2017年09月30日二次函数综合题
2017年全国中考数学真题分类 二次函数概念、性质和图象2017(解答题)

2017年全国中考数学真题分类 二次函数概念、性质和图象解答题三、解答题1. (2017山东滨州,24,14分)(本小题满分14分)如图,直线y =kx +b (k 、b 为常数)分别与x 轴、y 轴交于点A (-4,0)、B (0,3),抛物线y =-x 2+2x +1与y 轴交于点C . (1)求直线y =kx +b 的解析式;(2)若点P (x ,y )是抛物线y =-x 2+2x +1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y =-x 2+2x +1的对称轴上移动,点F 在直线AB 上移动,求CE +EF 的最小值.思路分析:(1)将A 、B 两点坐标代入y =kx +b 中,求出k 、b 的值;(2)作出点P 到直线AB的距离后,由于∠AHC =90°,考虑构造“K 形”相似,得到△MAH 、△OBA 、△NHP 三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C ′E .当C ′F ⊥AB 时,CE+EF 最小. 解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1).∵PH ⊥AB ,∴∠CHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠CHN ,∵∠AMH =∠CNH =90°,∴△AMH ∽△HNP . ∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP . ∴345NH CN CH==. ∴23(3)(21)4345m x x x m d+--++-==. 整理得:24855d x x =-+,所以当x =58,即P (58,11964).(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1)设F (m ,34m +3)∵C ′F ⊥AB ,∠AFJ +∠C ′FK =90°,∵CK ⊥JK ,∴∠C ′+∠C ′FK =90°.∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .∴'AJ JF FK C K =,∴33443224m m m m ++=-+,解得m =825或-4(不符合题意). ∴F (825,8125),∵C ′(2,1),∴FC ′=145.∴CE +EF 的最小值=C ′E =145.2. (2017江苏徐州,26,9分)如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”); (2)分别求出线段OM ,曲线NK 所对应的函数表达式; (3)当x 为何值时,BPQ ∆的面积是52cm ?Ds )图① 图②思路分析:(1)观察图象②可知,当1<x <2时,y =10,故△BPQ 的面积不变; (2)用待定系数法求其解析式即可;(3)把y =5分别代入(2)中的一次函数及二次函数解析式,求出x 的值即可,对x 的值注意取舍.解:(1)不变(2)设OM所在直线的函数表达式为y=kx,把M(1,10)代入,得k=10. ∴线段OM的函数表达式为y=10x(0<x<1)在曲线NK上取一点G,使它的横坐标52,由题意可得其纵坐标为52.∴曲线NK过三点N(2,10),G(52,52),K(3,0)∵曲线NK为抛物线的一部分,设其表达式为y=ax2+bx+c,可得42102555422930a b ca b ca b c++=⎧⎪⎪++=⎨⎪++=⎪⎩解得106090abc=⎧⎪=-⎨⎪=⎩∴曲线NK的函数表达式为y=10x2-60x+90(2<x<3)(3)把y=5代入y=10x,解得x=1 2,把y=5代入y=10x2-60x+90,解得x1=3-22,x2=3+22(舍去)∴当x=3-22或x=12时,BPQ∆的面积是52cm3.(2017江苏南京,26,8分)已知函数y=-x2+(m-1)x+m(m为常数)(1)该函数的图像与x轴公共点的个数是()A.0 B.1 C.2 D.1或2(2)求证∶不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.思路分析∶(1)计算二次函数对应一元二次方程的判别式b2-4ac,判断即可;(2)先利用配方法求出(1)的函数的顶点坐标,然后代入y=(x+1)2,即可得证;(3)由(2)可知函数图像的顶点纵坐标,再表示为z=,然后分类讨论即可.解∶(1)D.二次函数对应的一元二次方程为-x2+(m-1)x+m=0,则b2-4ac=(m-1)2+4m=(m+1)2≥0,所以一元二次方程有两个相等或两个不相等的实数根,即对应的二次函数图像与x轴有1个或2个交点.(2)y=-x2+(m-1)x+m=-,所以该函数的图像的顶点坐标为(,)()211,24mm⎛⎫⎝+-⎪⎪⎭.