】 扇 形 面 积 , 正 方 形 性 质 【解析】 ∵四边形 ABCD 为正方形,∴∠ BAD=90°, 可 知 圆 和 正 方 形 是 中 心 对 称 图 形 ,第 I 卷 非 选 择 题 ( 共 90 分)二 、 填 空 题 ( 本 大 题 共 5 个 小 题 , 每 小 题 3 分 , 共 15 分)11.计算: +-1) = . 【答案】 17 【考点】 平 方 差 公 式【解析】 ∵ (a + b )(a - b ) = a 2 - b 2 ∴+-1) =)2-1 =18-1=17 12. 图 1 是 我 国 古 代 建 筑 中 的 一 种 窗 格 .其 中 冰 裂 纹 图 案 象 征 着 坚 冰 出 现 裂 纹 并 开 始 清 溶 , 形 状 无一定规则,代表 一 种自然和谐美 .图 2 是 从 图 1 冰 裂 纹 窗 格 图 案 中 提 取 的 由 五 条 线 段 组 成 的 图形,则 ∠1+ ∠2 + ∠3 + ∠4 + ∠5 = 度 .【答案】 360 【考点】 多 边 形 外 角 和 【解析】 ∵任 意 n 边 形 的 外 角 和 为 360°, 图 中 五 条 线 段 组 成 五 边 形∴ ∠1+ ∠2 + ∠3 + ∠4 + ∠5 = 360︒ .13. 2018 年 国 内 航 空 公 司 规 定 : 旅 客 乘 机 时 , 免 费 携 带 行 李 箱 的 长 、 宽 、 高 之 和 不 超 过 115cm. 某厂家生产符合该 规 定的行李箱,已知 行 李箱的宽为 20cm , 长 与 高 的 比 为 8:11, 则 符 合 此 规 定 的行李箱的高的最 大 值为 _____cm.【答案】 55 【考点】 一 元 一 次 不 等 式 的 实 际 应 用 【解析】 解 : 设 行 李 箱 的 长 为 8xcm , 宽 为 11xcm 20 + 8x +11x ≤ 115解得 x ≤ 5∴高的最大值为 11⨯ 5 = 55 cm14.如 图 ,直 线 MN ∥ P Q ,直 线 AB 分别与 MN ,PQ 相交于点 A ,B.小宇同学利用尺规 按 以下步骤 作 图: ①以点 A 为 圆 心 , 以 任 意 长 为 半 径 作 弧 交 AN 于点 C ,交 AB 于点 D ;②分别以 C , D 为 圆 心 , 以大于12CD 长 为 半 径 作 弧 ,两 弧 在 ∠ NAB 内 交 于 点 E ;③ 作 射 线 AE 交 PQ 于点 F.若 AB=2,∠ ABP=600 , 则线段 AF 为 ______.【答案】【考点】 角 平 分 线 尺 规 作 图 , 平 行 线 性 质 , 等 腰 三 角 形 三 线 合 一 【解析】 过点 B 作 BG ⊥ AF 交 AF 于点 G由尺规作图可知, A F 平分∠ NAB ∴∠ NAF=∠ BAF ∵ MN ∥ PQ ∴∠ NAF=∠ BFA ∴∠ BAF=∠ BFA ∴ BA=BF=2 ∵ BG ⊥ AF ∴ AG=FG∵ ∠ ABP=600∴∠ BAF=∠ BFA=300Rt △ BFG 中,FG = BF ⋅ c o s ∠BFA = 2=∴ AF = 2FG =15. 如 图 , 在 Rt △ ABC 中, ∠ ACB=900, A C=6, B C=8,点 D 是 AB 的 中 点 , 以 CD 为 直 径 作 ⊙ O ,⊙ O 分别与 AC , B C 交于点 E , F ,过点 F 作⊙ O 的切线 FG ,交 AB 于点 G ,则 FG 的长为 _____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%.答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516. 19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:A Z又∠A'BZ'=△∴Z 'ZA理可' A '=Y ZYZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A,四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ 是菱形(2)答:证明: C D= C B, ∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 AB AD = 2 AB , ∴ AD = AE 四边形 ABCD 是 矩 形 , ∴ AD / / BC .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴1EMDM =∴ EM = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ HC = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 AB , BE = AB , ∴ BC = 2BE = 2HC . ∴ HC = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上精品文档11( 3)答:点 F 在 BC 边的垂直平分线上 ( 或点 F 在 AD 边 的 垂 直 平 分 线 上 ) .证 法 一 : 过点 F 作 FM ⊥ BC 于点 M ,过点 E 作 EN ⊥ FM 于点 N.∴∠BMN = ∠ENM = ∠ENF = 90︒.四边形 ABCD 是 矩 形 , 点 E 在 AB 的延长线 上,∴ ∠CBE = ∠ABC = 90︒.∴四边形 BENM 为矩形 .∴ BM = EN , ∠BEN = 90︒. ∴∠1+ ∠2 = 90︒. 四边形 CEFG 为 正 方 形 ,∴ EF = EC , ∠CEF = 90︒. ∴∠2 + ∠3 = 90︒.∴∠1=∠ 3. ∠CBE = ∠ENF = 90︒,∴△ENF ≌△EBC.∴ NE = BE . ∴ BM = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 AB , AB = BE . ∴ BC = 2BM . ∴ BM = MC . ∴FM 垂直平分 BC , ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .证 法 二 : 过 F 作 FN ⊥ BE 交 BE 的 延 长 线 于 点 N ,连接 FB , F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠ CBE=∠ ABC=∠ N=90°. ∴∠ 1+∠ 3=90°.四边形 CEFG 为正方形, ∴EC=EF ,∠ CEF=90°.∴∠ 1+∠ 2=90°. ∴∠ 2=∠ 3.∴△ ENF ≅ △ CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形, ∴AD=BC.AD=2AB , B E=AB. ∴设 BE=a ,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .精品文档 12 1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由;( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x --解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 52 2- 4) , Q (1,-3) .2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2 FQ .PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

山西省中考数学试题与答案

山西省中考数学试题与答案

2018年山西省中考数学试卷与答案20分)第Ⅰ卷选择题(共分.在每个小题给出的四个选项中,只分,共20一、选择题(本大题10个小题,每题2 有一项符合题目要求,请选出并在答题卡上将该项涂黑)的绝对值是()B1.-311 D.3B.3C.-A.-33的度数为235o, 则∠、、b相交于点AB。

