ZVS移相全桥变换器的原理与设计

合集下载

ZVZCS移相全桥软开关工作原理

ZVZCS移相全桥软开关工作原理

ZVZCS移相全桥软开关工作原理整个系统由控制电路、功率电路和传感器等组成。

控制电路负责监测输入和输出电压,根据设定的电压值及输入电流来调整开关的工作状态。

功率电路则负责将输入的交流电源通过变换装置转换为需要的输出电压。

在正常工作状态下,当控制电路接收到输入电压的反馈信号,它会产生一个控制信号,用于控制开关器件的状态。

这些开关器件通常采用汽车电源模块(IGBTS)或金属氧化物半导体场效应管(MOSFETS)等。

在移相全桥逆变器中,开关器件通常以两种状态工作:导通和截止。

在导通状态下,开关器件允许交流电流通过,从而使逆变器的输出与输入电源同相。

在截止状态下,开关器件将输出与输入电源分离,并阻断电流流动。

在移相全桥软开关的工作过程中,通过调整控制信号的相位和幅值,使得逆变器的输出电压能够达到所需的目标。

在每个周期的不同时间点,开关器件都会在导通和截止状态之间进行切换,从而实现输入电压的调节和变换。

1.相位调整:通过改变控制信号的相位来控制开关器件的工作状态。

当输入和输出电压相位相同时,开关器件处于导通状态;当输入和输出电压相位相反时,开关器件处于截止状态。

通过相位调整,可以实现输入电压的调节和变换。

2.软开关控制:在开关器件的导通和截止状态转换过程中,通过合理设计控制信号的波形和幅值,使得开关器件在导通和截止状态之间平滑切换,从而减少开关过程中的损耗和干扰。

3.双向开关:移相全桥逆变器中的开关器件是双向的,既可以流通正向电流,也可以流通反向电流。

这种双向开关的特性使得逆变器可以实现输入电压的变换,同时也可以回馈电压到电源端。

总体而言,ZVZCS移相全桥软开关通过控制开关器件的导通和截止状态,以及调整开关器件的相位和幅值,实现输入电压的调节和变换。

它具有高效率、快速响应、可靠性高等优点,可广泛应用于交流电源的电压调节和变换等领域。

移相全桥ZVS软开关变换器的设计与应用

移相全桥ZVS软开关变换器的设计与应用
通 馋 电 潦 技 术
21 0 1年 1月 2 5日第 2 8卷第 1期
Tee o Po rTe h oo y lc m we c n lg J r 5 0 ,Vo.2 . aL2 ,2 1 1 1 8No 1
文章编 号 :0 93 6 ( 0 ) 10 1—3 10 —6 4 2 1 0 — 0 0 1 1
1 移 相 全 桥 Z S软 开 关 变 换 器 工 作 原 理 V
图 1为移 相全 桥 Z VS软开 关变 换器 原 理 图 , 中 其 Ui 为输 入 电压 , 为 输 出 电压 , 、 、 、 为 功 率 Q1Q2 Q4
MOS开关 管 , VQg、 3 VC 4 别 为 四 个 功 VQg、 2 VQg、 h 分 率 开 关管 的驱 动信 号 , 1D 、 3 D 为反 并联 二 极 管 , D 、 I 、 4 ) C 、2C 、 4 并 联 电 容 , … C 1C 、 3C 为 L 为辅 助支 路 谐 振 电 感、 电容 , 为高 频变 压 器 , 5 I 为 副 边整 流 二极 管 , T I 、) ) 6 L 、 别 为输 出滤 波 电感 、 波 电容 , - 负 载 。 L fC分 滤 R 为 k 由两部 分组 成 , 一是 原边 串联 谐振 电感 , 二是 变 压器漏
选 择 做 了详 细介 绍 , 后 给 出 了仿 真 结 果 和 仿 真 波 形 , 明 了设 计 的合 理 性 和 有 效 性 。 最 证
关 键 词 : C I 变换 器 ; 开 关 ; V ; 3 7 D /X; 软 Z S UC 8 5
中图 分 类 号 : N 1 T 72
文献标识码 : A
电子 设备 的成 本 、 积 以及 效率 。众 所周 知 , 体 提高 电源 的频 率 , 以有 效地 减小 器 件 的体 积 和重 量 , 小滤 波 可 减 器 的参数 , 从而 使 变 压 器小 型化 。但 在 器件 高 频 化 的 同时 , 会增 加开 关损 耗 、 增大 电磁 干扰 。软 开关 技术 是