把x=代入y=(x+1)2,得y=.因此,不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)设函数z=.当m=-1时,z有最小值0.当m<-1时,z随m的增大而减小;当1m>-时,z随m的增大而增大.又当2m=-时,在z=;当m=3时,z==4.因此,当-2≤m≤3时,该函数的的图像的顶点纵坐标的取值范围是0≤z≤4.4.(2017湖南衡阳,26,10分)(本小题满分10分)如图,△AOB的顶点A、B分别在x轴、y轴上,∠BAO=450,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G 向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.思路分析:(1)因为∠BAO=450,所以OA=OB,且△AOB的面积为8,所以OA=OB=4,故直接写出点A、B的坐标为(4,0),(0,4)。
(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc二次函数综合题分类讨论一、直角三角形分类讨论:11、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形,这样的 C 点你能找到个2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a的值;( 2)如图 1,抛物线C2与抛物线C1关于x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x轴正半轴上一点,将抛物线C1绕点Q 旋转180 后得到抛物线C,4,抛物线 C,4的顶点为N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、N、 F 为顶点的三角形是直角三角形时,求点Q 的坐标。
(2013 汇编 P56+P147)3、如图,矩形A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的.O’点在 x 轴的正半轴上, B 点的坐标为 (1,3).(1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为—1.求这个二次函数的解析式;(2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.练习( 09 成都 28)已知抛物线与x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ),与 y 轴交于点C,其顶点为 M ,若直线 MC 的函数表达式为 y=kx-3 ,与 x 轴的交点为N,且cos∠BCO =(3 √ (10) /10).( 1)求此抛物线的解析式;( 2)在此抛物线上是否存在异于点 C 的点 P,使以 N 、 P、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;( 3)过点 A 作 x 轴的垂线,交直线 MC 于点 Q. 若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度5 ?4A 二、4321N2 B 2 4 6 8 10 12 14 16 18123P4M56等腰三角形分类讨论1、如图,已知 Rt Rt ABC , ACB 90 , BAC 30 , 在直线BC或直线AC上取一点P,使得 PAB 是等腰三角形,则符合条件的P 点有个2 A的坐标为(12),,点B的坐标为(31),,二次函数 y x2、①,在平面直角坐标系中,点的图象记为抛物线l1.(1)平移抛物线l1,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图②,求抛物线l2 的函数表达式.(3)设抛物线l2 △△,求点 K 的坐标.的顶点为 C , K 为 y 轴上一点.若S ABK SABC( 4)请在图③上用尺规作图的方式探究抛物线l 2上是否存在点P ,使△ ABP 为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.yyyl 2l 1l 2AAA1B1CBx1BO xOO 111图①图②图③解:( 1 )有多种答案,符合条件即可.例如yx 2 1, y x 2 x , y( x 1)22 或y x 2 2x 3 , y (x2 1)2 , y (x 12) 2 .(2)设抛物线 l 2 的函数表达式为 y x 2bxc ,yl 2Q 点 A(12),, B(31),在抛物线 l 2 上,KGA1 b c ,b9 ,2 29 3b c 解得111c.