已知∠1=2.如图,直线a∥b,直线c分别与a C()oo D.135B.155o C.145165 A.o c a1A2 bB题)(第2,这个数据用科学记数M.山西是我国古代文明发祥地之一,其总面积约为16万平方千3 D法表示为()5464106×平方千M D.116×10.平方千M C.1.6×10.A0.16×10M B平方千.M平方千4.下列运算正确的是()B6246 22322223=6D.3aaB.(-a)·=-a.Cx2+xa =)(A.a-bx=a-b的正弦值()A o,若将各边长度都扩大为原来的2倍,则∠t△ABC中,∠C=90.在5RD倍D.不变.缩小2倍C.扩大4A.扩大2倍BBA C 题)(第5C2的值().估算31-6 之间4和53.在和4之间D.在3 B1A.在和2之间.在2和之间C个红球37.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有1 ,那么袋中球的总个数为()B且摸到红球的概率为 4 个D 个.39 C12 B15A.个.个.个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是().下图是由87A1 / 13DA B C从中任取一根木棒,能组成三角10cm.9.现有四根木棒,长度分别为4cm,6cm,8cm,形的个数为()C 4个个C.3个D.A.1个B.2的解集0B(0,5)两点,则不等式-k x-b<10.如图,直线y=kx+b交坐标轴于A(-3,0)、A为()3x>3 D.x<.A.x>-3 Bx<-3 C.b=yk x+yBA O x10(第题)100第Ⅱ卷选择题(共分)分,共24分.把答案写在题中横线上)二、填空题(本大题共8个小题,每小题3233—3x x)=______________.—11.计算:9x÷( AB=4cm,则=________cm.8DR t12.在△ABC中,∠ACB=90°,是AB的中点,CD.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒131豆子停在黑色方格中的概率是______________.3题)13(第12 x=5..方程14-=0的解为______________2-x+1x轴上,△,点AB⊥y轴于点BP在x是反比例函数图象上一点,过点15.如图,AA作 4=.,则这个反比例函数的解读式为______________y的面积为ABP2xyAB O xP题)(第15.将3、2、116.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中标有数字的一面朝任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则(填“公平”或“不公平”).哥哥胜该游戏对双方______________不公平2 / 13剪开,将扇OCAB的半径是以.图1AB为直径的半圆形纸片,AB=6cm,沿着垂直于17⌒BC'交OO'是OB的中点.'CAB于点形OAC沿方向平移至扇形O'A'C'.如图2,其中⌒BFF,则BF 的长为_______cm.πC C C' F OOO ' BB AA 1图2图(第17题)于AC作BC=10,D是AB的中点,过点DDE⊥中,18.如图,在△ABCAB=AC=13,60,则DE的长是______________.点E13AEDCB(第18题)8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)三、解答题(本大题共5分,共10分)19.(每小题101-2)()32sin45-o+-(1+)计算:9(- 22-1x3xx(2)先化简,再求值:( -)·,其中x=-3x21xx-+120.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1)将图3补充完整得3分(画出虚线不扣分)(2)图略,答案不唯一,只要符合题目要求均得3分3 / 1321.(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整).(1)该店第一季度售出这种品牌的电动自行车共多少辆?(2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C型电动自行车应订购多少辆?辆数240 210 C180 150D 30% 120 B60 A6035%型号D C B A)(第21题图2 1)(第21题图是,E为直径的⊙O经过点DAB22.(本题8分)如图,四边形ABCD是平行四边形,以45o.O 上一点,且∠AED=⊙O的关系,并说明理由.)试判断CD与⊙(1 的正弦值.5cm.求∠ADEAE)若⊙O的半径为3cm,=(2DC AE 题)(第222的左在B、B两点(Ax-2-3的图象与x轴交于x1023.(本题分)已知二次函数y=A .C,顶点为D轴交于点侧),与y 的坐标,并在下面直角坐标系中画出该二次函数的大致图象;、DA、B、C)求点(122如何平移得到?=-x3可由抛物线yx2=)说出抛物线(2yx-OCDB)求四边形的面积.3(4 / 13元,乙款每套分)某服装店欲购甲、乙两种新款运动服,甲款每套进价35024.(本题8套甲、乙两款元的资金订购307600元且不高于8000进价200元,该店计划用不低于运动服.1)该店订购这两款运动服,共有哪几种方案?(元的价格全部出售,哪种方案获利最无,乙款每套3002)若该店以甲款每套400(大?上,连接EDEFG的边D1,已知正方形ABCD的边CD在正方形25.(本题10分)如图.AE、GC 有怎样的位置关系,并证明你的结论.AE与GC(1)试猜想AE,连接边上,如图2D按顺时针方向旋转,使点E落在BCDEFG(2)将正方形绕点)中的结论是否还成立?若成立,给出证明;若不成立,请说明理1CG。