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。

ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead

C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即

第六章 软开关技术(移相全桥ZVS软开关电路分析)

第六章 软开关技术(移相全桥ZVS软开关电路分析)

td (lead ) 2CleadVin / I1
在这段时间里,原边电流等于折算到 原边的滤波电 ) / K
4.开关模态3 在 t2 时刻,关断 Q4,原边电流 i p 转 移到 C2和 C4中,一方面抽走 C2上的 电荷,另一方面又给 C4充电。 由于C2 和C4 的存在,Q4的电压是从零 慢慢上升的,因此 Q4是零电压关 断。这段时间里谐振电感 Lr 和C2 及 C4在谐振工作。原边电流 i p 和 C4 的电压分别为: 电容C2 ,

2.开关模态1 在 t 0 时刻关断Q 1,原边电流 i p 从 Q 1中转移到到 C3和 C1 支路中,给

C1充电,同时 C3被放电。 电容 C1 的电压从零开始线性上升
电容 C3 的电压从 Vin开始线性下降 Q 1是零电压关断。
i p (t ) I p (t0 ) I1
vC1 (t )
到 t4 时刻,原边电流从 I p (t3 )下降到 零,二极管 D2和 D3自然关断。 持续时间为: t L I (t ) / V
34 r P 3
Vin i p (t ) I p (t3 ) (t t3 ) Lr
in
6. 开关模态5 在 t 4 时刻,原边电流流经 Q2和 Q3。 由于原边电流仍不足以提供负载 电流,负载电流仍由两个整流管 提供回路,因此原边绕组电压仍 然为零,加在谐振电感两端电压 是电源电压Vin ,原边电流反向线 性增加。

到 t5 时刻,原边电流达到折算到原 I Lf (t5 ) / K 值,该开 边的负载电流 关模态结束。 持续时间为: L I (t ) / K
Vin i p (t ) (t t4 ) Lr
t45

移相全桥的原理与设计简介

移相全桥的原理与设计简介
• 例如:
• 测试PFC 二极管的电压应力时,地线需接 阴极,否则甚至会引起PFC工作不稳定的 现象(叫机)。如下图所示:
四、磁性器件设计
• 简要计算: • 1.主变压器:双EE4242B,f=100KHZ,Ae=
178mm^2,D=0.90,Ton=4. 5us,VIN=380V, 工作于第一、三象限。 N1=,提前关断; • Q40比Q37提前导通,提前关断。
• 当对角管Q39和Q38,或Q40和Q37同时导 通时,初级才存在正向(或负向)的方波 电压。由电感公式U=L*dI/dt可知,初级电 流线性变化。
• Q39提前关断,Q40的DS电压会下降,初 级电流需抽走Q40的DS结电容的电荷,同 时给Q39的结电容充电。
• 当Q40的DS电压下降为负压时,Q40的体 二极管导通,DS电压被箝位,近似为零。 如果此时给出Q40驱动,就能实现ZVS。
根据上述分析, 有3个方法,有利于实现ZVS: 1.增加励磁电流 2.加大谐振电感 3.增加死区时间
ZVS示意波形可参考如下:
• Q40和Q38同时导通时,初级变压器绕组上的 电压为零,不传送能量。要保持电感电流不变, 初级电流处于环流状态,存在较大的导通损耗, 电流再次下降。
• Pin11 ADS 可变死区设置
• 较大的死区时间会减小占空比的利用率,降低变换器的 效率。UCC3895集成了死区调节功能,即在负载增大时, 减小死区时间,提高重载时的占空比利用率。通过合理 设置PIN12、PIN11之间的电阻比值,可以提供可变的死 区时间,如下图所示:
• PIN7、PIN8:用于设置开关频率。 • PIN4:VREF
• 当Q37、Q40同时导通时,由于初级电流减小, 次级绕组无法完全提供负载电流,次级的两个整 流二极管同时处于导通、续流状态,次级绕组短 路。因此,初级的方波电压完全施加与谐振电感 上,此时副边存在占空比丢失现象。