抛物线 l 2 的函数表达式为y x 2 9 x 11 .2 29 x 119 27 ,9,7(3) yx 2 xC 点的坐标为.2 2 4 164 16 过 A , B , C 三点分别作 x 轴的垂线,垂足分别为 D ,E ,F ,则 AD 2 , CF7 , BE1, DE5 , FE316 2 , DF.44 S △ ABCS 梯形ADEBS梯形 ADFCS梯形 CFEB1(2 1) 2 1 2 75 1 1 73 15 .2 2 164 2 164 16延长 BA 交 y 轴于点 G ,设直线 AB 的函数表达式为 y mx n ,2 m ,m1 ,Q 点 A(12),, B(31),在直线 AB 上, n21 3m 解得5n.n.2直线 AB 的函数表达式为 y1x 5 G 点的坐标为52 .0,.22BCO D F E图②设 K 点坐标为(0,h),分两种情况:若 K 点位于 G 点的上方,则KG h 5 .连结AK ,BK .2S△ABK S△BKG S△AKG 1 3 h 5 1 1 h 5 h 5 .2 2 2 2 2Q S△ABK15 5 15,解得 h55K 点的坐标为55 S△ABC ,h16 16.0,.16 2 16若 K 点位于 G 点的下方,则KG 5h .同理可得, h25.2 16 yK 点的坐标为25.l 2 0,16 A(4)作图痕迹如图③所示. B由图③可知,点P 共有3个可能的位置.O图③2、如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,y点 A 、 C 的坐标分别为A(10 , 0)、 C( 0,4),点 D 是 OA 的中点,点 P 在PCBC 边上运动,当是腰长为 5 的等腰三角形时,点P 的坐标为O D 3、在菱形 ABCD 中,对角线AC , BD 相交于点 O,以 O 为坐标原点,以 BD 所在直线为 x 轴, CA 所在直线为 y 轴建立如图所示的坐标系,且AC=12 ,BD=16 ,E 为 AD 的中点,点 P 在线段 BD 上移动,若为等腰三角形,则所有符合条件的点P 的坐标为三、最值问题 B类型一:两点之间线段最短 C 1、请写出2m 3 2 1 8 2m 2 4 的最小值为 A2、如图,四边形ABCD 是正方形,ABE 是等边三角形,对角线BD 上60 ,得到BN,连EN任一点,将 BM 绕点 B 逆时针旋转EN、 AM 、CM ,求证:( 1)AMB ENB ,(2)M点在何处时,AM+CM值最小,(3)AM+BM+CN 最小值为3 1 时,求正方形的边长(2012 汇编P52+P137) B xBxAyAExDDMC3、( 2010 年天津 25)在平面直角坐标系中,矩形OACB 的顶点 O 在坐标原点,顶点 A 、B 分别在 x 轴、 y 轴的正半轴上,OA=3 ,OB=4 ,D 为边 OB 的中点。
2017年二次函数难题30道(解析版)

2017年二次函数难题30道(解析版)(选择题10道 填空题10道 解答题10道) 一、选择题:(共10题)1.如图,已知二次函数2y ax bx c =++(a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③4ac-b 2<16a ;④13<a <23;⑤b >c .其中正确结论个数( )A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】试题解析:①∵函数开口方向向上,∴a>0; ∵对称轴在y 轴右侧, ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c<0, ∴abc>0, 故①正确;②∵图象与x 轴交于点A(−1,0),对称轴为直线x=1, ∴图象与x 轴的另一个交点为(3,0), ∴当x=2时,y<0, ∴4a+2b+c<0, 故②错误;③∵图象与x 轴交于点A(−1,0),∴当x=−1时, ()()2110y a b c =-+⨯-+=, ∴a −b+c=0,即a=b −c ,c=b −a , ∵对称轴为直线x=112ba∴-=, 即b=−2a , ∴c=b −a=(−2a)−a=−3a ,()()2224432160ac b a a a a ∴-=⋅⋅---=-<160a >2416ac b a ∴-< 故③正确.④∵图象与y 轴的交点B 在(0,−2)和(0,−1)之间, ∴−2<c<−1 ∴−2<−3a<−1,1233a ∴<<;故④正确. ⑤∵a>0, ∴b −c>0,即b>c ; 故⑤正确; 故选C.注:二次函数()20.y ax bc c a =++≠a 决定开口方向, 0a >,开口向上; 0,a <开口向下. ,ab 共同决定了对称轴的位置.左同右异.c 决定了抛物线和y 轴的交点位置.2.如图,抛物线()20y ax bx c a =++≠的对称轴是直线1x =,有下列结论: (1)24b ac ->0;(2)0abc >;(3)80a c +>;(4)630a b c ++>.