数学分析(3)期末试题B答案
《数学分析III》期末考试卷

红河学院XXXX-XXXX 学年秋季学期期末考试卷1考试科目: 数学分析III 考试日期:一、填空题(每小题3分,共24分)1、重极限22(,)limx y →=___________________2、设(,,)x yzu x y z e +=,则全微分du =_______________________3、设(sin ,)xz f x y y e =+,则zx∂=∂___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则22()Lx y ds +=⎰________.5、曲面222239x y z ++=和2223z x y =+所截出的曲线在点(1,1,2)-处的法平面方程是___________________________. 6、已知12⎛⎫Γ=⎪⎝⎭,则32⎛⎫Γ-= ⎪⎝⎭_____________. 7、改变累次积分的顺序,2120(,)x dxf x y dy =⎰⎰______________________.8、第二型曲面积分Sxdydz ydzdx zdxdy ++=⎰⎰ ______________,其中S 为球面2221x yz ++=,取外侧.二、单项选择题(每小题2分,共16分)1、下列平面点集,不是区域的是( )(A )22{(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( )(A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在00(,)x y 处重极限必定不存在. (B )函数(,)f x y 在点00(,)x y 处的两个累次极限都存在且相等,则该函数在00(,)x y 处重极限必定存在.(C )函数(,)f x y 在点00(,)x y 处的偏导数都存在,则该函数在00(,)x y 处可微. (D )函数(,)f x y 在点00(,)x y 处可微,则该函数在00(,)x y 处必定连续. 3、方程3230xyz x y z ++-=在原点附近能确定连续可微的隐函数形式是( )(A) (,)x x y z =(B)(,)y y x z =(C) (,)z z x y =(D) 以上选项都不对.4、设arctan 2z uv t =+,其中2tu e =,ln v t =,则1t dzdt=等于( )(A )225e + (B )225e - (C )225e (D )252e5、设平面曲线L :()y f x =在[,]a b 上具有一阶连续偏导数,且点A 与B 的坐标分别为(,())a f a 与(,())b f b ,又设(,)P x y 和(,)Q x y 为L 上的连续函数,则沿L 从B 到A 的第二型曲线积分(,)(,)LP x y dx Q x y dy +⎰等于 ( )(A )[](,())(,())()baP x f x Q x f x f x dx '+⎰(B )[](,())(,())()abP x f x Q x f x f x dx '+⎰(C )[](,())(,())()baP x f x Q x f x f x dx '+⎰(D )[](,())()(,())abP x f x f x Q x f x dx '+⎰6、变换T :x u uv =-,y uv =所对应的函数行列式(,)J u v 为( )(A)2u (B)2v(C) u (D) v 7、对于任意光滑封闭曲线L 中,以下第二型曲线积分中为零的是( ) (A )(sin )y Lx y dx xe dy -+⎰(B )2()2Lx y dx xydy --⎰(C )sin()cos()Lxy dx x y dy ++⎰(D )22L xdy ydxx y -+⎰8、下列积分区域D 中,既是x 型又是y 型的是( )(A)D 是由直线0x =,y x =和1y x =-所围成的闭区域. (B)D 是由直线y x =和曲线y =.(C)D 是由直线1x =,2x =和4y x =-所围成的闭区域. (D)D 是由直线y x =,0y =和曲线y =.三、计算题(每小题8分,共48分)1、讨论函数2222220(,)00xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处的连续性,计算(0,0)x f 和(0,0)y f .2、设,y z f x y x ⎛⎫=+ ⎪⎝⎭,求2z x y ∂∂∂3、设方程组22x u yu y v xu⎧-=⎨-=⎩确定了隐函数组(,)(,)u u x y v v x y =⎧⎨=⎩,求v x ∂∂和vy ∂∂4、利用含参量积分计算1ln x x dx xβα-⎰,其中0αβ<<. 5、计算22Lx ydx xy dy -⎰,其中L 是以R 为半径,圆心在原点的右半圆周从最上面一点A 到最下面一点B .6、利用极坐标变换计算22Dy dxdy x⎰⎰,其中D 是由圆222x y x += (0)y ≥与x 轴所围成的平面区域.四、应用题(每小题6分,共12分)1、求由球面2224x y z ++=与抛物面223x y z +=所围成的区域Ω的体积.2、某工厂打算建造一个容积为25003m 长方体仓库,其中仓库顶的造价为200元/2m ,仓库底面造价为300元/2m ,仓库四周造价为100元/2m ,问如何设计可以使仓库的建造成本最小.。
数学分析(A3)期末考试试题解答与评分标准

phone:18856017324
2
第二题,10 分
试利用幂级数求级数 答案: 考虑幂级数
−x3 1+x3 +∞ ∑ (−1)n 的和。 3n + 1 ห้องสมุดไป่ตู้=1
=
+∞ ∑ n=1
(−1)n x3n ,收敛半径为 1,在 [0, x] 区间上积分,利用有理函数的积
5
+∞ ∑
第五题,10 分
将 f (x) = 1 − 2x2 ,x ∈ [−π, π ] 展开成以 2π 为周期的 F ourier 级数,并利用其结果求级数 +∞ (−1)n−1 ∑ 1 , 的和。 n2 n4 n=1 n=1 答案:
