时针分针夹角问题

合集下载

关于时钟角度的计算

关于时钟角度的计算
例2:如图,9:30时,分针与时针的夹角是____1_0_5__°.
分析:9点30时,时针在格点9和10的中间位置,即时针 从格点9开始转动30分钟,则转动了30×0.5°=15°,分针 指向格点6.
所以此时分针与时针的夹角为 ∠AOB=∠AOC+∠BOC=15°+90°=105°
巩固练习: 1.早上10:30时,分针与时针的夹角是_1_3_5___°;
小时转 30° ,一小时是60分
钟,使用时针一分钟转动 30°÷60=0.5°。分针1小时转 了360°,也就是1分钟转动 360°÷60=6°。因此,我们在 钟面上得到三个结论: (1)时针一小时转动30°(1 大格); (2)时针1分钟转动0.5°; (3)分钟1分钟转动6°(1小 格).
基于这三个结论,我们给我们的时间是多少,我们都可以计算出夹角的度数。
则4×30°=120°
巩固练习: 1.早上10:00时,分针与时针的夹角是__6_0___°; 2.下午5:00时,分针与时针的夹角是__1_5_0___°;
3.19:00时,分针与时针的夹角是_1_5_0___°; 4.下午6点,分针与时针的夹角是_1_8_0__°.
知识点2:整点30分时分针与时针的夹角
时钟夹角专题
分针与时针的夹角问题
虽说时钟上时针和分针的夹角问题从小学就开始接触,但是很多学生到 七年级学习时,还是比较困惑,不知道如何下手,每次解答基本都会出现错 误。那么,怎么解决此类时钟上的角度问题呢?本节课我们就来探究时钟夹 角问题.
可以发现,在钟面上,12小时
将整个圆周平均分成了 12
份,整个圆周是360°,那么每 小时之间的夹角应该等于 360°÷12=30°,那么时针一
2.下午5:30时,分针与时针的夹角是__1_5____°;

时针和分针的夹角问题新解

时针和分针的夹角问题新解

时针和分针的夹角问题新解在初中数学学习中,钟表问题经常出现,计算时针与分针夹角度数的问题一直困扰着学生. 虽然计算方法很多,但如何计算更便捷,在实际学习过程中似乎缺少总结. 本文结合自己教学过程中的体会,谈谈怎样利用初一上学期的知识解决钟表上求时针和分针的夹角问题.普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角. 钟表上的每一个大格(时针的一小时或分针的5分钟)对应的角度是30°,因而时针每走过1分钟对应的角度为0.5°,分针每走过1分钟对应的角度应为6°.假设时间是x时y分钟,以12点为起始点,时针转过的角度为:0.5(60x + y),分针转过的角度为6y. 如果分针在时针前面,用分针走过的角度,减去时针走过的角度,即可求出时针与分针夹角的度数;如果时针在分针前,用时针走过的角度,减去分针走过的角度,即可求出时针与分针夹角的度数. 结合初一上学期所学的绝对值的知识,得到求时针与分针的夹角的计算公式为|0.5(60x + y)- 6y|,利用这一公式便可以轻松地解决时针和分针的夹角问题. 下面举例予以说明.例1 钟表上时间为7:55时,计算时针与分针夹角的度数.解时针与分针夹角的度数为:|0.5(7 ×60 + 55)-6 ×55| = |237.5 - 330| = 92.5°练习:钟表上时间为9:25时,计算时针与分针夹角的度数.答案:132.5°例2 钟表上4点到5点之间,什么时刻时针与分针成直角?分析抓住公式,利用一元一次方程解决时针与分针的角度问题.解设4点y分时针与分针成直角,则|0.5(4 ×60 + y)| - 6 ×y| = 90.|120 - 5.5y| = 90,120 - 5.5y = 90或120 - 5.5y = -90,答:小红买东西大约用了44分钟.练习:小方和几名同学上午8点多钟去郊游,临出门时他一看钟,时针与分针恰好是重合的. 下午两点多钟他回到家里,一进门看到了钟的时针与分针方向相反,正巧成一条直线. 问:小方郊游是什么时候去的?什么时候回家的?共用了多少小时?(精确到分)答案:小方郊游是上午8点44分去的,下午2点44分回家的,共用了6小时.。

