ZVZCS PWM DC/DC全桥变换器的简述和发展

合集下载

移相全桥zvs pwm变换器比较

移相全桥zvs pwm变换器比较

11
基本移相控制变换器工作过程: 12种工作模式(5)
Q1
Q1 Vin Q3 D1
Q3 Q2 I2
Q1 Q4
A
C1
Q2
D2
B
C2
D3
C3
Q4
D4
C4
ip vAB
Q4 I1
Llk DR 1
Lf RL0Βιβλιοθήκη Cfvin v in
DR 2 TR (e) [t 3 , t 4]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
14
超前桥臂实现ZVS

超前桥臂容易实现ZVS,输出滤波电感Lf 与谐振电感Lr串联,此时用来实现ZVS的 能量是Lf和Lr中的能量。一般来说,Lf 很大,在超前桥臂开关过程中,其电流 近似不变,等效于一恒流源。为了实现 超前桥臂的零电压开通,必须使Q1和Q3驱 动信号的死区时间满足以下关系:
Vin (C1 C3 ) 4 NCoss Vin Td ( lead ) Ip I zvs
8
基本移相控制变换器工作过程: 12种工作模式(2)
Q1 Vin Q3 D3 D1
A
C1
Q2
D2
B
D4
C2
Q1 Q4 I1
Q3 Q2 I2
Q1 Q4
C 3
Q4
C 4
ip vAB
Llk DR1
Lf
0
Cf RL
vin v in
DR 2 TR (b) [t 0 , t1]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13

PS-ZVZCS-PWM软开关技术简介

PS-ZVZCS-PWM软开关技术简介

PS-ZVZCS-PWM软开关技术简介 [ 2008-02-24 21:50:09]字体大小:1.引言将谐振变换器与PWM技术结合起来构成软开关PWM的控制方法,集谐振变换器与PWM控制的优点于一体,既能实现功率开关管的软开关,又能实现恒频控制,是当今电力子技术领域发展方向之一。

在直/直变换器中,则以全桥移相移控制软开关PWM变换器的研究十分活跃,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率的应用场合。

目前全桥移相控制软开关PWM变换器的研究热点已由单纯地实现零电压软开关(ZVS)转向同时实现零压零流软开关(ZVZCS)。

全桥移相控制ZVS方案至少有四点缺陷:全桥电路内有自循环能量,影响变换效率。

副边存在占空度丢失,最大占空度利用不充分。

在副边整流管换流时,存在谐振电感与整流管的寄生电容的强烈振荡,导致整流管的电压应力较高,吸收电路的损耗较大,且有较大的开关噪音。

滞后臂实现零电压软开关的范围受负载和电源电压的影响。

另外,在功率器件发展领域,IGBT以其优越的性价比,在中大功率的应用场合已普遍实用化,适合将IGB T的开关方式软化的技术则是零电流开关(ZCS)。

因而,针对全桥移相控制ZVS方案存在的问题,各种全桥相移ZVZCS软开关的方案应运而生。

2.全桥ZVZCS软开关技术方案比较目前,正在研究或已产品化的全桥ZVZCS软开关技术主要有以下3种:变压器原边串联饱和电感和适当容量的隔直阻断电容。

变压器原边串联适当容量的隔直阻断电容,同时滞后臂的开关管串联二极管。

利用IGBT的反向雪崩击穿电压使原边电流复位的方法实现ZCS软开关。

除方案3为有限双极性控制方式以外,其它几种方案的控制方式全为相移PWM方式。

上述几种方案都能解决全桥相移ZVS的固有缺陷,如大幅度地降低电路内部的自循环能量,提高变换效率;减少副边的占空度丢失,提高最大占空度的利用率;软开关实现范围基本不受电源电压和负载变化的影响,实现全负载范围内的高变换效率。

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

改进型全桥移相ZVS-PWMDCDC变换器
摘要介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相-变换器。

在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台486的变换器。

关键词全桥变换器;零电压开关;死区时间
引言
移相控制的全桥变换器是在中大功率变换电路中最常用的电路拓扑形式之一。

移相控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。

从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。

同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。

移相控制的全桥变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。

电路不能实现零电压开关时,将产生以下几个后果
1由于开关损耗的存在,需要增加散热器的体积;
2开关管开通时存在很大的,将会造成大的;
3由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入-吸收。

