2015永州国家公务员考试行测不定方程速解之道

合集下载

公务员考试数量关系快速解题技巧(含公式)——最新版

公务员考试数量关系快速解题技巧(含公式)——最新版

公务员考试数量关系快速解题技巧(含公式)第一节代入排除法1.使用范围看题型。

典型题型有多位数(提到具体位数(3、4位数)或出现位数的变化(个位与十位数发生变化))、不定方程(未知数比方程多)、年龄、余数看选项。

选项为一组数(2个数,问法为:分别/各)、可转化为一组数(比例可看成一组数)剩两项。

通过其他条件排除2项时,代入一项获取答案。

2.使用方法优先排除:通过尾数、奇偶、倍数等特性来排除。

直接代入:最值、好算。

(出现最值的先代入最大值、最小值计算;未出现最值时,先代入最好算的)PS:多位数问题优先考虑代入排除法;多次操作的、倒来倒去的优先考虑代入排除。

第二节倍数特性法(从问题入手)题型:出现分数、百分数、比例、倍数且所求与比例有关优先考虑倍数特征1.基础知识法(整除法)——考核较少若A=B*C,则A能被B整除,又能被C整除(考试时B、C假设当成整数)题型:①平均分配物品、平均数;②存在三量关系(总价、单价、数量,路程、速度、时间)常见判定方法:①常见数:口诀法(3、9看各位数字之和,2、5看末位数,4、25看末两位数)②因式分解法:把一个数分成几个互质的数相乘的形式(互质是指除1以外没有其他的公约数,如12=3*4)③拆分法(常用于7、11、13):例如验证395/405/409/416中哪个数能被13整除,先确定数字390,再计算+5/+15/+19/+26对比2.余数法(结合代入排除)题型:平均分实物,最后有剩余/缺少解题核心:多退少补(总量+、总量-)Eg :解析:总量-6=9*部门数,总量+10=11*部门数;有1个部门只能分1包代表着缺10包,代入选项可得知:正确选项为B3.比例型若A/B=m/n (m,n 互质),则的倍数是n m B A ±±的倍数n 是B 的倍数,m 是ANM N A M N A N A N A ++占所有数总和的,则占其他数的占所有数总和的,则占其他数的补充:111 重要提示:若1个总量包含2个比例,单看问题比例无法解决时,用两个比例计算总量第三节 方程法思维:找等量关系、设未知数、列方程、解方程1.普通方程主要在于设未知数: 避免出现分数,设小不设大出现比例避免出现分数,设比例出现高频多个主体,并于列式,设中间量未出现前面三种情况,求谁设谁2.不定方程主要在于怎么解方程(本质在于代入排除):①奇偶性26/2543a.b ,=+=+y x m by ax 如:先考虑奇偶性恰好为一奇一偶时,优当 ②倍数的倍数是,可知如:性奇一偶时,优先倍数特考虑倍数特性恰好为一,有公因子(公因素)时与或当36037m b a ,x y x m by ax =+=+③尾数 271203750b a ,=+=+y x m by ax 如:时,考虑尾数或尾数是或当 ④无以上三种特征时,直接代入选项3.不定方程组①3个未知数、2个方程,且未知数一定为整数(人数、具体事物的个数、本、页、张)方法:先消元(消解系数小的未知数,方便计算)转化为不定方程,再按不定方程求解。

行测答题技巧:不定方程固定解法

行测答题技巧:不定方程固定解法

⾏测答题技巧:不定⽅程固定解法 想要让考试的答题更加准确掌握答题技巧⾮常重要,下⾯由店铺⼩编为你准备了“⾏测答题技巧:不定⽅程固定解法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!⾏测答题技巧:不定⽅程固定解法 说起⽅程法⼤家都不陌⽣,从⼩到⼤它是我们解决数学问题的得⼒⼩助⼿,同时设未知数的思想也影响着我们为⼈处事。

但是你知道在公职类考试中我们还有不定⽅程么。

接下来⼩编就和⼤家⼀起来看看不定⽅程。

⾸先我们来了解⼀下什么叫做不定⽅程。

所谓不定⽅程,即未知数的个数多于独⽴⽅程个数。

常规的⽅法很难求解,因此我们需要重点关注未知数受到某些限制,这些限制主要是要求所求未知数是正整数、质数等,这些要求有的时候在题⺫中明确已知,有的时候隐含在⽅程中,有时候隐藏在题⺫中。