2017-2018学年最新山西省太原市中考数学第一次模拟试题及答案解析

2017-2018学年最新山西省太原市中考数学第一次模拟试题及答案解析

2018年山西省太原市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.3的相反数是()A.﹣3 B.﹣C.3 D.2.下列运算正确的是()A.x2+x3=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x23.从《陕西省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为()A.4.44×108B.4.44×1010C.4.44×1011D.4.44×10124.小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有()A.11箱B.10箱C.9箱 D.8箱5.小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A.B.C.D.6.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD的度数为()A.70°B.80°C.90°D.100°7.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想8.不等式组的解集在数轴上可表示为()A.B.C.D.9.如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B. C. D.10.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F 在△ABC内部,则点E到BC的距离为()A.1 B.2 C. D.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.因式分解:a2﹣4= .12.如图,已知AD∥BE∥CF,,DE=3,则DF的长为.13.在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有个.14.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有个黑棋子.(用含n的代数式表示)15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=度.16.如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x2+4x﹣2=0.18.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.19.如图,点A(m,3)在反比例函数y=(x>0)的图象上,点B在反比例函数y=的图象上,AB∥x轴,过点A作AD⊥x轴于点D,连接OB与AD相交于点C,且AC=2CD.(1)求m的值;(2)求反比例函数y=的表达式.20.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.21.随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.22.如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P 的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)23.在学习完矩形的内容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD内的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.24.如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.3的相反数是( )A .﹣3B .﹣C .3D .【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A .2.下列运算正确的是( )A .x 2+x 3=x 6B .2x+3y=5xyC .(x 3)2=x 6D .x 6÷x 3=x 2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】原式各项利用合并同类项法则,幂的乘方,以及同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A 、原式不能合并,错误;B 、原式不能合并,错误;C 、原式=x 6,正确;D 、原式=x 3,错误.故选C .3.从《陕西省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为( )A .4.44×108B .4.44×1010C .4.44×1011D .4.44×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:4.44万亿=4440000000000=4.44×1012,故选D .4.小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有( )A.11箱B.10箱C.9箱 D.8箱【考点】由三视图判断几何体.【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由正视图和左视图可得第二层,第三层正方体的个数,相加即可.【解答】解:由俯视图可得最底层有6箱,由正视图和左视图可得第二层有2箱,第三层有1个箱,共有6+2+1=9箱.故选:C.5.小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先利用画树状图展示所有20种等可能的结果数,再找出两人抽到花色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中两人抽到花色相同的结果数为8,所以两人抽到花色相同的概率==.故选D.6.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD的度数为()A.70°B.80°C.90°D.100°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质求出∠A的度数,根据圆周角定理解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠A=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:B.7.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想【考点】解分式方程.【分析】分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【解答】解:解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想,故选B.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>1,解②得x≥2.则不等式组的解集是x≥2.故选A.9.如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B. C. D.【考点】作图—复杂作图.【分析】首先根据线段的和差关系可得BP=AP,进而可得点P应在AB的垂直平分线上,然后从选项中确定答案即可.【解答】解:∵PA+PC=BC,BP+CP=BP,∴BP=AP,∴点P应在AB的垂直平分线上,根据线段垂直平分线的做法可得D正确;故选:D.10.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F 在△ABC内部,则点E到BC的距离为()A.1 B.2 C. D.【考点】相似三角形的判定与性质;正方形的性质.【分析】过点A作AM⊥BC,交DG于点H,BC于点M,根据等腰三角形的性质和勾股定理求出AH,再根据正方形的顶点D,G分别在边AB、AC上,且AD=AG,得出DG⊥AH,DH=HG=DG,求出DH,再根据AA证出△ADH∽△ABM,求出AD,从而得出AH,最后根据HM的长减去正方形的长就是点E到BC的距离,代值计算即可得出答案.【解答】解:过点A作AM⊥BC,交DG于点H,BC于点M,∵AB=AC,BC=20,∴BM=MC=BC=10,∴AH===24,∵正方形的顶点D,G分别在边AB、AC上,且AD=AG,∴DG⊥AH,DH=HG=DG,∵DG=10,∴DH=5,∵∠BAM=∠MAB,∠ABC=∠ADH,∴△ADH∽△ABM,∴=,∴=,∴AD=13,∴AH=HM=12,∴点E到BC的距离为:12﹣10=2;故选B.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.因式分解:a2﹣4= (a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.如图,已知AD∥BE∥CF,,DE=3,则DF的长为7.5 .【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,求出EF=4.5,DF=DE+EF,即可得出结果.【解答】解:∵AD∥BE∥CF,∴=,即=,解得:EF=4.5,∴DF=DE+EF=3+4.5=7.5.故答案为:7.5.13.在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有24 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.【解答】解:∵共60个球,其中摸到红色球、绿色球的频率分别稳定在15%和45%,∴黄球所占的比例为100%﹣15%﹣45%=40%,设盒子中共有黄球x个,则,解得:x=24.故答案为:24.14.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有5n ﹣1 个黑棋子.(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【解答】解:观察图①有5×1﹣1=4个黑棋子;图②有5×2﹣1=9个黑棋子;图③有5×3﹣1=14个黑棋子;图④有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,故答案为5n﹣1.