其中正确结论的个数有( )A. 4B. 3C. 2D. 1 【答案】B【解析】解:∵图象的开口向上,与x 轴有两个交点,对称轴是直线x=1,交y 轴的负半轴于一点,∴(1)b 2﹣4ac >0,正确; a >0,c <0, 2ba-=1,∴b=﹣2a ,∴b <0,∴abc >0,∴(2)正确; 把x=4代入得:y=16a+4b+c=16a ﹣8a+c=8a+c >0,∴(3)正确; 把b=﹣2a 代入得:6a+3b+c=c <0,∴(4)错误. 故选B .注:本题主要考查对二次函数图象与系数的关系,根的判别式,抛物线与X 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.3.如图抛物线2y ax bx c =++的图象交x 轴于A (﹣2,0)和点B ,交y 轴负半轴于点C ,且OB=OC ,下列结论: ①2b ﹣c=2;②a=12;③ac=b ﹣1;④a bc+>0 其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】解:据图象可知a >0,c <0,b >0,∴a bc+<0,故④错误; ∵OB=OC ,∴OB=﹣c ,∴点B 坐标为(﹣c ,0),∴ac 2﹣bc+c=0,∴ac ﹣b+1=0,∴ac=b ﹣1,故③正确;∵A (﹣2,0),B (﹣c ,0),抛物线线2y ax bx c =++与x 轴交于A (﹣2,0)和B (﹣c ,0)两点,∴2c=c a ,∴2=1a ,∴a=12,故②正确; ∵ac ﹣b+1=0,∴b=ac+1,a=12,∴b=12c+1,∴2b ﹣c=2,故①正确;故选C .注:本题考查了二次函数图象与系数的关系:对于二次函数2y ax bx c =++(a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 4.如图,已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),下列结论:①b 2>4ac ;②ax 2+bx+c ≥-6;③若点(-2,m ),(-5,n )在抛物线上,则m >n ;④关于x 的一元二次方程24ax bx c ++=-的两根为﹣5和﹣1,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】∵抛物线与x 轴有2个交点,∴△=b 2−4ac>0,即b 2>4ac ,所以①正确;∵抛物线的顶点坐标为(−3,−6),即x=−3时,函数有最小值,∴ax 2+bx+c ⩾−6,所以②正确;∵抛物线的对称轴为直线x=−3,而点(−2,m),(−5,n)在抛物线上,∴m<n ,所以③错误;∵抛物线y=ax 2+bx+c 经过点(−1,−4),而抛物线的对称轴为直线x=−3,∴点(−1,−4)关于直线x=−3的对称点(−5,−4)在抛物线上,∴关于x 的一元二次方程ax 2+bx+c=−4的两根为−5和−1,所以④正确。
(完整word版)2017中考二次函数专题(含答案),推荐文档.docx

1.如图,抛物线y=x 2+bx+c 与直线 y=x ﹣ 3 交于 A、 B 两点,其中点 A 在 y 轴上,点 B 坐标为(﹣ 4,﹣ 5),点 P为 y 轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A ,P, D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P运动到直线 AB 下方某一处时,过点P 作 PM⊥ AB ,垂足为 M ,连接 PA 使△PAM 为等腰直角三角形,请直接写出此时点 P 的坐标.2. 在直角坐标系xoy 中, A(0, 2) 、 B( 1,0) ,将ABO 经过旋转、平移变化后得到如图15.1所示的BCD .若直线 PC 将ABC 的面积分成 1: 3 两部分,求此时点P 的坐标;(3)现将ABO 、BCD 分别向下、向左以 1: 2 的速度同时平移,求出在此运动过程中ABO 与BCD 重叠部分面积的最大值.yACB O D x图15.13.如图,已知抛物线y= ax2+ bx+ c( a≠ 0) 的对称轴为直线 x=- 1,且经过A( 1,0), C(0, 3)两点,与x 轴对称轴 x=- 1 上的一个动点,求使△BPC为直角三角形的点P 的坐标.第25 题图4. 如图,在平面直角坐标系中,已知抛物线y ax2bx 8 与 x 轴交于 A,B 两点,与 y 轴交于点C,直线 l 经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接 CE,已知点 A, D 的坐标分别为否存在点F,使FOE ≌FCE ,若存在,请直接写出点 F 的坐标;若不存在,请说明理由;(3)若点P是y 轴负半轴上的一个动点,设其坐标为(0,m),直线 PB 与直线 l 交于点 Q.试探究:当m 为何值时,OPQ 是等腰三角形.5. 