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计ZVS(Zero Voltage Switching)移相全桥变换器是一种高效的电力转换装置,它能够实现能量的高效传输和转换。

在本文中,我们将详细介绍ZVS移相全桥变换器的设计原理、工作原理和关键技术。

1.设计原理(1)ZVS技术:ZVS技术能够将开关管的开关转换时刻与输入电流或输出电压为零的时刻相匹配,从而避免了开关管的开关损耗和开关管产生的电磁干扰。

(2)全桥变换器:全桥变换器采用四个开关管和两个二极管,能够实现输入电压的极性逆变和输出电流的正向流动。

2.工作原理(1)开关管S1和S2导通,开关管S3和S4关闭,输入电源向电感L1充电;(2)当开关管S1和S2关闭,开关管S3和S4导通时,电感L1释放能量供应给负载;(3)根据负载的需求,通过控制开关管S1、S2、S3和S4的导通和关闭,实现输入电压的极性逆变和输出电流的正向流动;(4)根据输入电压的大小、负载的需求和输出电流的波形来控制开关管的开关时刻,实现ZVS操作。

3.关键技术(1)开关管的选择和驱动:选择低导通电阻、低开关损耗的开关管,并使用高效的驱动电路,确保开关管能够在ZVS模式下正常工作。

(2)电感和电容的选择:选择合适的电感和电容数值,以及合适的磁芯材料,提高转换器的功率密度和效率。

(3)控制策略:根据负载的需求和输入电压的变化,采用合适的控制策略,如频率控制、幅度控制、相位控制等,实现最佳的动态响应和效率。

4.实际应用总结:ZVS移相全桥变换器是一种高效的电力转换装置,其设计原理基于ZVS技术和全桥变换器。

通过合适的开关管选择、驱动设计、电感和电容选择以及控制策略的优化,可以实现高效的能量传输和转换。

在实际应用中,ZVS移相全桥变换器能够带来高效、稳定和低干扰的性能优势。

75kW移相全桥ZVS DC-DC变换器的设计共3篇

75kW移相全桥ZVS DC-DC变换器的设计共3篇

75kW移相全桥ZVS DC-DC变换器的设计共3篇75kW移相全桥ZVS DC/DC变换器的设计175kW移相全桥ZVS DC/DC变换器的设计随着电能的需求不断增加,直流(DC)与交流(AC)能量的转换变得越来越重要。

近年来,随着电力电子技术的发展和高性能的半导体器件的不断进步,DC/DC变换器在工业和消费电子领域的应用越来越广泛。

75kW移相全桥ZVS DC/DC变换器是一种高性能变换器,能够实现高效率、高功率转换。

移相全桥ZVS DC/DC变换器的结构包括移相控制器、输人电感、输出电容、全桥开关和ZVS电路等。

其中,移相控制器的作用是控制全桥开关的相位移动,从而实现零电压开关(ZVS)控制,减少开关过程中的损耗和电磁干扰。

输人电感和输出电容则是负责滤波,保证输出电压的稳定性。

全桥开关通过不同配合的通断实现正负输出电流控制。

ZVS电路通过滤波和电容,实现电路的诸多物理参数计算协调,并通过工艺合理设计,降低待机功耗和回路波动影响。

在设计75kW移相全桥ZVS DC/DC变换器时,需要考虑诸多因素。

首先,应该确定输入电压和输出电压的范围,设计输人电感和输出电容的尺寸。

其次,需要确定最大输出功率、输出电源电流和开关频率,保证全桥开关的可靠性和ZVS电路的稳定性。

还需考虑系统的可扩展性和环境因素,以充分考虑变换器在工业应用和肆意使用中的优越性。

在开发过程中,需要充分利用仿真和实验测试,调整参数和设计方案,为最优的变换器性能和稳定性进行优化和调整。

因此,设计和发布75kW移相全桥ZVS DC/DC变换器需要对额定值、特殊应用等项指标有充分的认识、调试和经验,并充分考虑到指示等级、节约能源等重要性,超出标准数值要求的评定指数,以实现最优化控制。