所以求解不定⽅程关键就是先找到等量关系列出⽅程,另外就是找到所求量的限制条件。

下⾯就结合⼏道题来详细解释不定⽅程组的求解吧。

例1、装某种产品的盒⼦有⼤、⼩两种,⼤盒每盒能装11个,⼩盒每盒能装8个,要把89个产品装⼊盒内,要求每个盒⼦都恰好装满,需要⼤、⼩盒⼦各多少个( )?A. 3,7B. 4,6C. 5,4D. 6,3 【答案】A。

解析:设⼤、⼩盒⼦的个数各为x,y。

则有,11x+8y=89。

有且仅有这样⼀个⽅程,⽽这⼀个⽅程就是不定⽅程,由不定⽅程的性质我们可以知道,其解得个数可以是⽆限多的,但是由于这⾥盒⼦的个数应该是整数,故其解应该是⽐较确定的值,但是依然⽆法直接求解,故此类不定⽅程我们采⽤带⼊排除的⽅式进⾏解题。

答案只有A满⾜。

故选择A。

例2.超市将99个苹果装进两种包装盒,⼤包装盒每个装12个苹果,⼩包装盒每个装5个苹果,共⽤了⼗多个盒⼦刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13 【答案】D。

解析:设⼤盒有x个,⼩盒有y个,则可得12x+5y=99。

因为12x是偶数,99是奇数,所以5y是奇数,则y必须是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。

2015河北公务员考试行测不定方程速解之道

2015河北公务员考试行测不定方程速解之道

2015河北公务员考试行测不定方程速解之道方程法是考生解决数学运算问题时最熟悉、最易于掌握的方法,尤其在题干中出现明显的等量关系时经常能用到,但应用此方法的难点在于如何快速解题,尤其是遇到如“2x+3y=13”这种未知数的数量大于方程式数量的不定方程时,更需要大家掌握不定方程的快速解法,以帮助考生快速排除错误选项。

河北华图教育专家在此将这个解法进行阐述。

(一)整除法当列出方程的数字之间能同时被某些数整除时,可以利用整除判定未知数特点。

例1:有两种饰品,一种是17元每个,一种是15元每个,小红各购买了若干个,共花费了115元,请问前者买了多少个?A.5B.6C.7D.8【河北华图解析】根据题干可设买17元、15元分别x个,y个,则可列式17x+15y=115,且x﹥0,y﹥0,观察可知15和115都可以被5整除,所以17x也能被5整除,但17不能被5整除,故只能是x被5整除,而选项中只有A符合。

(二)尾数法运用于当数字以0、5为结尾时,这时尾数情况易于判定,即可以求出未知数。

如例1中,17x+15y=115,且x﹥0,y﹥0.其中15y一定以0或5为结尾,所以我们可以分两种情况讨论:如果15y以5为结尾,则可判定17x以0为结尾,故x最小为10,而此时y为负数舍去。

如果15y以0为结尾,则可判定17x以5为结尾,故x最小为5,而此时y=2,符合题意。

(三)奇偶性前两种方法对数字的要求比较高,当数字不符合前两种情况时,可以应用奇偶性这种方法,它普遍适用于各种式子。

例2:现在有两种盒饭,分别是7元一盒,8元一盒,某位同学买了两种若干盒,共花费45元,请问8元的是多少?A.3B.4C.5D.6【河北华图解析】根据题意,可得7x+8y=45, x﹥0,y﹥0,因为8y为偶数,45为奇数,故7x为奇数,则可得x为奇数,可排除B、D选项。

可将剩下选项择其一代入,将A选项x=3带入,可得y=3,符合题意。

(四)质合性在奇偶数的基础上学习一种利用质合性解题的方法,当题干中出现明显“质合”字眼时往往会用到。

行测数量关系解题技巧:解不定方程

行测数量关系解题技巧:解不定方程

⾏测数量关系解题技巧:解不定⽅程 任何考试想要成功都离不开点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系解题技巧:解不定⽅程”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系解题技巧:解不定⽅程 题型介绍 1.不定⽅程定义:未知数的个数多于独⽴⽅程的个数(例:2x+3y=21,未知数个数2多于⽅程的个数1) 2.解不定⽅程:常见的有两个范围(正整数范围内即不定⽅程;任意范围内即解不定⽅程组);⽆论哪种情况其核⼼都为带⼊排除。

例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 若想求解其原则为带⼊选项选择符合等式即题⼲限制条件的答案,但在考试中若四个选项依次带⼊的话会浪费时间,所以有些解题技巧可以帮助快速排除选项;因此其解题核⼼为带⼊排除。