如图,抛物线 y=ax 2+bx﹣ 5( a≠0)经过点 A( 4,﹣ 5),与 x 轴的负半轴交于点 B ,与 y 轴交于点C,且 OC=5OB ,抛物线的顶点为点 D .( 1)求这条抛物线的表达式;( 2)联结 AB 、BC、CD 、DA ,求四边形 ABCD 的面积;( 3)6. 如图,已知抛物线 y=ax 2+bx+c 经过点 A (﹣ 3, 0), B (9, 0)和 C ( 0, 4). CD 垂直于 y 轴,交抛物线于点 D , DE 垂直与 x 轴,垂足为 E , l 是抛物线的对称轴,点F 是抛物线的顶点.( 1)求出二次函数的表达式以及点 D 的坐标;( 2)若 Rt △ AOC 沿 x 轴向右平移到其直角边OC 与对称轴 l 重合,再沿对称轴 l 向上平移到点 C 与点 F 重合,得到 Rt△ A 1O1F,求此时 Rt△ A1O1F 与矩形 OCDE 重叠部分的图形的面积;(3)若 Rt△ AOC 沿 x 轴向右平移 t 个单位长度( 0< t≤6)得到 Rt△ A 2O2C2,Rt△ A 2O2C2与 Rt△ OED 重叠部分的图形面积记为S,求 S 与 t 之间的函数表达式,并写出自变量t 的取值范围.7.如图,抛物线 y=ax 2+bx+c 的图象经过点 A (﹣ 2, 0),点 B(4,0),点 D( 2, 4),与 y 轴交于点 C,作直线BC ,连接 AC , CD .( 1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ ECD=∠ ACO的点E的坐标;( 3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点C,M , N, P 为顶点的四边形是菱形,求菱形的边长.8.如图,在平面直角坐标系 xOy 中,抛物线 y=ax 2+bx 经过两点 A (﹣ 1, 1), B ( 2, 2).过点 B 作 BC∥ x存在点 M ,使得△ BCM 的面积为,求出点 M 的坐标;( 3)连接 OA 、 OB 、OC、 AC ,在坐标平面内,求使得△ AOC 与△ OBN 相似(边 OA 与边 OB 对应)的点 N 的坐标.1.【解答】解:( 1)∵直线y=x ﹣ 3 交于 A 、B 两点,其中点 A 在 y 轴上,∴ A (0, 3),∵ B ( 4, 5),∴,∴,∴抛物 解析式 y=x 2+x 3,( 2)存在, P (m ,m 2+m 3),( m < 0),∴ D ( m , m 3),∴ PD=|m 2+4m|∵ PD ∥ AO ,∴当 PD=OA=3 ,故存在以 O ,A ,P , D 点的平行四 形,∴|m 2+4m|=3,① 当 m 2+4m=3 ,∴ m 1= 2, m 2= 2+(舍),∴ m 2+m 3= 1,∴ P ( 2, 1),21212,∴ P ( 1,),② 当 m +4m= 3 ,∴ m = 1, m = 3,Ⅰ、 m =1,∴ m +m 3=Ⅱ、 m 2= 3,∴ m 2+m 3=,∴ P ( 3,),∴点 P 的坐 ( 2,1),( 1 ,),( 3,).( 3)如 ,∵△ PAM 等腰直角三角形,∴∠ BAP=45 °,∵直 AP 可以看做是直AB 点 A 逆 旋45 °所得,直 AP 解析式 y=kx 3,∵直 AB 解析式 y=x 3,∴ k==3,∴直 AP 解析式 y=3x3, 立 ,∴ x 1=0(舍) x 2=当 x= , y= ,∴P ( ,).2. 解析:( 1)∵ A(0, 2)、 B( 1,0) ,将ABO 旋 、平移 化得到如 4.1所示的 BCD ,∴ BDOA 2,CD OB 1, BDCAOB 90 . ∴ C 1,1 . ⋯⋯⋯⋯⋯⋯⋯ (1 分 )yA 、B 、C 三点的抛物 解析式y ax 2 bx c ,Aab c 0P EC3 1有 ab c 1 ,解得: a2 ., b,cx22B FOc 2D∴抛物 解析式y3 x 2 1 x2 .22图 4.1( 2)如 4.1 所示, 直PC 与 AB 交于点 E . ∵直 PC 将ABC 的面 分成 1: 3 两部分,∴ AE1 或 AE 3, E 作 EF OB 于点 F , EF ∥ OA .BE3 BE∴ BEF ∽BAO , ∴EFBE BF . ∴当 AE 1 , EF 3BF ,AOBA BO BE 3 241∴EF3, BF 3,∴ E (1 324,) .4 2直 PC 解析式 ymx n , 可求得其解析式 y2 x 7 ,31 272552 39∴2 ,∴(舍去),∴.xx 2xx 1, x 2 11) 25P ( ,2555 25当AE3 ,同理可得 P 2 ( 6 ,23) .BE7 49( 3) ABO 平移的距离 ,A 1B 1O 1 与 B 2C 1D 1 重叠部分的面 S .可由已知求出A 1B 1 的解析式 y2 x2 t , A 1B 1 与 x 交点坐 (t2,0) .2C 1B 2 的解析式 y1 x t 1, C 1 B 2 与 y 交点坐 (0, t1) .