时针与分针夹角的度数及例题

时针与分针夹角的度数及例题

✿如何计算时针与分针夹角的度数一、知识预备(1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角;(2)钟表上的每一个大格对应的角度是:︒=︒3012360;(3)时针每走过1分钟对应的角度应为:︒=⨯︒5.06012360;(4)分针每走过1分钟对应的角度应为:︒=︒660360。

二、计算举例例1. 如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。

由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。

分针走过的角度为:55×6°=330°时针走过的角度为:︒=︒⨯+︒⨯5.2375.055307则时针与分针夹角的度数为:︒=︒-︒5.925.237330例2. 如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。

时针走过的角度为:︒=︒⨯+︒⨯5.2175.015307分针走过的角度为:︒=︒⨯90615则时针与分针夹角的度数为:︒=︒-︒5.127905.217三、总结规律从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。

用字母和公式表示:当时间为m 点n 分时,其时针与分针夹角的度数为:(1)分针在时针前面:)5.0n 30m (6n ︒⨯+︒⨯-︒⨯ (2)分针在时针后面:︒⨯-︒⨯+︒⨯6n )5.0n 30m (依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。

时钟上角度大小的计算问题

时钟上角度大小的计算问题

时钟上角度大小的计算问题时钟钟面上的时针和分针之间的夹角问题,历来是许多同学求解的困惑问题之一,事实上,只要同学们能弄清时针、分针之间的关系:时针1小时转1大格1小时30°1分钟0.5°分针1小时转12大格1小时360°1分钟转6°抓住起始和终止两个时刻算出分针走了多少分钟,由上述表格算出时针和分针各转了多少度,再在钟面上比较,求出结果.现举例说明.一、整点时刻两针的夹角例1 求下午4时,时针与分针之间的夹角.分析:下午4时,时针指在4上,分针指在12上,于是可求出它们之间的夹角.解:因为下午4时,时针指在4上,分针指在12上,所以4×30°=120°.评注:因为整点时,分针始终指向12,所以可把分针看作角的始边,时针看作角的终边,时针旋转一周360º需要12个小时,所以时针每小时旋转的角度为360º÷12=30º.由于我们现在研究的角都是小于平角的角,所以在1到6小时,两针的夹角为30º×n(n=1,2,…,6);在7到12小时,两针的夹角为360º-30º×n(n=7,8,…,12).显然,任意整点时刻时针与分针的夹角我们都可以通过上面的两个公式求出来,值得注意的是,钟面上两针的夹角有可能会相等,如3点和9点时两针的夹角都是90º,但在不同时刻.二、任意时刻两针的夹角例2 钟表上2时15分时,时针与分针所形成的锐角的度数是多少?分析要求解此问题,只要弄清时针每小时转过多少度的角,弄清该时针该分针的位置,即经过15分钟转过的角度即可.解因为36012×214=30°×49=67.5°,36060×15=90°,所以90°-67.5°=22.5°.评注:通过对本题的求解,同学们可以记住每分钟分针比时针多转了5.5°,必要时可以利用方程求解此类问题,有时会显得更加简捷.三、时针与分针分别转过的角度例3 若时针由2点30分走到2点55分,问时针、分针各转过多大角度?分析: 弄清时针、分针每分钟各转过多少度即可求解.解: 因为时针由2点30分走到2点55分,历经25分钟, 所以时针转过的角度为36060×(55-30)=6°×25=150°, 分针转过的角度为3606012×(55-30)=150°×112=12.5°. 评注: 解答此类题目,抓住时针每分转0.5°,分针每分转6°是求解的关键.教你如何用WORD 文档 (2012-06-27 192246)转载▼标签: 杂谈1. 问:WORD 里边怎样设置每页不同的页眉?如何使不同的章节显示的页眉不同?答:分节,每节可以设置不同的页眉。