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 36 度.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.16.如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为.【考点】相似三角形的判定与性质;几何体的展开图;正方形的性质.【分析】首先设这个展开图围成的正方体的棱长为x,可得EG=x,ED=3x,FG=3x,HE=x,易证得△EFG∽△AHE,然后由相似三角形的对应边成比例,可得方程,解此方程即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为x,则EG=x,ED=3x,FG=3x,BD=x,∵AB=10,∴AH=10﹣3x,∵EG∥AB,∴△EFG∽△AEH,∴,即,解得:x=.∴正方体的棱长为,故答案为:.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x 2+4x ﹣2=0.【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-配方法.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用平方根定义计算即可得到结果;(2)方程利用配方法求出解即可.【解答】解:(1)原式=2+1﹣1﹣8=3﹣9=﹣6;(2)方程整理得:x 2+4x=2,配方得:x 2+4x+4=6,即(x+2)2=6,开方得:x+2=±,解得:x1=﹣2+,x 2=﹣2﹣.18.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于 6 .(2)若一个三角形的三边长分别是,求这个三角形的面积.【考点】二次根式的应用.【分析】(1)把a 、b 、c 的长代入求出S 2,再开方计算即可得解;(2)把a 、b 、c 的长代入求出S 2,再开方计算即可得解.【解答】解:(1)p===9,S== =6.答:这个三角形的面积等于6.(2)S=====.答:这个三角形的面积是. 故答案为:6.19.如图,点A (m ,3)在反比例函数y=(x >0)的图象上,点B 在反比例函数y=的图象上,AB ∥x 轴,过点A 作AD ⊥x 轴于点D ,连接OB 与AD 相交于点C ,且AC=2CD .(1)求m 的值;(2)求反比例函数y=的表达式.【考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.【分析】(1)把A 的坐标代入反比例函数的解析式即可求得.(2)过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:(1)∵点A (m ,3)在反比例函数y=(x >0)的图象上,∴3=,解得m=1,(2)过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A在双曲线y=y=(x>0)上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF =3S矩形AFOD=9,∴k=9,∴反比例函数y=的表达式为y=.20.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【考点】分式方程的应用.【分析】首先设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,”可得方程=,解方程即可得到答案,注意最后一定要检验.【解答】解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,由题意得:=,解得:x=22,经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.21.随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,补全图形如下:(2)360°×=36°,答:图(2)中表示“有利”的扇形圆心角的度数为36°.(3)×10=1.5(万人),答:估计学生认为带手机“有弊”的人数约为1.5万人.22.如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P 的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)在RT△BPQ中利用tanB=求出BQ,在RT△APQ中根据等腰直角三角形性质求出AQ即可.(2)如图作AE⊥BC于E,在RT△ABE中求出AE,在RT△AEC中求出AC即可.【解答】解:(1)∵PQ⊥AB,∴∠BQP=∠AQP=90°,在RT△BPQ中,∵PQ=10,∠BQP=90°,∠B=30°,∵tanB=,∴=,∴BQ=10,在RT△APQ中,,∠PAB=45°,∴APQ=90°﹣∠PAB=45°,AQ=PQ=10,∴AB=BQ+AQ=10+10.答:A、B之间的距离为(10+10)米.(2)如图作AE⊥BC于E.在RT△ABE中,∵∠AEB=90°,∠B=30°,AB=10+10,∴AE=AB=5+5,∵∠CAD=75°,∠B=30°,∴∠C=45°,在RT△CAE中,sinC=,∴=,∴AC=(5+5)=5+5,答:AC的长为(5+5)米.23.在学习完矩形的内容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是平行四边形,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD内的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.【考点】四边形综合题.【分析】(1)由矩形的性质得到OA=OC,AD∥BC从而得出△AOE≌△COF,即可;(2)由矩形的性质和菱形的性质得出线段的关系,利用勾股定理建立方程16+x2=(6﹣x)2,即可;(3)由对折的性质得出线段和角相等,判断出角相等,从而判断A′B∥C′D,利用一组对边平行且相等的四边形是平行四边形,即可;(4)由A′C′最短,只有点A′,C′在线段EF上,计算即可.【解答】(1)证明:如图1,连接AC,∴点O在线段AC上,AD∥BC,OA=OC,∴∠AOE=∠COF,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF;(2)解:如图2,连接BD,∵四边形ABCD为矩形,∴AB=CD,∠BAE=∠DCF,由(1)有AE=CF,∴DE=BFRt△ABE≌Rt△CDF,∴BE=DF,∵EF=EF,∴四边形BEDF是平行四边形.设AE=x,则DE=6﹣x,∵四边形BEDF是菱形,∴BE=BD=6﹣x,在Rt△ABE中,AB=4,根据勾股定理,得AB2+AE2=BE2,∴16+x2=(6﹣x)2,∴x=.故答案为平行四边形,.(3)解:如图3,连接BD,由(1)有,AE=CF,∵四边形ABCD为矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴Rt△ABE≌Rt△CDF,∴∠ABE=CDF,∵沿BE翻折,点A落在A′处,∴Rt△ABE≌Rt△A′BE,∴A′B=AB,∠ABE=∠A′BE=∠ABA′同理可得,C′D=CD,∠CDF=∠C′DF=∠C′DC,∴∠ABA′=∠C′DC,A′B=C′D,∠ABO﹣∠ABA′=∠CDO﹣∠CDC′,∴∠OBA′=∠ODC′,∴A′B∥C′D,∴四边形BA′DC′是平行四边形;(4)解:如图4,要使A′C′最小,只有点A′,C′落在矩形对角线BD上,设AE=x,∴EA′=x,DE=6﹣x,矩形的对角线BD==2,由对折有BA′=BA=4∴DA′=BD﹣BA′=2﹣4,在Rt△DEA′中,有DE2=EA′2+DA′2,∴(6﹣x)2=x2+(2﹣4)2∴x=,即:AE=.24.如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.【考点】二次函数综合题.【分析】(1)由点B和点C的坐标可求得b、c的值,从而得到抛物线的表达式;(2)线求得点D的坐标,然后可求得CD、BD、BC,最后依据勾股定理的逆定理可证明△CDB为直角三角形;(3)如图2所示.作点A关于直线BD的对称点P交BD于点M.先求得点A的坐标,然后求得BD的解析式,从而得到直线PA的一次项系数,然后由点A的坐标可求得AP的解析式,将AP的解析式与BD的解析式联立可求得点M的坐标,然后由中点坐标公式可求得点P的坐标,由点P的坐标可判断出抛物线平移的方向和距离.【解答】解:(1)∵抛物线y=x2+bx+c经过点B(3,0),点C(0,﹣3),∴,解得:b=﹣2,C=﹣3.∴抛物线的表达式为y=x2﹣2x﹣3.(2)△BCD是直角三角形.理由如下:如图1所示:∵点B的坐标为(3,0),点C的坐标为(0,﹣3),∴OB=OC=3.在Rt△COB中,∠BOC=90°,∴BC2=OB2+OC2=18.过点D作DE⊥x轴与点E.由y=x2﹣2x﹣3=(x﹣1)2﹣4,得顶点D的坐标为(1,﹣4).∴DE=4,OE=1.∴BE=2.在Rt△DEB中,∠DEB=90°,∴BD2=DE2+BE2=20.过点C作CF⊥DE于点F,则CF=OE=1,DF=DE﹣OC=1.∴DC2=CF2+DF2=2.∴BD2=BC2+DC2.∴△BCD是直角三角形.(3)如图2所示.作点A关于直线BD的对称点P交BD于点M.当y=0时,x2﹣2x﹣3=0.解得:x1=3,x2=﹣1.∴A(﹣1,0).设BD的解析式为y=kx+b.∵将D(1,﹣4),B(3,0)代入得;,解得:k=2,b=﹣6,∴直线BD的解析式为y=2k﹣6.∵AP与BD垂直,∴直线AP的一次项系数为﹣.设直线AP的解析式为y=﹣+n.∵将A(﹣1,0)代入得:+n=0,解得n=﹣,∴直线AP的解析式为y=﹣.∵将y=x与y=2x﹣6联立,解得:x=,y=﹣.∴点M的坐标为(,﹣).由轴对称的性质可知:M是AP的中点,∴点P的坐标为(,﹣).∵抛物线y=(x﹣1)2﹣4平移后的顶点坐标为P,∴抛物线y=x ﹣1)2﹣4先向右平移个单位长度,再向上平移个单位长度所得抛物线的顶点与点A 关于BD 对称.2016年6月6日。