⋯⋯⋯ (9 分 )3 222①如 4.2 所示,当0 tA 1B 1O 1 与 B 2C 1D 1 重叠部分 四 形 .,5A 1B 1 与 x 交于点 M ,C 1B 2 与 y 交于点 N , A 1 B 1 与 C 1B 2 交于点 Q , OQ .y 2 x2 tx4t 3y34t3 5t由11 ,得) .⋯⋯⋯⋯⋯ (10分 )t5t ,∴ Q (3,y x2 y3A 123C 1Q∴ SSQMOSQNO1 2 t5t1 (t1)3 4tNB 2 M O D 1223 22313 t 2 t 1∴ S 的最大25B 1 O 1..12452②如 4.3所示,当34, A 1B 1O 1 与图 4.2tB 2C 1D 1 重叠部分 直角三角形 .55yA 1B 1 与 x 交于点 H ,A 1B 1 与C 1D 1 交于点 G . G (1 2t, 4 5t ) ,D 1H 2 t1 2t45t2, D 1G 4 5t .A 12C 11 D 1H gD 1G 1g 4 5tg(4 5t)1(5t 4) 2∴ S.G2 2 24H∴当341 .B 2 D 1 Ot , S 的最大55425B 1 O 1上所述,在此运 程中ABO 与 BCD 重叠部分面 的最大.52图 4.3b1,a1,2ax 23. ( 1)依 意,得a b c 0, 解之,得 b2, ∴抛物 解析式 y2x 3 .c 3.c3.∵ 称 x =- 1,且抛物 A ( 1, 0),∴ B (- 3, 0). xxPC 2= ( - 1) 2+ (t - 3) 2=t 2- 6t + 10.①若 B 为直角顶点,则 22222-6t + 10.解之 , 得 t =- 2.BC + PB = PC ,即 18+ 4+ t =t ②若 C 为直角顶点,则2222+ 10= 2.解之,得 t = 4.BC + PC = PB ,即 18+ t - 6t 4+t③若 P 为直角顶点,则222,即 4 22+ 10= 18.解之,得 t 1= 317 , t 2 = 3 17 .PB + PC = BC + t + t - 6t224. 解答:( 1)抛物线 yax 2 bx 8 经过点 A (- 2, 0), D (6,- 8),4a 2b 8 0 a 11 x 23x 8 2 抛物线的函数表达式为 36a 6b8解得y8b32y1 x 23x 81 x 3 225 , 抛物线的对称轴为直线x 3.又抛物线与 x 轴交于 A ,B 两点,点 A 的222坐标为(- 2, 0). 点 B 的坐标为( 8, 0)设直线 l 的函数表达式为 y kx . 点 D ( 6,- 8 )在直线 l 上,6k=- 8,解得k4y4 x 点 E 为直线 l 和抛物线对称轴的交点.点 E 的横. 直线 l 的函数表达式为33坐标为 3,纵坐标为4 4 ,即点 E 的坐标为( 3,- 4 )33( 2)抛物线上存在点 F ,使 FOE ≌ FCE .点 F 的坐标为( 317, 4)或( 3 17, 4).( 3)解法一:分两种情况:①当 OPOQ 时, OPQ 是等腰三角形.点 E 的坐标为( 3,- 4), OE 324 25 ,过点 E 作直线 ME// PB , 交 y 轴于点 M ,交 x 轴于点 H ,则OMOE , OM OE5OPOQ点 M 的坐标为( 0,- 5).设直线 ME 的表达式为 yk x 53k5 4,解得k11 ME 的函数表达式为15,令 y=0,, , y x11331得 x 5 0 ,解得 x=15,点 H 的坐标为( 15, 0)3MH//PB ,OP OB ,即 m 8 , 8又mOMOH5153②当 QO QP 时, OPQ 是等腰三角形.当 x=0 时, y1 x 23 x88 , 点 C 的坐标为( 0,- 8),2CE32(8 4)25 , OE=CE ,12 ,又因为 QOQP ,13 ,38 4 ,解得 k 24,设直线交轴于点, 其函数表达式为,,23CE//PB CE x yk 2 x 8Nk 23CE 的函数表达式为y 4 x 8 ,令 y=0,得 4 x 8 0 , x6,点 N 的坐标为( 6, 0)3 3 CN//PB ,OP OB ,m8,解得 m 32OCON8 6 3m 的值为832时, OPQ 是等腰三角形.综上所述,当 或33解法二:当 x=0 时, y1 2 3x88 , 点 C 的坐标为( 0,- 8), 点 E 的坐标为x2( 3 ,- 4), OE32 42 5 , CE 32 (8 4)2 5 ,OE=CE ,12 ,设抛物线的对称轴交直线PB 于点 M ,交 x 轴于点 H .分两种情况: ① 当 QOQP 时, OPQ 是等腰三角形.13 ,2 3 , CE// PB又HM/ /y 轴, 四边形 PMEC 是平行四边形, EM CP 8 m ,HMHE EM4 ( 8 m) 4 mBH8 3 5 , HM//y轴,BHM ∽ BOP ,HM BH4 m5m32OPBOm83②当 OP OQ 时, OPQ 是等腰三角形.EH // y 轴,OPQ ∽ EMQ ,EQ EM , EQEMOQOPEM EQ OEOQ OE OP5 ( m) 5 m , HM4 (5m) ,EH // y 轴,BHM ∽BOP ,HM BHOPBO1 m5 m8 当 m 的值为8 32 时, OPQ 是等腰三角形.