时针分针夹角问题解答

时针分针夹角问题解答

有关时针分针夹角的计算钟表上的时针、分针你追我赶,始终围绕中心按各自恒定的速度旋转,两针所成的夹角也随着时间的变化而变化。

如何来计算两针的夹角呢?通常我们以两针各自正对钟表面上“12”时为起始位置,以所计算角度时刻时针、分针暂停的位置为终止位置,两针各自旋转的角度之差为两针的夹角。

由于我们常说的角都是小于180度的,当两针夹角大于180度时,应用周角360度减去两针所所旋转的夹角差为两针的夹角。

时针旋转一圈是12小时,从起始位置旋转到终止位置旋转了360度,1小时旋转了30度,1分钟旋转了0。

5度;分针旋转一圈是60分钟,从起始位置旋转到终止位置是360度,1分钟旋转了6度。

一、整点两针夹角的计算例1 2点整时针分的夹角是多少度?分析:如图1,时针从0点旋转到2点,旋转了2×30°=60°;分针没有旋转,从0分到0分,转了0°。

所以两针的夹角为60°-0°=60°。

解:2×30°-0×6°=60°练习1:6点整时,时针分针的夹角是多少度?8点整呢?(提示:当所计算的夹角大于180度时,应用周角360度减去两针所所旋转的夹角差为两针的夹角。

)二、非整点两针夹角的计算例2 计算3点40分时两针的夹角。

分析:如图2所示,3点40分时,时针以正对0点为始边,以2以到3点40分时为终边,旋转角度为:3×30°+40×0.5°=110°;分针以正对0分为始边,以旋转到40分时为终边,旋转角度为:40×6°=240°。

分针旋转角度大于时针旋转角度,所以两针夹角为240°-110°=130度。

解:如图2所示,时针旋转角度为:3×30°+40×0.5°=110°分针旋转角度为:40×6°=240°两针夹角为240°-110°=130°练习2:计算10点过5分时两针的夹角。

七年级上册数学钟面问题

七年级上册数学钟面问题

七年级上册数学钟面问题一、时针与分针的夹角问题。

1. 3点整时,时针与分针的夹角是多少度?- 解析:钟面一圈为360°,钟面被分成12个大格,所以每一个大格的角度为360÷12 = 30^∘。

3点整时,时针指向3,分针指向12,中间有3个大格,所以夹角为3×30 = 90^∘。

2. 4点30分时,时针与分针的夹角是多少度?- 解析:分针走30分钟,转了半圈,即180^∘。

时针每小时走一个大格,即30^∘,那么半小时时针走了30÷2=15^∘。

4点时,时针与分针夹角为4×30 = 120^∘,4点30分时,夹角为180 - (120 + 15)=45^∘。

3. 9点15分时,时针与分针的夹角是多少度?- 解析:分针15分钟转了15×6 = 90^∘(因为分针每分钟转6^∘)。

时针每小时转30^∘,15分钟是(15)/(60)=(1)/(4)小时,时针9点15分转了9×30+(1)/(4)×30 = 270 + 7.5=277.5^∘。

所以夹角为277.5 - 90=187.5^∘。

4. 5点20分时,时针与分针的夹角是多少度?- 解析:分针20分钟转了20×6 = 120^∘。

时针每小时转30^∘,20分钟是(1)/(3)小时,时针5点20分转了5×30+(1)/(3)×30=150 + 10 = 160^∘。

所以夹角为160 - 120 = 40^∘。

5. 2点40分时,时针与分针的夹角是多少度?- 解析:分针40分钟转了40×6 = 240^∘。

时针每小时转30^∘,40分钟是(2)/(3)小时,时针2点40分转了2×30+(2)/(3)×30 = 60+20 = 80^∘。

所以夹角为240 - 80 = 160^∘。

二、时针与分针重合问题。

6. 时针与分针在12点整重合,下一次重合是什么时间?- 解析:分针每分钟转6^∘,时针每分钟转0.5^∘。

钟表问题时针与分针夹角的公式技巧

钟表问题时针与分针夹角的公式技巧

钟表问题时针与分针夹角的公式技巧1.时针和分针夹角的公式是:夹角= |(时针角度-分针角度)|(The formula for the angle between the hour and minute hands is: Angle = |(hour hand angle - minute hand angle)|)2.时针和分针的夹角可以用几何公式来计算。

(The angle between the hour and minute hands can be calculated using a geometric formula.)3.在钟表上,时针每分钟走30°,分针每分钟走6°。

(On a clock, the hour hand moves 30° per minute, and the minute hand moves 6° per minute.)4.如果要计算12点钟时,时针和分针的夹角,可用30° x 60 - 0° = 180°。

(To calculate the angle between the hour and minute hands at 12 o'clock, use 30° x 60 - 0° = 180°.)5.当时间是3点钟时,时针和分针夹角的计算公式是:|90° - 90°| = 0°。