2018年山西省太原市中考数学一模试卷及答案解析

2018年山西省太原市中考数学一模试卷及答案解析

2018年山西省太原市中考数学一模试卷一、选择题(每小题只有一个选项符合题意,每小题3分,共48分.请将正确选项的序号填入下面的答案栏中)1.(3分)下列是某冬季四个城市的最低温度,其中气温最低的城市是()A.哈尔滨B.漠河C.太原D.拉萨2.(3分)如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是()A.∠3=55° B.∠2=55°C.∠4=55°D.∠5=55°3.(3分)今年3月5日,第十二届全国人民代表大会第五次会议在北京召开,国务院总理李克强在政府工作报告中指出,我国经济运行缓中趋稳、稳中向好,国内生产总值达到74.4万亿元.将74.4万亿元用科学记数法表示为()A.74.4×1012元B.74.4×1013元C.7.44×1012元D.7.44×1013元4.(3分)下列计算正确的是()A.a﹣1•a﹣3=a3B.(a﹣2)2=a4C.a2÷a﹣4=a﹣2D.(﹣2a)3=﹣8a35.(3分)如图所示,该几何体的主视图是()A. B. C.D.6.(3分)已知,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,其中一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标是()A.(2,1) B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)7.(3分)如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.(2000+500)米8.(3分)在不透明的袋中有一些除颜色外完全相同的白色和黑色棋子,从中随机取出一颗棋子是白色棋子的概率是;若从盒中取出3颗黑色棋子后,再随机取出一颗棋子是白色棋子的概率为,则盒中白色棋子有()A.1颗 B.2颗 C.3颗 D.4颗9.(3分)如图,四边形ABCD内接于⊙O,∠BAD=80°,若弧ABC与弧ADC的长度分别为7π,11π,则弧BAD的长度为()A.9πB.10πC.11πD.12π10.(3分)如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.2二、填空题(本大题共5个小题,每个小题3分,共15分)11.(3分)如图,每个小正方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么C点的位置可表示为.12.(3分)如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E 为边AB的中点,连结OE,则OE的长为.13.(3分)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为.14.(3分)如图,△ABC中,AB=AC=1,∠BAC=120°,以边BC为腰作第一个△CBC1,且CC1=BC,∠BCC1=120°;以边BC1为腰再作第二个△C1BC2,且C1C2=BC1,∠BC1C2=120°;…;按此规律所作的第n个三角形的腰长为(用含n的式子表示)15.(3分)如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE 的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式.三、解答题(本大题共8个小题,共75分)解答时应写出必要的文字说明、推理过程或演算步骤.16.(10分)(1)计算:﹣12×﹣()﹣1+6sin60°(2)化简:÷﹣.17.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有人;(2)补全下表中空缺的三个统计量:(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.18.(8分)小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.(1)求小王平均每分钟清点图书的本数;(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?19.(7分)如图,直线y=kx+4(k≠0)与x轴,y轴分别交于点B,A,直线y=﹣2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积.(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.20.(8分)如图,在△ABC中,∠ACB=90°.(1)尺规作图:作△ABC的外接圆⊙O,作∠ACB的平分线与⊙O交于点D,连接BD,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若AC=8,BC=6,求BD的长.21.(8分)请阅读以下材料,并完成相应的任务.如图(1),A,B两点在反比例函数y=(x>0)的图象上,直线AB与坐标轴分别交于点C,D,求证:AD=BC.下面是小明同学的部分证明过程:证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=…(1)请补全小明的证明过程;(2)如图(3),直线AB与反比例函数y=(x>0)的图象交于点A(,9)和点C,与x轴交于点D,连接OC.若点B的坐标为(0,10),则点C的坐标为,△OCD的面积为.22.(13分)综合与实践:在综合实践课上,老师让同学们对一张长AB=4,宽BC=3的矩形纸片ABCD进行剪拼操作,如图(1),希望小组沿对角线AC剪开得到两张三角形纸片△ABC和△A′DC′.操作与发现:(1)将这两张三角形纸片按如图(2)摆放,连接BD,他们发现AC⊥BD,请证明这个结论;操作与探究:(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA′.在平移的过程中:①如图(3),当BA′与C′D平行时判断四边形A′BC′D的形状,说明理由并求出此时△A′C′D平移的距离;②当BD经过点C时,直接写出△A′C′D平移的距离.操作与实践:(3)请你参照以上操作过程,利用图(1)中的两张三角形纸片,拼摆出新的图形.在图(4)中画出图形,标明字母,说明构图方法,并直接写出所要探究的问题,不必解答.23.(13分)综合与探究:如图,抛物线y=ax2+bx+与x轴交于A(﹣,0),B(,0)两点,与y轴交于点C,连接AC,BC,一动点P从点A出发,沿线段AB向终点B以每秒1个单位长度的速度运动;同时,点Q从点B出发,以相同的速度沿线段BC向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动,连接PQ.设P,Q两点运动时间为t秒.(1)求抛物线的表达式;(2)在点P,Q运动的过程中,△BPQ能否成为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3)作点B关于直线PQ的对称点为D,连接PD,QD.当四边形APQC的面积最小时,判断点D是否在该抛物线上.2018年山西省太原市中考数学一模试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,每小题3分,共48分.请将正确选项的序号填入下面的答案栏中)1.(3分)下列是某冬季四个城市的最低温度,其中气温最低的城市是()A.哈尔滨B.漠河C.太原D.拉萨【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣52.3℃<﹣42.9℃<﹣23.3℃<﹣16.5℃,∴气温最低的城市是最低气温﹣52.3℃,漠河.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是()A.∠3=55° B.∠2=55°C.∠4=55°D.∠5=55°【分析】根据同位角相等,两直线平行即可作出判断.【解答】解:∵∠1=55°,∠3=55°,∴∠1=∠3,∴a∥b,故选A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)今年3月5日,第十二届全国人民代表大会第五次会议在北京召开,国务院总理李克强在政府工作报告中指出,我国经济运行缓中趋稳、稳中向好,国内生产总值达到74.4万亿元.将74.4万亿元用科学记数法表示为()A.74.4×1012元B.74.4×1013元C.7.44×1012元D.7.44×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a﹣1•a﹣3=a3B.(a﹣2)2=a4C.a2÷a﹣4=a﹣2D.(﹣2a)3=﹣8a3【分析】分别利用同底数幂的乘除运算法则结合幂的乘方运算法则化简求出答案.【解答】解:A、a﹣1•a﹣3=a﹣4,故此选项错误;B、(a﹣2)2=a﹣4,故此选项错误;C、a2÷a﹣4=a6,故此选项错误;D、(﹣2a)3=﹣8a3,故此选项正确.故选:D.【点评】此题主要考查了同底数幂的乘除运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.5.(3分)如图所示,该几何体的主视图是()A. B. C.D.【分析】找到从正面看所得到的图形即可.【解答】解:几何体是由一个圆柱体和一个长方体组成,所以它的主视图应该是上面下面各一个矩形,下面的矩形大很多.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)已知,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,其中一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标是()A.(2,1) B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标为(2,1).故选:A.【点评】本题考查了反比例函数与一次函数的交点以及反比例函数图象的中心对称性;熟练掌握反比例函数图象关于原点对称是解决问题的关键.7.(3分)如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.(2000+500)米【分析】由C点向AB作垂线,交AB的延长线于E点,并交海面于F点,易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCE中,利用正弦函数求出CE的长.【解答】解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=4000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=4000(米).在Rt△BEC中,EC=BC•sin60°=4000×=2000(米).∴CF=CE+EF=2000+500(米).故选D.【点评】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(3分)在不透明的袋中有一些除颜色外完全相同的白色和黑色棋子,从中随机取出一颗棋子是白色棋子的概率是;若从盒中取出3颗黑色棋子后,再随机取出一颗棋子是白色棋子的概率为,则盒中白色棋子有()A.1颗 B.2颗 C.3颗 D.4颗【分析】设盒中白色棋子有x颗,黑色棋子为y颗,根据概率公式得到=,=,然后利用比例性质求x和y.【解答】解:设盒中白色棋子有x颗,黑色棋子为y颗,根据题意得=,=,解得x=2,y=6,即盒中白色棋子有2颗.故选B.【点评】本题考查了概率公式:用某事件发生的结果数除以总的结果数得到这个事件的概率.9.(3分)如图,四边形ABCD内接于⊙O,∠BAD=80°,若弧ABC与弧ADC的长度分别为7π,11π,则弧BAD的长度为()A.9πB.10πC.11πD.12π【分析】设⊙O的半径为r,根据弧ABC与弧ADC的长度分别为7π,11π求出r 的值,再根据圆内接四边形的性质求出∠C的度数,利用弧长公式即可得出结论.【解答】解:设⊙O的半径为r,∵弧ABC与弧ADC的长度分别为7π,11π,∴7π+11π=2πr,解得r=9.∵∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角是200°,∴弧BAD的长度==10π.故选B.【点评】本题考查的圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(3分)如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.2【分析】作DH∥BF交AC于H,根据等腰三角形的性质得到BD=DC,得到FH=HC,根据平行线分线段成比例定理得到==2,计算即可.【解答】解:作DH∥BF交AC于H,∵AB=AC,AD⊥BC,∴BD=DC,∴FH=HC,∵DH∥BF,∴==2,∴AF=AC=2.4,故选:C.【点评】本题考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.二、填空题(本大题共5个小题,每个小题3分,共15分)11.(3分)如图,每个小正方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么C点的位置可表示为(6,1).