或m83335. 解:( 1) ∵ 抛物线 y=ax 2+bx ﹣ 5 与 y 轴交于点 C , ∴C ( 0,﹣ 5), ∴OC=5 . ∵ OC=5OB , ∴OB=1 ,又点 B 在 x 轴的负半轴上, ∴ B (﹣ 1, 0).∵ 抛物线经过点 A ( 4,﹣ 5)和点 B (﹣ 1, 0),∴,解得, ∴ 这条抛物线的表达式为 y=x 2﹣ 4x ﹣ 5.( 2)由 y=x 2﹣ 4x ﹣ 5,得顶点 D 的坐标为( 2,﹣ 9).连接 AC ,∵ 点 A 的坐标是( 4,﹣ 5),点 C 的坐标是( 0,﹣ 5), 又S△ABC = ×4×5=10, S △ACD = ×4×4=8,∴ S 四边形 ABCD =S △ABC +S △ACD =18.( 3)过点 C 作 CH ⊥ AB ,垂足为点 H . ∵ S △ABC = ×AB ×CH=10 ,AB=5 ,∴ CH=2,在 RT △ BCH 中, ∠ BHC=90 °, BC=, BH==3,∴ tan ∠CBH== .∵ 在 RT △ BOE 中, ∠ BOE=90 °, tan ∠ BEO= ,∵ ∠ BEO= ∠ ABC , ∴,得 EO= , ∴ 点 E 的坐标为( 0,6. 解:( 1) ∵ 抛物线 y=ax 2+bx+c 经过点 A (﹣ 3, 0), B ( 9, 0)和 C ( 0,4). ∴ 设抛物线的解析式为 y=a (x+3 )( x ﹣ 9), ∵ C ( 0,4)在抛物线上, ∴4=﹣ 27a ,∴ a= , ∴ 设抛物线的解析式为 y= ﹣ ( x+3 )( x 9 ) = ﹣ x 2,﹣﹣ + x+4 ∵ CD 垂直于 y 轴, C ( 0 4 ∴ ﹣ x 2 x+4=4 , ∴ x=6, ∵ D ( 6,4),, ) + ( 2)如图 1, ∵ 点 F 是抛物线 y= ﹣ x 2+x+4 的顶点,∴ F ( 3,), ∴ FH= , ∵GH ∥ A 1O 1,∴,∴ , ∴ GH=1 ,∵ Rt △ A 1O 1F 与矩形 OCDE 重叠部分是梯形 A 1O 1HG ,∴ S 重叠部分 =S △A1O1F ﹣S △FGH = A 1O 1×O 1F ﹣ GH ×FH= ×3×4 ﹣ ×1× = .( 3) ① 当 0< t ≤3 时,如图 2, ∵ C 2O 2∥ DE , ∴,∴, ∴ O 2G=t , ∴ S=S = OO 2×O 2G=t × t=t 2,△OO2G② 当 3< t ≤6 时,如图 3,∵ C 2 H ∥ OC ,∴,∴, ∴ C 2H= ( 6 ﹣ t ), ∴ S=S 四边形 A2O2HG =S △A2O2C2﹣S△C2GH= OA ×OC ﹣ C 2H ×( t ﹣3) = ×3×4﹣ × ( 6﹣ t )( t ﹣ 3)= t 2﹣ 3t+12∴ 当 0< t ≤3 时, S= t 2,当 3< t ≤6 时, S= t 2﹣ 3t+12.7. 解:( 1) ∵ 抛物线 y=ax 2+bx+c 的图象经过点 A (﹣ 2,0),点 B ( 4,0),点 D ( 2, 4),∴ 设抛物线解析式为 y=a ( x+2)( x ﹣ 4), ∴ ﹣ 8a=4, ∴ a=﹣,∴ 抛物线解析式为 y=﹣( x+2)( x ﹣ 4)=﹣ x 2+x+4 ;( 2)如图 1, ① 点 E 在直线 CD 上方的抛物线上,记E ′,连接 CE ′,过 E ′作 E ′F ′⊥ CD ,垂足为F ′,由( 1)知, OC=4 ,∵ ∠ ACO= ∠ E ′CF ′,∴ tan ∠ ACO=tan ∠E ′CF ′,∴=,设线段 E ′F ′=h ,则 CF ′=2h , ∴ 点 E ′( 2h ,h+4 )14∴ h=0 (舍) h= ∴ E ′( 1,),② 点 E 在直线 CD 下方的抛物线上,记 E ,同 ① 的方法得, E ( 3,),点 E 的坐标为( 1,),(3,)( 3) ① CM 为菱形的边,如图 2,在第一象限内取点P ′P ′ P ′N ′∥ y 轴,交 BC于 N ′ P ′ P ′M ′∥ BC ,,过点 作,过点 作 交 y 轴于 M ′, ∴ 四边形 CM ′P ′N ′是平行四边形, ∵ 四边形 CM ′P ′N ′是菱形,∴ P ′M ′=P ′N ′,过点 P ′作 P ′Q ′⊥ y 轴,垂足为 Q ′, ∵ OC=OB ,∠ BOC=90 °,∴ ∠ OCB=45 °, ∴ ∠ P ′M ′C=45 °,设点 P ′( m ,﹣ m 2+m+4 ),在 Rt △ P ′M ′Q ′中, P ′Q ′=m , P ′M ′= m , ∵ B ( 4, 0), C (0, 4),∴ 直线 BC 的解析式为 y= ﹣ x+4 ,∵ P ′N ′∥ y 轴, ∴ N ′( m ,﹣ m+4),∴ P ′N ′=﹣ m 2+m+4 ﹣(﹣ m+4) =﹣ m 2+2m , ∴ m= ﹣ m 2+2m , ∴ m=0 (舍)或 m=4 ﹣ 2 ,菱形 CM ′P ′N ′的边长为 ( 4﹣ 2 ) =4﹣ 4.