(When the time is 3 o'clock, the calculation formula for the angle between the hour and minute hands is: |90° - 90°| = 0°.)6.在6点钟时,时针和分针的夹角为:|180° - 0°| = 180°。

关于时针问题

关于时针问题

1、1:20分时针与分针的夹角是多少度?2、2:15分时针与分针的夹角是多少度?解:假设从6:00开始算起,时针从6开始,分针从12开始,平均时针0.5度每分钟,分针6度每分钟,所以时针和分针的夹角是180-20×6+20×0.5=70度(180度是因为6:00的时候时针和分针夹角180度)同理:1点35度时针和分针的夹角是35×6-35×0.5-30=1 62.5度(30度是因为1:00的时候时针和分针夹角30度)中午2时15分,钟表上时针与分针的夹角是多少度?考点:钟面角.分析:钟表上共有12个大格,每一个大格的度数是360°÷12=30°,再根据2时15分是时针与分钟夹角为34个大格,计算出角度即可.解答:解:钟表上每一个大格都是30°,2时15分是时针与分钟夹角为34个大格,则夹角为30°×34=22.5°.点评:此题主要考查了钟面角,计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.3、5点20分时,时针与分针的夹角为40°.考点:钟面角.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5点20分时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上5时20分钟时,时针与分针的夹角可以看成时针转过5时0.5°×20=10°,分针在数字4上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴5时20分钟时分针与时针的夹角1×30°+10°=40°.故在5点20分,时针和分针的夹角为40°.故答案为:40°.点评:本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.4、9时15分时针和分针的夹角是多少度?考点:角的度量.专题:文字叙述题.分析:由题意知,时针每小时走30°,一刻钟走7.5度;分针每小时走360°,一刻钟走90°;当9点整时,时针、分针的夹角是90°,当9点15分时,时针和分针的夹角,可用分针和时针的速度差加上90即可求得.解答:解:当时间为9点整时,时针、分针的夹角是90°;当9点15分时,时针走了7.5°,分针正好走了90°,此时时针和分针的夹角是:90°-7.5°+90°=172.5°;答:此时时针与分针的夹角是172.5°.点评:解答此题要注意时针、分针都在移动,只是速度不一样,可以理解为行程问题来解答.5、3点36分时,时针与分针形成的夹角是多少度?考点:时间与钟面.分析:从12时起,时针、分针转过的角度,求出它们的差.解答:解:时针转过的角度:3×(360°÷12)+36÷60×(360°÷12),=90°+18°,=108°;分针转过的角度:36÷60×360°=216°,时针、分针走过的角度差:216°-108°=108°;答:时针、分针的夹角是108°.点评:找出时分针转过的角度,求出它们的差.6、钟表上7点20分,时针与分针的夹角为()A.120°B.110°C.100°D.90°考点:钟面角.专题:计算题.分析:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上7点20分,时针与分针的夹角相隔3个数字.解答:解:钟表上7点20分,时针指向7,分针指向4,每相邻两个数字之间的夹角为30°,则3×30°+0.5°×20=100°.故选C.点评:本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动(112)度,逆过来同理.7.当时钟在12点20分时,分针与时针的夹角是110°.考点:角的概念及其分类;时、分、秒及其关系、单位换算与计算.专题:平面图形的认识与计算.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110°.点评:本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.8.下午14点20分,时钟的时针与分针夹角的度数是()A.45°B.50°C.60°D.70°考点:钟面角.专题:计算题.分析:在下午14点20分,分针从数字12开始转了20×6°=120°,时针从数字2开始转了20×0.5°=10°,而两针开始转时相差2×30°,则这时时针与分针所成的角为120°-2×30°-10°=50°.解答:解:下午14点20分,分针从数字12开始转了20×6°=120°,时针从数字2开始转了20×0.5°=10°,所以这时时针与分针所成的角的度数为120°-2×30°-10°=50°.故选B.点评:本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.9. 2点40分,时针和分针的夹角是160°.考点:钟面角.专题:推理填空题.分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时钟指示2时40分时,分针指到8,时针指到2与3之间,时针从2到这个位置经过了40分钟,时针每分钟转0.5°,因而转过20°,∴时针和分针所成的钝角是180°-20°=160°.故答案为:160°.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.10. 4时15分时针与分针的夹角.考点:钟面角.专题:计算题.分析:由于分针每分钟转6°,时针每分钟转0.5°,则4时15分时针转了15×6°,分针转了15×0.5°,而开始时它们相距4×30°,所以4时15分时针与分针的夹角=4×30°+15×0.5°-15×6°,然后进行角度计算.解答:解:4时15分时针与分针的夹角=4×30°+15×0.5°-15×6°=37.5゜.点评:本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.也考查了度分秒的换算11.上午11:20时针和分针所成的夹角是140°.考点:钟面角.专题:计算题.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:上午11:20时,时针指向11和12中间,分针指向4,钟表12个数字,每相邻两个数字之间的夹角为30°,23个格是20°,因此上午11:20时,分针与时针的夹角正好是30°×4+20°=140°.故答案为:140°.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关时针分针夹角的计算
钟表上的时针、分针你追我赶,始终围绕中心按各自恒定的速度旋转,两针所成的夹角也随着时间的变化而变化。