解题技巧 (⼀)正整数范围内1.整除:若某未知数系数与常数项存在公约数则可以⽤整除排除选项 例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】若想求x则需将等式中的y消除,其中常数项21与y前的系数3有公约数3则观察等式,⼀个能被3整除的数3y加上某数其和21也能被3整除,则某数2x也要能被3整除,因为2不能被3整除所以只能是x能被3整除,因此观察选项,选C。

2.奇偶性:未知数前系数为⼀奇⼀偶的情况可以⽤奇偶性排除选项 3.尾数法:某未知数前系数的位数为0或5的情况可以⽤尾数法排除选项 例:(奇偶性+尾数法)已知4x+5y=31;且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】观察等式,未知数前系数⼀奇⼀偶的情况,根据奇偶性4⼀定为偶数加上某数其和31为奇数则某数5y⼀定为奇数;y前系数为5则根据尾数法5y尾数为0或5,且5y为奇数的话则其尾数只能是5,则5y的尾数5加上某数的尾数的和是31的尾数1,那么某数4x尾数只能是6,观察选项,能使4x尾数是6的只有D项4,所以选D。

国考行测不定事件备考(精选3篇)

国考行测不定事件备考(精选3篇)

国考行测不定事件备考(精选3篇)国考行测不定大事备考(精选3篇)许多备考公务员考试的小伙伴中对行测数量关系始终摸不清头脑,只是对一些常见的解题方法还有印象,比如我们从学校就开头接触的方程法。

下面我给大家共享国考行测不定大事备考,盼望能够关心大家!国考行测不定大事备考(精选篇1)一、含义不定方程:是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。

二、常用方法及适用条件1、整除法:某一个未知数的系数与常数项有公约数;2、奇偶性:未知数的系数一奇一偶;3、尾数法:某一未知数的系数为5的倍数;4、特值法:求解不定方程组,且所求为一个式子。

三、例题精讲例1.某批发市场有大、小两种规格的盒装鸡蛋,每个大盒里装有23个鸡蛋,每个小盒里装有16个鸡蛋。

餐厅选购员小王去该市场买了500个鸡蛋,则大盒装一共有多少盒?A.6B.8C.10D.12【答案】D。

解析:设大盒数量为x,小盒数量为y,则23x+16y=500,由于500能够被4整除,16y也能够被4整除,因此则23x也是能够被4整除,即x是能够被4整除,排解A、C,代入B、D验证即可,,x=12、y=14符合题意,故选择D。

例2. 办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。

每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。

要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为( )个。

A.1、6B.2、4C.4、1D.3、2【答案】D。

解析:设需要红色文件袋x个、蓝色y个,则有7x+4y=29,4y为偶数,29为奇数,则7x为奇数,x为奇数。

排解B、C,代入A项,x=1时,y取不到整数,排解,直接选D,验证D项,当x=3时,y=2,满意题意。

例3. 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装金应个装5个苹果,共用了十多个盒子同好装完。

问题:两种包装盒相差多少个?A.3B.4C.7D.13【答案】D。

2015国家公务员考试行测指导:不定方程解法

2015国家公务员考试行测指导:不定方程解法

在行政能力测试数量关系中,以不定方程的形式出现的题目越来越频繁,如果掌握了不定方程的方法,这类题目相对来说是比较容易的。

一、定义不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。

二、形式二元不定方程:ax+by=c;多元不定方程组。

三、方法二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。

多元不定方程组:整体消去法、特值代入法。

【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。

则甲、乙、丙三型产量之比为:()?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。

,观察选项只有D项满足。

这里用到了数字特性的思想。

行测、申论复习与考试过程中,阅读量都非常的大,如果不会提高效率,一切白搭。

首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。

《行测》的各种试题都是考察学生的思维,大家平时还要多刻意的训练自己的思维。

学会快速阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。

本人当年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。

我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。

找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘最左下角的“ctrl”按键不要放开,然后鼠标点击此行文字就可以下载了。

攻克2015公务员考试行测老大难之不定方程

攻克2015公务员考试行测老大难之不定方程

攻克2015公务员考试行测老大难之不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制的方程或方程组。

基于这样一个特点,如何在方程个数不够时,快速定位出最终答案,就成为了解题的关键环节。

其实数学运算当中有一个潜在的条件,这就是未知数一定是整数,且绝大部分是正整数。

应用好这样的一个隐藏条件,结合所给的选项特征,加上合适的解不定方程技巧,相信广大考生在行测考试中遇到不定方程问题都能够引刃而解。

下面专家针对不定方程的解题方法以及它们对应的应用环境进行详解。

例1:已知有1分、2分和5分的硬币共100枚,如果其中2分硬币的价值比1分硬币的价值多13分,那么三种硬币分别多少枚?()A.51、32、17 B.60、20、20 C.45、40、15 D.54、28、18中公解析:设3种的硬币个数分别为x,y,z。