针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感,扩大变换器的零电压开关范围[2][3]。

但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。

而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致1增加电路环流,从而增加变换器的导通损耗;。

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。

对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。

[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。

一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。

硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。

本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。

二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。

其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。

低压大电流大功率软开关全桥变换器拓扑结构分析

低压大电流大功率软开关全桥变换器拓扑结构分析

低压大电流大功率软开关全桥变换器拓扑结构分析*杨钰辉 **(南京船舶雷达研究所,江苏南京210003)摘 要:分析研究了低压大电流全桥变换器电路拓扑结构。

分别介绍了功率变压器初级移相控制零电压(ZVS)P WM和移相控制零电压零电流(ZVZCS)P WM软开关全桥变换器主电路拓扑结构,以及功率变压器次级适宜采用的不同电路拓扑形式,并对其优缺点进行了对比分析。

文中简要说明了在变换器输入级加入功率因数校正环节的必要性。

关键词:发射机;变换器;拓扑结构中图分类号:TN830 文献标识码:A 文章编号:1009-0401(2007)04-0047-04 The topol ogical anal ysis of the f u ll bri dge converter based on lo w voltage,h i gh curre nt,h i gh po wer soft s w itchesY ANG Yu hui(N anjing M arine Radar Institute,N anjing210015,China)A bstract:I n th is paper,the topo log ical struct u re o f t h e lo w voltage,h i g h curren,t full bridge(FB) converter is ana l y zed.The m a i n c ircuit topolog ies of the Z VS P WM and ZVZCS P WM based so ft s w itc h i n g,full bridge converters used i n the pri m ary stage of the transfor m er are intr oduced.Besi d es,the d ifferent circu it topolog ical structures of the secondary stage o f the transfor m er are presented w ith the ir advantages and d isadvantages co m pared.The necessity of addi n g a part for pow er factor correction i n the i n put stage of t h e converter is g i v en briefly.K eyw ords:solid state trans m itter;converter;topo l o g i c al structure1 引 言随着固态功率放大技术的发展,固态脉冲雷达发射机所需电源的功率也随之增大。

全桥移相软开关(好)

全桥移相软开关(好)

全桥移相软开关变换器结构分析作者:周志敏 上传时间:2004-12-9 8:45:13摘要摘要:: 文中分析了全桥移相控制ZVS 和ZVZCS 变换器存在的不足,针对全桥ZVZCS 软开关方案存在的问题,介绍了PS -FB -ZVZCS-PWM 电路。

Abstract : In this paper analyze PS -FB -ZVS-PWM and PS -FB -ZVZCS-PWM convertor exist issue ,be dead against issue ,introduce no-symmetry PS -FB -ZVZCS-PWM circuit 。

1 引言在DC/DC 变换器中,则以全桥移相控制软开关PWM 变换器的研究十分活跃,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率的应用场合。

移相控制方式是全桥变换器特有的一种控制方式,它是指保持每个开关管的导通时间不变,同一桥臂两只管子相位相差1800。

对全桥变换器来说,只有对角线上两只开关管同时导通时变换器才输出功率,所以可通过调节对角线上的两只开关管导通重合角的宽度来实现稳压控制。

如果我们定义此导通重合角的脉宽为输出脉宽的话,实际上就成为PWM控制方式。

因此,人们也称此类变换器为移相全桥PWM (PS -FB -PWM )变换器。

通常定义首先开通的两只开关管为超前桥臂,后开通的两只开关管为滞后桥臂。

2 移相调宽零压变换器1.移相调宽变换器的基本工作原理移相调宽桥式变换器的主电路如图1所示。

图中S1、S2、S3、S4表示器件内部的开关管,VDs1、VDs2、VDs3、VDs4表示器件内部的反并联二极管,Cs1、Cs2、Cs3、Cs 4表示器件的输出电容与外接电容的总和,CP 表示变压器T 的各种杂散电容之和。

Lr 是为改善换流条件而接入的,称为换流电感。

与传统的PWM 桥式电路相比,除增加了Lr 及V D1、VD2之外,电路拓扑并无太大差别。

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。

重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。

关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。

关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。

ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。

图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。

即当原边电流减小到零后,不允许其继续反方向增长。

原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。

图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。

图4 1)NhoE.C. 电路如图1所示[1]。

该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。

这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。

变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中图分类 号 -M4 T 6
文 献标识 码 : B
文章编 号 :29 2 1(07 0— 0 90 0 1— 73 20 )4 05 — 6
0 引言
在 DCD /C变换 器 中 , 桥变 换 器 一般 用 在 中 全
目前 , 中大 功 率 D /C变换 器 中 , 在 CD 应用 最
Z Z SP CD V C WM D / C全桥变换器 的 简述和发展
杜 少武 , 丁
( i_& : , 安徽 合) r k学 6- 摘