如何来计算两针的夹角呢?通常我们以两针各自正对钟表面上“12”时为起始位置,以所计算角度时刻时针、分针暂停的位置为终止位置,两针各自旋转的角度之差为两针的夹角。

由于我们常说的角都是小于180度的,当两针夹角大于180度时,应用周角360度减去两针所所旋转的夹角差为两针的夹角。

时针旋转一圈是12时从起始位置旋转到终止位置旋转了360度,时针1小时旋转30度,1分钟旋转0.5度;分针旋转一圈是60分钟,从起始位置旋转到终止位置是360度,所以分针1分钟旋转6度。

一、整点两针夹角的计算:
例1 、2点整时针分的夹角是多少度?
分析:时针从0点旋转到2点,旋转了2×30°=60°;分针没有旋转,从0分到0分,转了0°。

所以两针的夹角为60°-0°=60°。

解:2×30°-0×6°=60°
练习1:6点整时,时针分针的夹角是多少度?8点整呢?
(提示:当所计算的夹角大于180度时,应用周角360度减去两针所所旋转的夹角差为两针的夹角。


二、非整点两针夹角的计算:
例2 、计算3点40分时两针的夹角。

分析:3点40分时,时针以正对0点为始边,以2以到3点40分时为终边,旋转角度为:3×30°+40×0.5°=110°;分针以正对0分为始边,以旋转到40分时为终边,旋转角度为:40×6°=240°。

分针旋转角度大于时针旋转角度,所以两针夹角为240°-110°=130度。

练习2:计算10点过5分时两针的夹角。

归纳总结:
时间为m点n分时,时针分针的夹角计算公式是:
先算分针走过的角度:6°×n
再算时针走过的角度:30°×m+0.5°×n,然后相减。

当两针夹角大于180度时,应用周角360度减去两针所所旋转的夹角差为两针的夹角。

三、已知两针的夹角,求时间:
例3 、4点过多少时,时针与分针互相垂直?
分析:存在两种情况:(1)当时针旋转角度大于分针旋转角度时,时针分针互相垂直;(2)当分针旋转角度大于时针旋转角度时,时针分针互相垂直。

解:(1)当时针旋转角度大于分针旋转角度时,如图3,设4点过x分钟时两针互相垂直。

由题得:(4×30+0.5x)-6x=90 120+0.5x-6x=90 2 5.5x=30 x=60/11
(2) 当分针旋转角度大于时针旋转角度时,如图4,设4点过y分钟时两针互相垂直。

由题得: 6y-(4×30+0.5y)=90 6y-120-0.5y=90 5.5y=210 y=420/11 答:4点过5 分或4点38 分时,时针与分针互相垂直。

练习3:11点过多少分时,时针与分针的夹角为60度?
(提示:也存在两种情况,一种是时针比分针旋转角度大60度,另一种是时针比分针旋转角度大360°-60°=300°)
四、时针与分针重合时的时间计算
时针与分针重合时,时针与分针旋转角度相等,因此,可列一元一次方程解决问题。

例4 5点过多少分钟时,时针与分针重合?
解:设5点x分钟时,两针刚好重合。

由题得: 5×30-0。

5x=6x 5.5x=150 x=27 答:5点过27 分时,时针与分针重合。

相关文档
最新文档