(−1) 带入公式计算, 可得: a0 = 2 − 4π 3 , bn = 0, an = 8 n2
1 n2 ,结合
+∞ ∑ 1 收敛,利用 W eierstrass 判别 2 n n=1
法可知,原函数项级数一致收敛; ∫1 1 (5)利用 L′ hospital 法则说明 1 不是被积函数的瑕点,在 0 处证明被积函数和 0 √ dx 同 x 敛散即可;或者利用换元,x = sint,原积分可以显式算出,其值为 − π ln 2 ; 2 注记: (1)利用 Cauthy /D′ Alembert 等判别法或 Stirling 公式/Hardamard 收敛半径公式/等均可, 若半径错误,得零分;未讨论断点值,扣 1 分;未讨论大于等于 e,扣 1 分; (2)答案是绝对收敛的,得零分;使用 Leibniz 判别法时,两个条件未指明,各扣一分;结 论正确但是证明错误,得两分;不证明绝对值对应的级数发散,扣 3 分; (3)答案是发散,得零分;只指明通项趋向于零的,得两分; (4)利用优级数,并且求导说明了找到的级数确实是优级数的得满分;只指明结论的,得三 分;未说明级数收敛,仅说明通项一致趋向于零的,零分;直接求和并放缩的,结论正确满分, 有过程错误,扣三分; (5)答案是发散的,得零分;仅答案正确,两分;分别考虑 0 和 1 出两个点,满分;
数学分析(3)试卷及答案(K12教育文档)

案(word版可编辑修改)的全部内容。
数学分析(3)期末试卷2005年1月13日班级_______ 学号_________ 姓名__________ 考试注意事项:2. 试卷含三大题,共100分。
3. 试卷空白页为草稿纸,请勿撕下!散卷作废!4. 遵守考试纪律。
一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。
2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。
3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________.4、 设,d ),()(sin 2y y x f x F xx⎰=),(y x f 有连续偏导数,则=')(x F __________________. 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=Ls x yd _____________。
6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________.7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。
二、计算题(每题8分,共56分)1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。
2、 设),(2xy y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u .3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。
(整理)数学分析(3)期末试题B答案

2.()Lx y ds +=⎰ 其中L 是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 ( A )A. 1+B. 1C.D. 03.()Ly x dy -=⎰.,其中L 为直线,AB(1,1),(2,2)A B ( D )A. 1B. 2C.12D. 0 4 Syzdxdy =⎰⎰ ,其中S 是球面2221x y z ++=的上半部分并取外侧为正向。
( D )A. 2πB. πC. 1D. 05.Lydx xdy +=⎰. , 其中22:1L x y += ( A )A. 0B. 1C. 2D. 3精品文档二、填空题:(本题共5小题, 每小题4分,共20分)1. 22()Dx y dxdy +=⎰⎰8π, 其中22:4D x y +≤ 2.Vxyzdxdydz =⎰⎰⎰8. 其中:02,0V x y z ≤≤≤≤≤≤3. 将(,)DI f x y d σ=⎰⎰ 化成先对x 后对y 的累次积分为24422(,)y y dy f x y dx +-⎰⎰其中D 由24,2y x y x =-=围成。
4. 设L 是半圆周,0,sin ,cos :π≤≤⎩⎨⎧==t t a y t a x L则第一型曲线积分()22Lxy ds +=⎰ π5. 格林公式建立了区域D 上二重积分与D 的边界曲线L的第二型曲线积分之间的联系。
设函数(,),(,)P x y Q x y 在闭区域D 上连续,且有一阶连续的偏导数,则格林公式可表示为LPdx Qdy +=⎰()DQ Pdxdy x y∂∂-∂∂⎰⎰。
(本题共2小题,每题10分, 共20分)1.计算DI dxdy =⎰⎰,其中D 由0,1x y y x ===及围成。
解:此三条直线的交点分别为(1,1),(0,1),(0,0),所围区域如下图。
。
3分先对x 后对y 积分:11112yxI dy dx dx dy ===⎰⎰⎰⎰ 。
6分2. 计算xdxdydz Ω⎰⎰⎰,其中Ω 是三个坐标面与平面 x精品文档+ y + z =1所围成的区域解 画出区域 D : 0101y x x ≤≤-≤≤ 。
《数学分析三》大学考试试题B卷及参考答案