合肥 20 0 ) 3 09
要 :随着 D /C变换 器对 功率 密度提 出了更 高的要 求 ,G T代 替 MO F T成 为主 要 的功 率 CD IB SE
c mmo o oo isa l a h i a v na e n rw a k r ic se n n lzd o ntp lge swel ster d a tgsa d da b c saedsu sd a da aye .
Ke wo d : e — ot g e - u r n — wi hn ; / C c n e tr f l b d e y r s z r — l e z r c re t s t i g DC D o v r ; u l r g o v a o — c e i
( ee U i ri f e h ooy H f A h i 2 0 0 , C i ) H f nv syO c n l , ee n u 3 0 9 hn i e t T g i a
Ab t a t s r c :Wi h n r a i g d ma d f rh g e o rd n i o v lin GBT a e b c me p may p we e i e t t e i c e sn e n o ih rp we e st c n e o ,I h y  ̄ s h v e o r r o r d vc s i
a lv ae t e i h r n r e e l g p o l ms o VS c n e tr a d rd c h u n -f l s a s d b h a l u r n f l it h n ee t e wh e i r b e f e f n Z o v r , n e u e t e tr - s c u e y t e ti c r to e o o e I BT h s b c me h o u n p e e t r s a c .T e g n r t n rn i l n mp v me t a e i u tae .S me G .t u e o s t e fc s i r s n e e r h h e e a i ,p cp e a d i r e n r l sr td o o i o l
维普资讯
第 1 0卷第 4期
20 0 7年 4月
奄 濠 擞 石 周
P OW E U P Y T R S P L ECHNOL GI S AND AP L C I O E P I AT ONS
V0. 0 No4 11 . Ap l2 07 i r 0
开关 器件 , V C D Z S D / C全桥 变换 器 的缺 点 日益 显 现 出来 。Z Z SD / C全桥 变换 器减 轻 了 Z S V C CD V
变换器固有的环流问题 , 解决 了I B G T电流拖尾问题 , 成为 目前研究的热点 问题。重点简述 了该类
变换 器的形 成 , 原理 以及发展 , 并介 绍 了几种 常见的拓 扑 , 分析 了它们 的优 缺 点 。

多的是移相控制的 P WM全桥变换器 , 中以移相 其
全 桥 零 电 压 开 关 变换 器 ( sF V WM D / P B Z SP C
大功率场合。 为了减小变换器的损耗 , 软开关技术
引人 了 P WM 全桥 变换 器 。这主要 有 两种方 式 : 一 种 是零 电压 开关 (eovl g—wthn ,V ) Zr—oae si igZ S方 t c
关 键词 : 电压 零 电流开 关 ; C D 零 D / C变换 器 ;全桥
Ov r iw n mp o e e tO e v e a d I r v m n fZVZCS P M W DC/ DC
Fu lBrd e Co v r e l i g n e tr
Du h o WH S a— . DI NG Li
ZS V ;另一 种 是 零 电压 零 电流 开 关 (eo vlg Zr—ot e a
以实现滞后桥臂的 Z S V 开关 ; 另外在零状态时 , 原
边 有较 大 的环流 , 就增 大 了导 通损 耗 。 这 2 纪 9 代 ,人 们 开 发 了一 种 移相 全 桥 0世 0年 Z Z SD /C变 换器 。在 变压器 原边 串联 一个饱 V C CD
D ) C 应用最广泛。它不用附加谐振元件 , 只是利用 变压器 的漏感和开关管 ( S E ) MO F T 的结电容就可 以实现开关管的零电压开关 , 拓扑及控制均简单 ,
能恒 频运 行 。但 移相 Z S全 桥变换 器在 轻 载时难 V
式 ,在这种方式 中,超前桥臂和滞后桥臂均实现
ise d o n ta fMOS ET h r o n s o VS DC DC fl b d e h s e r e .Z C / u lb d e c n e tr c n F .S o t mi g f Z / u l r g a me g d VZ S DC DC f l r g o v re a c i i
相关文档
最新文档