【分析】可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.【解答】解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案为:(6,1).【点评】本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.12.(3分)如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E 为边AB的中点,连结OE,则OE的长为2.【分析】根据平行四边形的性质可得OA=OC,再由E为AB边中点可得EO是△ABC的中位线,利用三角形中位线定理可得答案.【解答】解:在▱ABCD中,OA=OC,∵点E是AB的中点,∴OE是△ABC的中位线,∴OE=BC=×4=2.故答案为:2.【点评】此题主要考查了平行四边形的性质和三角形中位线定理,关键是掌握平行四边形的对角线互相平分.13.(3分)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:根据题意画树状图如下:从图上可以看出,共有12种可能的情况数,其中他所获得购物券的金额不低于30元的有8种可能结果,因此P(不低于30元)==;故答案为:.【点评】此题考查的是用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,△ABC中,AB=AC=1,∠BAC=120°,以边BC为腰作第一个△CBC1,且CC1=BC,∠BCC1=120°;以边BC1为腰再作第二个△C1BC2,且C1C2=BC1,∠BC1C2=120°;…;按此规律所作的第n个三角形的腰长为()n(用含n 的式子表示)【分析】过点A作AD⊥BC于点D,根据等腰三角形的性质以及解直角三角形即可求出BC的值,同理可得出BC1、BC2、…、的值,根据边长的变化即可找出第n 个三角形的腰长BC n的长度,此题得解.﹣1【解答】解:过点A作AD⊥BC于点D,如图所示.∵AB=AC=1,∠BAC=120°,∴∠ABD=30°,BD=CD,∴AD=AB,BD=AB=,∴BC=.同理,可得:BC1=BC=3,BC2=BC1=3,…,==.∴第n个三角形的腰长BC n﹣1故答案为:()n.【点评】本题考查了等腰三角形的性质、含30度角的直角三角形以及规律型中数的变化类,根据等腰三角形腰长的变化找出变化规律是解题的关键.15.(3分)如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE 的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式y=﹣x2+x.【分析】在BC上截取CH=CM,连接MH,则△MCH是等腰直角三角形,BH=MD,证出∠BHM=∠MDF,∠1=∠2,由ASA证明△BHM≌△MDF,再根据三角形面积公式求解即可.【解答】证明:∵四边形ABCD是正方形,∴CD=BC,∠C=∠CDA=90°=∠ADE,∵DF平分∠ADE,∴∠ADF=∠ADE=45°,∴∠MDF=90°+45°=135°.在BC上截取CH=CM,连接MH,如图,则△MCH是等腰直角三角形,BH=MD,∴∠CHM=∠CMH=45°,∴∠BHM=135°,∴∠1+∠HMB=45°,∠BHM=∠MDF,∵FM⊥BM,∴∠FMB=90°,∴∠2+∠BMH=45°,∴∠1=∠2.在△BHM与△MDF中,,∴△BHM≌△MDF(ASA),∴BH=MD=2﹣x,∴y与x之间的函数关系式为y=x(2﹣x)=﹣x2+x.故答案为:y=﹣x2+x.【点评】本题考查了根据实际问题列二次函数关系式,正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共8个小题,共75分)解答时应写出必要的文字说明、推理过程或演算步骤.16.(10分)(1)计算:﹣12×﹣()﹣1+6sin60°(2)化简:÷﹣.【分析】(1)根据实数运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=﹣1×3﹣2+6×=﹣2,(2)原式=÷﹣=×﹣=﹣=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.17.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有21人;(2)补全下表中空缺的三个统计量:(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.【分析】(1)根据条形统计图得到参赛人数,然后根据每个级别所占比例求出成绩在70分以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求平均数、中位数、众数;(3)根据其成绩,作出合理的分析即可.【解答】解:(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);中位数:70(分);众数:80(分).填表如下:(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:21;80,77.6,70.【点评】本题考查了各种统计图之间的相互转化的知识,在解决本题时关键的地方是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.18.(8分)小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.(1)求小王平均每分钟清点图书的本数;(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得小王至少清点多少本图书才能离开.【解答】解:(1)设小王平均每分钟清点图书x本,,解得,x=15,经检验x=15是原分式方程的解,即小王平均每分钟清点图书15本;(2)小王清点y本图书才能离开,,解得,y≥1800,即小王至少清点1800本图书才能离开.【点评】本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,注意分式方程要检验.19.(7分)如图,直线y=kx+4(k≠0)与x轴,y轴分别交于点B,A,直线y=﹣2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积.(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D 的横坐标,利用一次函数图象上点的坐标特即可求出点D的坐标,由点D的坐标利用待定系数法即可求出直线AB的表达式;(2)由直线AB的表达式即可得出△ACE为等腰直角三角形,分∠ACE=90°和∠AEC=90°两种情况考虑,根据点A、C的坐标利用等腰直角三角形的性质即可得出点E的坐标,此题得解.【解答】解:(1)当x=0时,y=kx+4=4,y=﹣2x+1=1,∴A(0,4),C(0,1),∴AC=3.=AC•(﹣x D)=﹣x D=,∵S△ACD∴x D=﹣1.当x=﹣1时,y=﹣2x+1=3,∴D(﹣1,3).将D(﹣1,3)代入y=kx+4,﹣k+4=3,解得:k=1.∴直线AB的表达式为y=x+4.(2)∵直线AB的表达式为y=x+4,∴△ACE为等腰直角三角形.当∠ACE=90°时,∵A(0,4),C(0,1),AC=3,∴E1(﹣3,1);当∠AEC=90°时,∵A(0,4),C(0,1),AC=3,∴E2(﹣,).综上所述:当△ACE是直角三角形时,点E的坐标为(﹣3,1)或(﹣,).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及等腰直角三角形的性质,解题的关键是:(1)根据△ACD的面积找出点D的坐标;(2)分∠ACE=90°和∠AEC=90°两种情况,利用等腰直角三角形的性质找出点E的坐标.20.(8分)如图,在△ABC中,∠ACB=90°.(1)尺规作图:作△ABC的外接圆⊙O,作∠ACB的平分线与⊙O交于点D,连接BD,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若AC=8,BC=6,求BD的长.【分析】(1)作AB的垂直平分线得到AB的中点O,再以O点为圆心,OA为半径作⊙O,然后作∠ACB的平分线交⊙O于点D;(2)先利用勾股定理计算出AB=10,再利用圆周角定理得到∠ADB=90°,∠ACD=∠BCD=∠ABD=∠BAD=45°,则△ADB为等腰直角三角形,于是得到BD=AB=5.【解答】解:(1)如图,⊙O和CD为所作;(2)连接AD,如图,在Rt△ABC中,AB==10,∵∠ACB=90°,∴AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠ABD=∠BAD=45°,∴△ADB为等腰直角三角形,∴BD=AB=5.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外接圆和圆周角定理.21.(8分)请阅读以下材料,并完成相应的任务.如图(1),A,B两点在反比例函数y=(x>0)的图象上,直线AB与坐标轴分别交于点C,D,求证:AD=BC.下面是小明同学的部分证明过程:证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=…(1)请补全小明的证明过程;(2)如图(3),直线AB与反比例函数y=(x>0)的图象交于点A(,9)和点C,与x轴交于点D,连接OC.若点B的坐标为(0,10),则点C的坐标为(,1),△OCD的面积为.【分析】(1)证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.得到直线AB的表达式y=﹣x+当x=0时,y=,得到点D的坐标为(0,)于是得到DM=﹣=,当y=0时,x=a+b,求得点C的坐标为(a+b,0)于是得到CN=a+b﹣b=a,据勾股定理即可得到结论;(2)把点A(,9)代入反比例函数y=得k=,求得反比例函数的解析式为y=,把A(,9),点B的坐标为(0,10)代入y=mx+n得,求得直线AB的解析式为:y=﹣2x+10,解方程组得到C(,1),根据三角形的面积公式即可得到结论.【解答】(1)证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=,当y=0时,x=a+b,∴点C的坐标为(a+b,0)∴CN=a+b﹣b=a,∴AD====,CB====,∴AD=BC;(2)解:把点A(,9)代入反比例函数y=得k=,∴反比例函数的解析式为y=,把A(,9),点B的坐标为(0,10)代入y=mx+n得,∴,∴直线AB的解析式为:y=﹣2x+10,解得或,∴C(,1),在y=﹣2x+10中,令y=0,则x=5,∴直线AB于x轴的交点D(5,0),=×1=,∴S△OCD故答案为:(,1),.【点评】本题考查了一次函数的图象于反比例函数的图象的交点问题,求函数的解析式,勾股定理,三角形面积的计算,正确的理解题意是解题的关键.22.(13分)综合与实践:在综合实践课上,老师让同学们对一张长AB=4,宽BC=3的矩形纸片ABCD进行剪拼操作,如图(1),希望小组沿对角线AC剪开得到两张三角形纸片△ABC和△A′DC′.操作与发现:(1)将这两张三角形纸片按如图(2)摆放,连接BD,他们发现AC⊥BD,请证明这个结论;操作与探究:(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA′.在平移的过程中:①如图(3),当BA′与C′D平行时判断四边形A′BC′D的形状,说明理由并求出此时△A′C′D平移的距离;②当BD经过点C时,直接写出△A′C′D平移的距离.操作与实践:(3)请你参照以上操作过程,利用图(1)中的两张三角形纸片,拼摆出新的图形.在图(4)中画出图形,标明字母,说明构图方法,并直接写出所要探究的问题,不必解答.【分析】(1)根据AB=AD,BC=DC,可得点A在BD的垂直平分线上,点C在BD 的垂直平分线上,进而得到AC是线段BD的垂直平分线,即可得到结论;(2)①先判定四边形A′BC′D是平行四边形,再根据∠A'DC'=90°,即可得出四边形A′BC′D是矩形;过B作BH⊥AA'于H,则C'H=CH,根据等腰三角形的性质以及勾股定理,即可得到△A′C′D平移的距离;②当BD经过点C时,过D作DG⊥A'C'于G,根据∠A'=∠ACB=∠DCA',可得DC=DA'=3,再根据Rt△A'C'D中,GD=,运用勾股定理即可得出CG=,进而得到A'C=2CG=;(3)根据图形的平移变换,将(2)中的矩形判定问题转化为菱形的判定问题,以及菱形的面积计算问题即可,答案不唯一.【解答】解:(1)如图2,∵AB=AD,BC=DC,∴点A在BD的垂直平分线上,点C在BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴AC⊥BD;(2)①四边形A′BC′D是矩形,理由:如图3,∵BA′与C′D平行,∴∠D'C'A=∠BA'C',又∵∠DC'A'=∠A,∴∠BA'C'=∠A,∴AB=A'B,又∵AB=C'D,∴A'B=C'D,∴四边形A′BC′D是平行四边形,又∵∠A'DC'=90°,∴四边形A′BC′D是矩形,∴BC'=A'D=3,又∵BC=3,∴BC=BC',。