2021-2022年度大学期末考试试卷 《数学分析三》大学考试试题B 卷及参考答案一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ⎰⎰=-a aa dx x f dx x f 0)(2)( B 0)(=⎰-aa dx x fC⎰⎰-=-aaadx x f dx x f 0)(2)( D )(2)(a f dx x f aa=⎰-3、 下列广义积分中,收敛的积分是( ) A⎰11dx xB⎰∞+11dx xC⎰+∞sin xdx D⎰-1131dx x4、级数∑∞=1n na收敛是∑∞=1n na部分和有界且0lim =∞→n n a 的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 5、下列说法正确的是( ) A∑∞=1n na和∑∞=1n nb收敛,∑∞=1n nn ba 也收敛 B∑∞=1n na和∑∞=1n nb发散,∑∞=+1)(n n nb a发散C∑∞=1n na收敛和∑∞=1n nb发散,∑∞=+1)(n n nb a发散 D ∑∞=1n n a 收敛和∑∞=1n n b 发散,∑∞=1n nn ba 发散6、)(1x an n∑∞=在[a ,b ]收敛于a (x ),且a n (x )可导,则( )A)()('1'x a x an n=∑∞= B a (x )可导C⎰∑⎰=∞=ban ban dx x a dx x a )()(1D∑∞=1)(n nx a一致收敛,则a (x )必连续7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛D)(1x an n∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为 A xe B x sin C )1ln(x + D x cos9、函数)ln(y x z +=的定义域是( ) A {}0,0|),(>>y x y x B {}x y y x ->|),( C {}0|),(>+y x y x D {}0|),(≠+y x y x 10、函数f (x,y )在(x 0,,y 0)偏可导与可微的关系( ) A 可导必可微 B 可导必不可微 C 可微必可导 D 可微不一定可导二、计算题:(每小题6分,共30分) 1、⎰=914)(dx x f ,求⎰+22)12(dx x xf2、计算⎰∞++02221dx xx 3、计算∑∞=11n nx n 的和函数并求∑∞=-1)1(n n n4、设023=+-y xz z ,求)1,1,1(xz ∂∂5、求2220lim yx yx y x +→→ 三、讨论与验证题:(每小题10分,共20分)1、 讨论⎪⎩⎪⎨⎧=≠+-=)0,0(),(0)0,0(),(),(2222y x y x y x y x xyy x f 在(0,0)点的二阶混合偏导数2、 讨论∑∞=+-221sin 2)1(n n n n nx的敛散性 四、证明题:(每小题10分,共30分)1、设)(1x f 在[a ,b ]上Riemann 可积,),2,1()()(1 ==⎰+n dx x f x f ban n ,证明函数列)}({x f n 在[a ,b ]上一致收敛于02、设yx e z =,证明它满足方程0=∂∂+∂∂yz y x z x 3、 设)(x f 在[a ,b ]连续,证明⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并求⎰+π2cos 1sin dx xxx参考答案一、1、B 2、B3、A4、C5、C6、D7、D8、C9、C10、C 二、1、⎰⎰++=+202222)12()12(21)12(x d x f dx x xf (3分)令122+=x u ,⎰⎰==+91222)(21)12(du u f dx x xf (3分)2、⎰∞++02221dxx x =4)1arctan(lim )1()1(11lim 002π=+=+++∞→∞→⎰A A A A x x d x (6分) 3、解:令)(x f =∑∞=11n n x n ,由于级数的收敛域)1,1[-(2分),)('x f =x x n n -=∑∞=-1111,)(x f =)1ln(110x dt t x-=-⎰(2分),令1-=x ,得2ln )1(1=-∑∞=n n n 4、解:两边对x 求导02232=--x x xz z z z (3分)x z z z x 2322-=(2分)2)1,1,1(=∂∂x z(1分)5、解:x yx yx ≤+≤||0222(5分)0lim 22200=+→→y x y x y x (1分)由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、⎪⎩⎪⎨⎧=+≠++-+=000)(4),(22222222224y x y x y x y y x x yy x f x (2分)⎪⎩⎪⎨⎧=+≠++--=000)(4),(22222222224y x y x y x y y x x xy x f y (4分)1)0,0(),0(lim )0,0(02-=∆-∆=∂∂∂→∆y f y f x y zx x y1)0,0()0,(lim )0,0(02=∆-∆=∂∂∂→∆xf x f y x zy y x (6分)2、解:由于x nx n n n n n 221sin 2|sin 2)1(|lim =-+∞→(3分),即1sin 22<x 级数绝对收敛1sin 22=x 条件收敛,1sin 22>x 级数发散(7分)所以原级数发散(2分)四、证明题(每小题10分,共20分)1、证明:因为)(1x f 在[a ,b ]上可积,故在[a ,b ]上有界,即0>∃M ,使得]),[()(1b a x M x f ∈∀≤,(3分)从而)(|)(|)(12a x M dt t f x f xa-≤≤⎰一般来说,若对n 有)!1()()(1--≤-n a x M x f n n (5分)则)()!1()()(1∞→--≤-n n a b M x f n n ,所以)}({x f n 在[a ,b ]上一致收敛于0(2分)⎰⎰⎰=+++=+aa Ta Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、 y e x z y x 1=∂∂,2y x e y zy x -=∂∂,(7分)则012=-=∂∂+∂∂yx ye y xe y z y x z x y xy x (3分) 3、 证明:令t x -=π⎰⎰⎰⎰-=---=πππππππ0)(sin )(sin ))(sin()()(sin dt t tf dt t f dt t f t dx x xf 得证(7分)8cos 1sin 2cos 1sin 20202ππππ=+=+⎰⎰dx xx dx x x x (3分)。