总之,75kW移相全桥ZVS DC/DC变换器是一种高效、高功率、高稳定性的电能转换装置,能够在工业和消费电子领域得到广泛应用。

设计和发布此类设备需要充分考虑应用环境、指标要求和设计方案,充分利用仿真和实验测试,以实现最优化控制、最低化能量损耗和实时可调参数,为应用和发展带来更多的便利和效益综上所述,75kW移相全桥ZVS DC/DC变换器是一种具有巨大潜力和广泛应用前景的电能转换装置。

分析全桥ZVS-PWM变换器的分析与设计

分析全桥ZVS-PWM变换器的分析与设计

上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。

后然经过发展,越来越多在各个领域当中应用。

但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。

本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。

1 电路原理和各工作模态分析1.1 电路原理图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。

Vin为输入直流电压。

Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。

为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。

S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。

Lf和Cf构成倒L型低通滤波电路。

图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;(3)忽略变压器绕组及线路中的寄生电阻;(4)滤波电感足够大。

1.2 各工作模态分析(1)原边电流正半周功率输出过程。

在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。

电容C2和C3被输入电源充电。

变压器原边电压为Vin,功率由变压器原边传送到负载。

在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。

(2)(t1一t1′):超前臂在死区时间内的谐振过程。

加到S1上的驱动脉冲变为低电平,S1由导通变为截止。

电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZVS移相全桥变换器的原理与设计
摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW移相全桥零电压高频通信开关电源。

关键词:移相全桥零电流开关零电压开关准谐振
The Principle and Design of Phase shifted Full bridge Zero voltage Convertor
Abstract: The paper introduces the principle of phase shifted full bridge zero
voltage switching convertor.A 3kw full bridge ZVS convertor was developed us ing UC3875 controller.
Keywords: Phase shifted full bridge, ZCS, ZVS, Quasi resonance
中图法分类号:TN86文献标识码:A文章编号:02192713(2000)1157203
1引言
传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW)的情况,以及电源电压和负载电流变化大的场合。

其特点是开关频率固定,便于控制。

为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到1MHz级水平。

为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。

由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制芯片研制了零电压准谐振高频开关电源样机。

本文就研制过程,研制中出现的问题及其改进进行论述。

2准谐振开关电源的组成
ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,如图1所示。

从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。

它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。

准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流开关准谐振变换器的特点是保证运行中的开关管在断开信号到来之前,管中电流下降到零。

零电压开关准谐振的特点是保证运行中的开关管在开通信号到来之前,管子两端的电压已经下降到零。

3零电压准谐振变换器的工作原理
全桥零电压准谐振变换器的主电路如图2所示。

Uin为PFC电路输出的直流电压(400 V),S1~S4为功率开关管,其体二极管为D1~D4,图中未画出其体电容C1~C4,Lr为变压器T1初级串联谐振电感,(包括变压器的漏感),C为防止变压器因偏磁而饱和的隔直电容,T2为电流互感器,用于检测。

当变换器过流时,保护电路切断驱动信号,保护功率器件。

变压器次级电压经过D5、D6整流和输出LC滤波器给负载供电。

图3给出了变压器初级电压UP、次级电压US和初级电流ip的波形图。

ZVS变换器一周期内可分为六个运行模式,如表1所示。

图3中设t
表1ZVS变换器一周期内运行模式
图13kW通信开关电源方框图
图2移相全桥ZVS变换器控制和输出电路原理图
变换器的主要波形图3全桥ZVS PWM
图4移相PWM转换器控制和驱动原理图
时间间隔 t0~t1 t1~t2 t2~t3~t4 t4~t5t5~t6t6~t7
导通管序号D3S1 D2D3S1S2S3 S2D4D1D4S2S1S4
ZVS次序S3 S2 S4 S1
4占空比分析
由波形图可见,由于变换器存在漏电感,使初级电流在t1~t3阶段,有一定斜率,因此次级电压占空比(t4-t3)/(t4-t0)小于初级电压占空比(t4-t1)/(t4-t0),造成占空比损失。