山西省2018年中考数学试题【PDF解析版】

山西省2018年中考数学试题【PDF解析版】

2
C. 2a a 2a
2 3
6
b2 b6 D. 2a 8a 3
3
【答案】D 【考点】整式运算 【 解 析 】 A. a

3 2

a 6 B. 2a 2 3a 2 5a 2 C. 2a 2 a3 2a5
4. 下 列 一 元 二 次 方 程 中 , 没 有 实 数 根 的 是 ( ) A. x 2 2 x 0 B.
9. 用 配 方 法 将 二 次 函 数 y x 8 x 9 化 为 y ax h k 的 形 式 为 ( )
2
2
A. y x 4 7
2
B.
y x 4 25
2
C.
y x 4 7
2
D.
y x 4 25
2
【答案】B 【考点】二次函数的顶点式 【 解 析 】 y x 8x 9 x 8x 16 16 9 x 4 25
4 9
B.
1 3
C.
2 9
D.
1 9
【答案】A 【考点】树状图或列表法求概率 【解析】
由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种, ∴ P( 两 次 都 摸 到 黄 球 ) =
4 . 9
8. 如 图 , 在 Rt △ ABC 中 , ∠ ACB=90 ° , ∠ A=60 °, AC=6 , 将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰 好 在 AB 边 上 , 则 点 B ’ 与 点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 C. 6 2 D. 6 3

2018年山西省中考数学试卷

2018年山西省中考数学试卷

2018年山西省中考数学试卷第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是( )A .02<-B .53-<C .23-<-D .14<-2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》3.下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a ⋅=D .326328b b a a ⎛⎫-=- ⎪⎝⎭4.下列一元二次方程中,没有..实数根的是( )A .220x x -=B .2410x x +-=C .22430x x -+=D .2352x x =-5.近年来快递业发展迅速,下表是2018年13月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68 302.34 319.79 725.86 416.01 338.87 13月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时B .63.13610⨯立方米/时C .63.63610⨯立方米/时D .536.3610⨯立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13 C .29 D .198.如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC ∆绕点C 按逆时针方向旋转得到'''A B C ∆,此时点'A 恰好在AB 边上,则点'B 与点B 之间的距离为( )A .12B .6C .62D .639.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( )A .2(4)7y x =-+B .2(4)25y x =--C .2(4)7y x =++D .2(4)25y x =+-10.如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .44π-B .48π-C .84π-D .88π-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(321)(321)+-= .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 度.13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm ,长与宽的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.如图,直线//MN PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ;③作射线AE 交PQ 于点F .若2AB =,60ABP ∠=︒,则线段AF 的长为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)210(22)4362---+⨯+.(2)222111442x x x x x x --⋅---+-.17.如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)ky k x =≠的图象相交于点(4,2)C --,(2,4)D .(1)求一次函数和反比例函数的表达式;(2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内 容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据A ∠的度数B ∠的度数 AB 的长度38︒ 28︒ 234米… …(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin 280.5︒≈,cos280.9︒≈,tan 280.5︒≈)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南—北京西”全程大约500千米,“复兴号”92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”92G 次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务: 在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX BY XY ==.(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD CB =,连接BD .第二步,在CB 上取一点'Y ,作'//Y Z CA ,交BD 于点'Z ,并在AB 上取一点'A ,使''''Z A Y Z =.第三步,过点A 作//''AZ A Z ,交BD 于点Z .第四步,过点Z 作//ZY AC ,交BC 于点Y ,再过点Y 作//YX ZA ,交AC 于点X .则有AX BY XY ==.下面是该结论的部分证明:证明:∵//''AZ A Z ,∴''BA Z BAZ ∠=∠,又∵''A BZ ABZ ∠=∠.∴''BA Z BAZ ∆∆.∴'''Z A BZ ZA BZ =.同理可得'''Y Z BZ YZ BZ =.∴''''Z A Y Z ZA YZ =.∵''''Z A Y Z =,∴ZA YZ =.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操作步骤....,在(1)的基础上完成AX BY XY ==的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形'''BA Z Y 放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是________.A .平移B .旋转C .轴对称D .位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE AB =,∴2AE AB =.∵2AD AB =,∴AD AE =.∵四边形ABCD 是矩形,∴//AD BC . ∴EM EBDM AB =.(依据1)∵BE AB =,∴1EMDM =.∴EM DM =.即AM 是ADE ∆的DE 边上的中线,又∵AD AE =,∴AM DE ⊥.(依据2)∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接..写出此时点Q 的坐标;若不存在,请说明理由;(3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.试卷答案一、选择题1-5: BBDCC 6-10: CADBA二、填空题11. 17 12. 360 13. 55 14. 23 15. 125三、解答题16.(1)解:原式84217=-++=.(2)解:原式22(1)(1)11(2)2x x x x x x --+=⋅----1122x x x +=---2xx =-.17. 解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴114224k b k b -+=-⎧⎨+=⎩,解得112k b=⎧⎨=⎩.∴一次函数的表达式为12y x =+. ∵反比例函数22k y x =的图象经过点(2,4)D ,∴242k =.∴28k =. ∴反比例函数的表达式为28y x =.(2)由10y >,得20x +>.∴2x >-.∴当2x >-时,10y >.(3)4x <-或02x <<.18.解:(1)(2)10100%40%1015⨯=+.答:男生所占的百分比为40%.(3)50021%105⨯=(人).答:估计其中参加“书法”项目活动的有105人.(4)15155151********==+++. 答:正好抽到参加“器乐”活动项目的女生的概率为516.19.解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC ∆中,90ADC ∠=︒,38A ∠=︒. ∵tan 38CDAD ︒=,∴5tan 380.84CD x AD x ===︒.在Rt BDC ∆中,90BDC ∠=︒,28B ∠=︒. ∵tan 28CDBD ︒=,∴2tan 280.5CDxBD x ===︒.∵234AD BD AB +==,∴522344x x +=.解得72x =.答:斜拉索顶端点C 到AB 的距离为72米.(2)答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.解法一:设乘坐“复兴号”92G 次列车从太原南到北京西需要x 小时, 由题意,得50050040151()646x x =+--. 解得83x =. 经检验,83x =是原方程的根.答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时.解法二:设“复兴号”92G 次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x=+. 解得52x =. 经检验,52x =是原方程的根.518263+=(小时).答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时.21.解:(1)四边形AXYZ 是菱形.证明:∵//ZY AC ,//YX ZA ,∴四边形AXYZ 是平行四边形.∵ZA YZ =,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴12∠=∠.∵//ZY AC ,∴13∠=∠.∴23∠=∠.∴YB YZ =.∵四边形AXYZ 是菱形,∴AX XY YZ ==.∴AX BY XY ==.(3)D (或位似).22.(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”). ②答:点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上,∴90CBE ABC GHC ∠=∠=∠=︒,∴1290∠+∠=︒.∵四边形CEFG 为正方形,∴CG CE =,90GCE ∠=︒,∴1390∠+∠=︒.∴23∠=∠.∴GHC CBE ∆≅∆.∴HC BE =,∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =,BE AB =,∴22BC BE HC ==,∴HC BH =.∴GH 垂直平分BC .∴点G 在BC 的垂直平分线上.(3)答:点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上).证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N .∴90BMN ENM ENF ∠=∠=∠=︒。