数学分析Ⅲ练习册参考答案

1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D ) A 、闭区域 B 、开区域 C 、开集 D 、闭集解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y 时222222222x y y x x x y x y ,而200lim 0x y x →→=所以222200lim 0x y xy x y →→=+. 2、2200x y →→解 因为22222222222211111111x y x y x yx y xyx y所以222222000limlim11211x x y y x y x y xy.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y∂∂==∂∂ ()22222cos()cos()cos()2dz xy x y dx x x y dy x x y ydx xdy ∴=+=+ 5、求曲面arctany z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y 11(1,1),(1,1)22x y z z故曲面arctan y z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)00limlim 0,lim lim 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为 00000()()()0y x x x y y z z -+---=由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222ln 2z z x z y ux y x v x v y v v y∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x y f f f f f f n m +''''''''∴======+> (,)f x y x y xy ∴=++在点)2,1(的泰勒公式为 (,)f x y x y xy =++1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(2)x y x y =+-+-+--4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B AC =>=-=∆=-=-<故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B AC ===∆=-=>故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题 1、求函数333(0)z axyx y a的极值.解 令22330330x yz ay x z ax y得稳定点(0,0)和(,)a a . 226,3,6xy x y z x z a z y对于点(0,0),220,3,0,90A B a C B AC a 故点(0,0)不是极值点. 对于点(,)a a ,2260,3,6,270A a B a C a B AC a 故点(,)a a 是极大点,极大值为3(,)z a a a .2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令22162054216205xyx y S x xy S y得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S 2124180,,,80555A B C B AC 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2cos 20x dy dy y e y xy dx dx ⎛⎫⋅+-+⋅= ⎪⎝⎭2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则(,,),(,,),(,,)z x y z F x y z yz F x y z xz F x y z e xy '''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yz x F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u vu y x xv u v u x x x解此方程组得24u v uy x uv xy ,224v u xx xy uv1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y dy F x y x y dx F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)0x y z -+-+-=,即2360x y z ++-=.4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)0x y z -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为20,a a则问题转换为求函数,,,f x y z xyz 在条件22xy yz xza 下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得.6ax y z根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y在点(1,1,2)的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y ,在点(1,1,2)处有4,6,4x y z F F F ,6,2,4x y z G G G (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y所以切线的法向量为(8,10,7),切线方程为1128107x y z法平面方程为8(1)10(1)7(2)0x y z 或8107120x y z .1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故lim ()()lim()x x x aacA A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞a dx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)1cos 212(100)2x x +=≥==+⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0lim ln (1)1εεεε→+=---=-3、 是积分0sin xdx xπ⎰的瑕点. 解0lim 1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e dx +∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于sin ,tx ax e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232cos 10,1101t tx t x t x ≤≤≤++而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y dxdy f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D )A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.4、设⎰⎰+=D dxdy y x I 22sin ,{}22224),(ππ≤+≤=y x y x D },则I =( B )A 、26πB 、26π-C 、0D 、6π-解 作极坐标变换,则2220sin 6DI d r rdr πππθπ===-⎰⎰⎰⎰5、设D 由曲线1,2,,4xy xy y x y x ====所围成,作坐标变换,yu xy v x==,则二重积分22Dx y dxdy ⎰⎰可化为( B )A 、24211du u dv⎰⎰B 、2241112u du dv v ⎰⎰ C 、42211du u dv ⎰⎰ D 、2421112u du dv v⎰⎰ 解 由于 2(,)1111(,)2(,)2(,)1x y u v y y xu v v x y xy x x∂====∂∂∂- 且坐标变换后积分区域为{}(,)12,14D u v u v '=≤≤≤≤,于是224221112Du x y dxdy du dv v =⎰⎰⎰⎰. 三、求解下列各题1、求2y De dxdy -⎰⎰,其中D 由直线1,y y x ==及x 轴围成.解 选择先对y 后对x 的积分次序,由于 {}(,)01,0D x y y x y =≤≤≤≤ 故()2222111110000011122yy y y y x dx e dy dy e dx ye dy e e e ----===-=-⎰⎰⎰⎰⎰2、求由曲面22222,2z x y z x y =+=+所围立体V 的体积. 解 V 在xy 平面上的投影区域为{}22(,)4D x y x y =+≤于是空间立体V 的体积为()2212DDV x y dxdy =-+⎰⎰作极坐标变换cos sin x r y r θθ=⎧⎨=⎩,则222223000011644233V d r dr d r dr ππππθθπ=-=-=⎰⎰⎰⎰3、求由曲线,,,(0,0)x y a x y b y x y x a b 所围的平面图形面积.解 作坐标变换u x yyv x =+⎧⎪⎨=⎪⎩,则。
第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 2、=∂∂),(00|),(y x xy x f ( )Ax y x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000 ; B xy x x f x ∆∆+→∆),(lim 000; Cx y x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000 ; D xy x f y x x f x ∆-∆+→∆),(),(lim 00000。
3、函数f (x,y )在(x 0,,y 0)可偏导,则( D )A f (x,y )在(x 0,,y 0)可微 ;B f (x,y )在(x 0,,y 0)连续;C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ;D 以上全不对。
4、22222)(),(y x y x y x y x f -+=的二重极限和二次极限各为( B )A 、0,0,0;B 、不存在,0,0,;C 、0,不存在,0;D 、0,0,不存在。
5、设yx ez =,则=∂∂+∂∂yz y x z x (A )A 、0;B 、1;C 、-1;D 、2。