根据题意列出方程:2y-x=13。

通过观察发现本题的选项比较全面,给出了每个未知数的具体值。

因此考虑使用代入排除,这道题,我们直接可以排除B、D,因为B、D选项x、y都为偶数,两个偶数相减不可能为13奇数。

再带入A、D。

发现D不符合题意,因此本题答案选择A选项。

例2:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?()A.3B.4C.7D.13中公解析:设大盒x个,小盒y个。

列出方程,12x+5y=99。

一个方程,两个未知数。

属于不定方程问题,观察y的系数为5,那么5y的尾数好判断,一定为0或5。

由于等号右边的99尾数为9,因此12x尾数对应的为9或4。

但是12x尾数不可能为9,所以能确定12x尾数为4。

x取值只能为2或者7。

当x=2时,y=15,共用了17个盒子,两者差了13个,符合题意;当x=7时,y=3共用了10个盒子,不满足共用十多个盒子,排除。

因此,本题答案选择D选项。

例3:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。

在这里解释一下独立方程。

看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。

二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。

设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。

7x+4y=43。

性质:奇偶奇7x为奇数,x也为奇数。

x可能的取值有1、3、5。

当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。

任何正整数与5的乘积尾数只有两种可能0或5。

【例题】某单位分发报纸,共有59份。

甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。

设甲部门的人数为x人,乙部门的人数为y人,得到方程为:5x+4y=59,性质:奇偶奇5x为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。

但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。

3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。

【例题】某单位分发办公笔用具,甲部门每人分的4个办公用具,乙部门每人分的3个办公用具,正好将32个办公用具分完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015永州国家公务员考试行测不定方程速解之道方程法是考生解决数学运算问题时最熟悉、最易于掌握的方法,尤其在题干中出现明显的等量关系时经常能用到,但应用此方法的难点在于如何快速解题,尤其是遇到如“2x+3y=13”这种未知数的数量大于方程式数量的不定方程时,更需要大家掌握不定方程的快速解法,以帮助考生快速排除错误选项。

中公教育专家在此将这个解法进行阐述。

(一)整除法
当列出方程的数字之间能同时被某些数整除时,可以利用整除判定未知数特点。

例1:有两种饰品,一种是17元每个,一种是15元每个,小红各购买了若干个,共花费了115元,请问前者买了多少个?
A.5
B.6
C.7
D.8
【中公解析】根据题干可设买17元、15元分别x个,y个,则可列式17x+15y=115,
且x﹥0,y﹥0,观察可知15和115都可以被5整除,所以17x也能被5整除,但17不能被5整除,故只能是x被5整除,而选项中只有A符合。

(二)尾数法
运用于当数字以0、5为结尾时,这时尾数情况易于判定,即可以求出未知数。

如例1中,17x+15y=115,且x﹥0,y﹥0.其中15y一定以0或5为结尾,所以我们可以分两种情况讨论:
如果15y以5为结尾,则可判定17x以0为结尾,故x最小为10,而此时y为负数舍去。

如果15y以0为结尾,则可判定17x以5为结尾,故x最小为5,而此时y=2,符合题意。

(三)奇偶性
前两种方法对数字的要求比较高,当数字不符合前两种情况时,可以应用奇偶性这种方法,它普遍适用于各种式子。

例2:现在有两种盒饭,分别是7元一盒,8元一盒,某位同学买了两种若干盒,共花费45元,请问8元的是多少?
A.3
B.4
C.5
D.6
【中公解析】根据题意,可得7x+8y=45, x﹥0,y﹥0,因为8y为偶数,45为奇数,故
7x为奇数,则可得x为奇数,可排除B、D选项。

可将剩下选项择其一代入,将A选项x=3
带入,可得y=3,符合题意。

(四)质合性
在奇偶数的基础上学习一种利用质合性解题的方法,当题干中出现明显“质合”字眼时往往会用到。

如下题:
例3:5x+6y=76,其中x,y都为质数,求x+y为多少?
【中公解析】先利用奇偶数分析可知6y为偶数,故5x为偶数,而5为奇数,故x为偶数。

又因为x为质数,而2是质数中唯一的偶数,所以x=2,带回方程式可知y=11,且11也为质数,符合题意,求得x+y=13。

中公教育专家提醒考生,在利用方程法解题时,要根据数字的不同特点利用不同的解题方法,这样才能做到快速、准确。

相关文档
最新文档