2018年山西中考数学试题和答案

2018年山西中考数学试题和答案

山西省2018年中考数学试题第Ⅰ卷选择题 (共24分>一、选择题 (本大题共l2个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑>Rc48atwcVk1. 的值是( >A. B. C. D. 62.点(一2.1>所在的象限是( >A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列运算正确的是< )A. B. C. D.4.2018年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为< )A.元 B.元 C.元 D.元5.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是< )Rc48atwcVkA.35° B.70° C.110° D.120°6.将一个矩形纸片依次按图(1>、图(2>的方式对折,然后沿图(3>中的虚线裁剪,最后将图(4>的纸再展开铺平,所得到的图案是< )Rc48atwcVk7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( >A.正六边形 B.正七边形 C.正八边形 D.正九边形8.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( lA.13π B.17π C.66π D.68π9.分式方程的解为( }A. B. C. D.10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%>销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( >Rc48atwcVkA. B.C. D.11.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为 ( > Rc48atwcVkA.cm B.4cm C.cm D.cm12.已知二次函数的图象如图所尔,对称轴为直线x=1,则下列结论正确的是< >A, B.方程的两根是C. D.当x>0时,y随x的增大而减小.第Ⅱ卷非选择题 (共96分>二、填空题(本大题共6个小题,每小题3分,共l8分.把答案写在题中横线上>13. 计算:_________14.如图,四边形ABCD是平行四边形,添加一个条件_____,可使它成为矩形.15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2018年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。

山西省太原市2018-2019学年中考数学一模考试试卷及参考答案

山西省太原市2018-2019学年中考数学一模考试试卷及参考答案

山西省太原市2018-2019学年中考数学一模考试试卷一、单选题1. 计算“-2019+2018”的结果是( )A . -1B . 1C . -4037D . 40372. 下列各项调查中,最适合用全面调查(普查)的是( )A . 了解国内外观众对电影《流浪地球》的观影感受B . 了解太原市九年级学生每日睡眠时长C . “长征-3B 火箭”发射前,检查其各零部件的合格情况D . 检测一批新出厂的手机的使用寿命3. 如图,含45°角的三角板的直角顶点A 在直线a 上,顶点C 在直线b 上.若a ∥b , ∠1=60°,则∠2的度数为( )A . 95°B . 105°C . 110°D . 115°4. 2018年我省着力提高能源供给体系质量,推动煤炭产业走“减、优、绿”的路子,全省煤炭先进产能占比达到57%,建成“两交一直”特高压输电通道,外送能力达到3830万千瓦.数据“3830万千瓦”用科学记数法表示为( )A . 3830´10千瓦B . 383´10千瓦C . 0.383´10千瓦D . 3.83´10千瓦5. 由木炭,铅笔,钢笔等,以线条来画出物象明暗的单色面,称作素描.如图是素描初学者常用的一种石膏几何体,该几何体的形状可以看成是用一个平面截圆柱体得到的,它的俯视图是( )A . B . C . D .6. 下列运算正确的是( )A . a ×a =aB . =±5C . 2D . (a +1)(a -2)=a -27. 如图,过⊙O 上一点A 作⊙O 的切线,交直径BC 的延长线与点D ,连接AB ,若∠B =25°,则∠D 的度数为( )A . 25°B . 40°C . 45°D . 50°8. 计算的结果为( )A . B . C . a -2 D . a +29. 如图,ΔABC 中,∠BAC =90°,AB =AC,延长CA 至点D ,使AD =AC ,点E 是BC 的中点,连接DE 交AB 于点F ,则AF :FB 的值为( )45872362A .B .C .D .10. 德国数学家高斯在大学二年级时得出了正十七边形是尺规作图法,并给出了可用尺规作图的正多边形的条件.下面是高斯正十七边形作法的一部分:“如图,已知AB是圆O的直径,分别以A,B为圆心、AB长为半径作弧,两弧交于点C,D两点…”.若AB长为2,则图中弧CAD的长为()A .B .C .D .二、填空题11. 如图是一个正五边形形状的飞镖游戏板,被分成大小相等的五份,分别标有数字1,2,3,4,5,向游戏板随机投掷一次飞镖(当飞镖投掷在分割线上时,则重投一次),击中的区域中所标数字恰好为奇数的概率是________.12. 如图,△ABC沿射线AC的方向平移,得到△CDE.若AE=6,则B,D两点的距离为________.13. 如图是一组有规律的图案,它们由半径相同的圆形组成,依此规律,第n个图案中有________个圆形(用含有n的代数式表示).14. 从2019年3月26日开始,由支付宝给信用卡还款将开始收取服务费.据规定,每月还款2000元及以内不收费,超过2 000元的部分将按照0.1%的比例来收取服务费.按此规定,小李下期通过支付宝给信用卡还款将支付5元的服务费.若小李此次还款总额为x元,则x满足的方程为________.15. 如图,在矩形ABCD中,点E,F分别在BC,CD边上,且CE=3,CF=4.若△AEF是等边三角形,则AB的长为__ ______.三、解答题16.(1)计算: ;(2)解不等式组:并将其解集表示在如图所示的数轴上.17. 如图,点E,F分别在平行四边形ABCD的边BA,DC的延长线上,连接EF,交对角线BD于点O,已知OE=OF.求证:四边形EBFD是平行四边形.18. 平面直角坐标系中,反比例函数y= 的图象与一次函数y=– x−2的图象交于A(–6,m),B(n, –3)两点,点C与点B关于原点对称,过点C作x轴的垂线交直线AB于点D.(1)求反比例函数y= 的表达式及点C的坐标;(2)求△ACD的面积.19. 学校组织首届“数学文化节”活动,旨在引导同学们感受数学魅力、提升数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档