二、计算题(50分,每小题10分)1、 证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微;2、 设⎰⎰'=-x xtx f x f dt d ex f 0)(),(,)(2求ττ;3、 设有隐函数,0x y F z z ⎛⎫=⎪⎝⎭,其中F 的偏导数连续,求z x ∂∂、z y ∂∂;4、 计算(cos sin )x Ce ydx ydy -⎰,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点的光滑曲线;5、 计算zdS ∑⎰⎰,其中∑为22z x y =+在14z ≤的部分;三、验证或解答(满分24分,每小题8分)1、验证曲线积分⎰+++++Ldzy x dy x z dx z y )()()(与路线无关,并求被积表达式的原函数;2、说明对任意),0(sin ,00)(2+∞∈>⎰+∞+-t tdx e x 关于αα均一致收敛;3、验证函数⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x yx xyy x f 在原点(0,0)分别对每个自变数y x 或(另一个看作常数)都连续,但是二元函数在原点(0,0)却不连续.四、(11分)求由方程组⎩⎨⎧=-+=++10333z y x z y x 确定的隐函数)2,1,1()(),(-==P x z z x y y 在点处的一阶导数。
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷 (2)

北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷《数学分析(Ⅲ)》院/系——年纪——专业——姓名——学号——一、选择题(每题2分,共20分)1. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x) > 0,则下列结论正确的是( )A. f(x)在[a,b]上单调递增B. f(x)在(a,b)上单调递增C. f(x)在[a,b]上单调递减D. f(x)在(a,b)上单调递减2. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,则在(a,b)内至少存在一点ξ,使得( )A. f'(ξ) = 0B. f'(ξ) > 0C. f'(ξ) < 0D. 以上都不一定3. 关于函数极限的ε-δ定义,以下说法正确的是( )A. 对任意ε>0,总存在δ>0,使得当|x-x0|<δ时,有|f(x)-A|<εB. 对任意δ>0,总存在ε>0,使得当|x-x0|<δ时,有|f(x)-A|<εC. 对任意ε,δ>0,当|x-x0|<δ时,有|f(x)-A|<εD. 以上都不对4. 设z = f(x,y)在点(x0, y0)处可微,则( )A. dz在(x0, y0)处连续B. dz在(x0, y0)处有界C. dz在(x0, y0)处可导D. dz在(x0, y0)处存在偏导数5. 设u = u(x,y,z)有连续的二阶偏导数,则( )A. u关于x的二阶偏导数与关于y的二阶偏导数一定相等B. u关于x的二阶偏导数与关于y的二阶偏导数一定不相等C. u关于x,y的二阶混合偏导数与关于y,x的二阶混合偏导数一定相等D. 以上都不一定6. 设函数$f(x)$在$[a, b]$上连续,在$(a, b)$内可导,若$f'(x) > 0$对所有$x \in (a, b)$成立,则$f(x)$在$[a, b]$上( )A. 单调递增B. 单调递减C. 可能递增也可能递减D. 为常数7. 设$f(x)$在$x = x_0$处可导,且$f'(x_0) > 0$,则对于充分小的$\Delta x > 0$,有( )A. $f(x_0 + \Delta x) < f(x_0)$B. $f(x_0 + \Delta x) > f(x_0)$C. $f(x_0 + \Delta x) = f(x_0)$D. 无法确定8. 若$\lim_{{x \to \infty}} f(x) = L$,则下列说法正确的是( )A. $f(x)$在$x \to \infty$时单调B. $\lim_{{x \to -\infty}} f(x) = L$C. $f(x)$在$x \to \infty$时一定有界D. $\lim_{{x \to x_0}} f(x)$不一定存在9. 设函数$z = f(x, y)$在点$(x_0, y_0)$处可微,则$f$在$(x_0, y_0)$处的全微分$dz$可以表示为( )A. $dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$B. $dz = f_x(x_0, y_0) + f_y(x_0, y_0)$C. $dz = f_x(x_0, y_0) dy + f_y(x_0, y_0) dx$D. $dz = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)$10.设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且对任意$x \in (a,b)$,有$f(x) \geq 0$和$f'(x) \leq 0$,则:A. $f(x)$在$[a,b]$上单调递增B. $f(x)$在$[a,b]$上单调递减C. $f(x)$在$[a,b]$上恒为常数D. $f(x)$在$[a,b]$上无单调性二、填空题(每题3分,共15分)1. 设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x) < 0,则f(x)在[a,b]上的最小值为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.
()L
x y ds +=⎰ 其中L 是以)1,0(),0,1(),0,0(B A O 为顶
点的三角形 ( A )
D. 0
3.
()L
y x dy -=⎰ .,其中
L 为直线,AB
(1,1),(2,2)A B ( D )
A. 1
B. 2
C.
1
2
D. 0 4 S
yzdxdy =⎰⎰ ,其中S 是球面222
1
x y z ++=的上半部分并取外侧为正向。
( D )
A. 2π
B. π
C. 1
D. 0 5.
L
ydx xdy +=⎰
. , 其中22:1L x y +=
( A )
A. 0
B. 1
C. 2
D. 3
二、
填空题:(本题共5小题, 每小题4分,共20分)
1. 22
()D
x y dxdy +=⎰⎰
8π, 其中22:4D x y +≤ 2.