开关频率越高,占空比损失越大。

5移相全桥两桥臂开关管实现ZVS的条件
由表1和图3可以看出,S3和S4实现ZVS分别早于S1、S2,故称S3、S4为右桥臂又称超前桥臂,S1、S2为左桥臂又称滞后臂。

由表1可以看出S3、S4实现ZVS分别在(t0~t1)和(t4~t5),S2、S1实现ZVS分别在(t2~t3)和(t6~t7)。

而(t2~t3)和(t6~t7)时变压器初级电流分别小于(t0~t1)和(t4~t5)时的初级电流,故滞后桥臂比超前桥臂实现ZVS 开关困难,特别是轻载时最为明显。

从理论上分析,S1、S2实现ZVS开关时,变压器次级处于续流阶段,谐振时由谐振电感释放能量,使谐振电容电压下降到零,从而实现ZVS,此时实现ZVS条件为:电感能量必须大于所有参与谐振的电容能量。


LrIp2/2>(4Coss/3+Cxfmr)×U2in
式中:4Coss/3是考虑MOS管输出电容非线性等效电容值,Cxfmr是变压器绕组的分布电容。

由上式可见,滞后桥臂实现ZVS主要靠谐振电感储能,轻载时能量不够大,因此滞后桥臂不易满足ZVS条件。

S3、S4实现ZVS开关时,变压器处于能量传递阶段。

初级电流IP=-Io/n(n为变压器变比),初级等效电感Le=Lr+n2LO。

所以根据ZVS条件,电感能量必须大于所有参与
谐振的电容能量,应有Le(Io/n)2/2>(4Coss/3+Cxfmr)Uin2。

由于Le(Io/n)2/2相当大,故即使轻载时超前桥臂也较容易满足ZVS条件。

6移相全桥PWM控制器
移相全桥PWM控制技术最关键的是器件的导通相位能在0~180°范围内移动,若控制不好,特别是左桥臂或右桥臂的两个开关管同时导通,将导致灾难性的后果。

Unitrode公司生产的UC3875能提供0~100%占空比的控制,并且有必要的保护、译码及驱动功能,有
电四组驱动输出,每组的延时时间可控制,其控制电路如图4所示。

E/A+接固定的25V
压(VREF=5V,R5、R9为10kΩ),作电压给定信号。

E/A-接对应的输出电压和EA+比较,从而控制OUTA~OUTD的相位,最终控制输出电压。

C/S+接控制信号(如初级过流信号等),当初级过流时,C/S+大于25V
,UC3875停止输出驱动信号,从而将变换器输出关闭,防止了灾难事故的发生。

驱动信号由OUTA~OUTD输出,并经TC4420扩流,由驱动变压器去驱动S1~S4MOS管,其延时时间由UC3875的7脚、15脚外接电阻确定,实际的驱动信号时序如图5所示。

图5驱动信号、变压器次级信号波形图
7结语
(1)换向死区时间的控制对实现零电压开关很重要。

(2)UC3875控制电路的控制部分和输出驱动部分供电电源应分开,否则移相时将引起频率变化。

(3)为了在宽范围内实现ZVS,要在变压器初级串一个谐振电感,但谐振电感不能太大,电感太大会带来占空比丢失,初级电流较大,导通损耗增大,电感发热等问题,并且效率大大降低。

根据中国电信总局1999年底对所有入网通信电源效率的要求:所有大于1kW的通信电源,其效率(从半载到满载)应大于90%。

解决了谐振电感的发热损耗问题,也就解决了效率问题。

也可采用全桥ZVZCSPWM电路,使超前桥臂实现ZVS,滞后桥臂实现ZCS,便可克服全桥ZVS的缺点,效率可达93%以上。

参考文献
1 Bill Andreycaf.Phase Shifted Zero Voltage Transition Design Considerations and t he UC3875 PWM Controller.Product Applicacation Handbook,1995~ 1996
2张占松,蔡宣山.开关电源原理与设计。

相关文档
最新文档