V
xyzdxdydz =
⎰⎰⎰8
. 其
中
:02,02,02V x y z ≤≤≤≤≤≤
3. 将(,)D
I f x y d σ=
⎰⎰ 化成先对x 后对y 的累次积分为
244
2
2
(,)y y dy f x y dx +-⎰
⎰其中D 由
24,2y x y x =-=围成。
4. 设L 是半圆周
,0,
sin ,
cos :π≤≤⎩⎨
⎧==t t a y t a x L
则第一型曲线积分
()2
2L
x
y ds +=⎰ π
5. 格林公式建立了区域D 上二重积分与D 的边界曲线L
的第二型曲线积分之间的联系。
设函数(,),(,)P x y Q x y 在闭区域D 上连续,且有一阶连续的偏导数,则格林公式可表示为
L
Pdx Qdy +=⎰
(
)D
Q P
dxdy x y
∂∂-∂∂⎰⎰。
(本题共2小题,每题10分, 共20分)
1.计算D
I dxdy =
⎰⎰,其中D 由0,1x y y x ===及围成。
解:此三条直线的交点分别为(1,1),(0,1),(0,0),所围
区域如下图。
。
3分
先对x 后对y 积分:
1
1
1
12
y
x
I dy dx dx dy ===
⎰⎰⎰⎰ 。
6分
2. 计算
xdxdydz Ω
⎰⎰⎰,其中Ω 是三个坐标面与平面 x
+ y + z =1所围成的区域
解 画出区域 D : 0101
y x x ≤≤-≤≤ 。
3分
xdxdydz Ω
⎰⎰⎰
11
10
x y
x
dx
dy
xdz ---=⎰⎰
⎰。
6分
1100
(1)x
dx
x x y dy -=--⎰⎰ 。
8分 1
2
011(1)224
x x dx =-=⎰ 。
10
分
得分 阅卷人
(本题共2道小题,每题10分,共20分)
1. 计算
⎰⎰
d d ,S
z x y 其中 S 是球 面
++=222
1
x y z 在
≥≥0,0
x y 部分并取球面的外侧。
解 曲面 S 在第一、五卦限部分的方程分别为
==1122:,
:.
S z S z 。
3分
它们在 xy 平面上的投影区域都是单位圆在第一象限部分. 因积分是沿
1
S 的上侧和
2
S 的下侧进行, 故
=+⎰⎰⎰⎰⎰⎰
1
2
d d d d d d S
S S z x y z x y z x y 。
6分
(
=
-
⎰⎰
⎰⎰()
()
d d d xy xy D D x y x y
=⎰⎰()
2d xy D x y。
8分
=⎰⎰π1
20
2d =
.
3
r r π
θ 。
10分
2. 计算下列第一型曲面积分:
2
2(),S
x
y z ds +-⎰⎰其中S 为1,z = 22 1.x y +≤
解: S 由平面构成:2:1,S z = 2
2
1.x y +≤
2
21
2
2
2
2
2
()(1)(1),
2
S D
x y z ds x y dxdy d r rdr π
π
θ+-=+-=-⋅=-⎰⎰⎰⎰⎰⎰。
10分
五、
(本题共1小题,每小题15分,共15分)
计算曲线积分 ,L
I ydx xdy =
-⎰
其中L 为曲线
|1|y x =- (02)x ≤≤
沿x 增大的方向.
解 由于L :
1, 01
,1, 12x x y x x -≤≤⎧=⎨-<≤⎩。
3分
所以 L
I ydx xdy =-⎰
1 2 2
1
1
(1)10x xdx x dx xdx =-++--=⎰⎰⎰ 。
10分
(本题共1小题,每小题10分,共10分)
计算sin d d ,D x
I x y x =
⎰⎰其中 D 是直线,0,y x y ==
x π=所围成的闭区域.
解: 由被积函数可知,
先对 x 积分不行,
因此取D 为X – 型域 : 0:0y x
D x π
≤≤⎧⎨≤≤⎩ 。
3分
sin d d D x
x y x ∴
⎰⎰ 0sin d x x x π=⎰ 0d x y ⎰ 。
7分
sin d x x π
=⎰ 。
9分 []
cos 0
x π
=-
2= 。
10分。