② CM 为菱形的对角线,如图 3,在第一象限内抛物线上取点P ,过点 P 作 PM ∥BC ,交 y 轴于点 M ,连接 CP ,过点 M 作 MN ∥ CP ,交 BC 于 N ,∴ 四边形 CPMN 是平行四边形,连接PN 交 CM 于点 Q ,∵ 四边形 CPMN 是菱形, ∴ PQ ⊥ CM , ∠ PCQ=∠ NCQ , ∵ ∠OCB=45 °,∴ ∠ NCQ=45 ° ∴ ∠PCQ=45 ° ∴ ∠CPQ= ∠ PCQ=45° ∴ PQ=CQ, , , , 设点 P ( n ,﹣ n 2+n+4), ∴CQ=n , OQ=n+2 , ∴ n+4=﹣ n 2+n+4 , ∴ n=0 (舍), ∴ 此种情况不存在. ∴ 菱形的边长为4 ﹣ 4.8. 解:( 1)把 A (﹣ 1,1), B ( 2, 2)代入 y=ax 2+bx 得:,解得 ,故抛物线的函数表达式为y=x 2﹣ x , ∵BC ∥x 轴,设 C (x 0, 2). ∴ x 02﹣ x 0=2,解得: x 0=﹣或 x 0=2,∵ x 0< 0∴ C (﹣, 2);( 2)设 △BCM 边 BC 上的高为 h , ∵BC= , ∴ S △BCM =h=, ∴ h=2 ,点 M 即为抛物线上到 BC 的距离为2 的点, ∴ M 的纵坐标为 0 或 4,令 y=x 2﹣ x=0 , 解得: x 1 =0,x 2=,∴ M 1(0,0), M 2(, 0),令 y=x 2﹣x=4 ,解得: x 3=, x 4= ,∴ M 3( , 0), M 4(, 4),综上所述: M 点的坐标为:(0, 0),(, 0),(, 0),(, 4);( 3)∵ A (﹣ 1, 1), B( 2, 2), C(﹣, 2), D( 0, 2),∴ OB=2, OA=, OC=,∴ ∠ AOD= ∠ BOD=45 ° tan∠ COD=,①如图1,当△ AOC ∽ △ BON时,,∠ AOC= ∠ BON,,∴ ON=2OC=5 ,过 N 作 NE ⊥ x 轴于 E,∵ ∠ COD=45°﹣∠ AOC=45°﹣∠ BON=∠NOE,在 Rt△ NOE 中, tan∠ NOE=tan ∠ COD= ,∴ OE=4 , NE=3,∴ N(4,3)同理可得N (3, 4);②如图 2,当△ AOC ∽△ OBN 时,,∠ AOC=∠OBN,∴ BN=2OC=5,过 B 作 BG ⊥ x 轴于 G,过 N 作 x 轴的平行线交BG 的延长线于F,∴ NF⊥ BF,∵ ∠ COD=45 °﹣∠ AOC=45 °﹣∠ OBN= ∠NBF ,∴ tan∠NBF=tan ∠ COD= ,∴ BF=4,NF=3,∴ N (﹣ 1,﹣ 2),同理N (﹣ 2,﹣ 1),综上所述:使得△AOC与△ OBN相似(边OA 与边 OB 对应)的点N 的坐标是( 4, 3),( 3, 4),(﹣ 1,﹣ 2),(﹣ 2,﹣ 1).。
二次函数综合题经典习题(含答案)

P B A CO xyQ图3二次函数综合题训练题1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.2、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C.(1) 求这条抛物线的函数关系式.(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S.① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.E B A C P 图1 O xy D3、如图7,直线434+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒23个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ∆的面积为S .①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围;③设0S 是②中函数S 的最大值,那么0S = .4、如图5,已知抛物线c x b x a y ++=2的顶点坐标为E (1,0),与y 轴的交点坐标为(0,1). (1)求该抛物线的函数关系式.(2)A 、B 是x 轴上两个动点,且A 、B 间的距离为AB=4,A 在B 的左边,过A 作AD ⊥x 轴交抛物线于D ,过B 作BC ⊥x 轴交抛物线于C. 设A 点的坐标为(t ,0),四边形ABCD 的面积为S.① 求S 与t 之间的函数关系式.② 求四边形ABCD 的最小面积,此时四边形ABCD 是什么四边形?③ 当四边形ABCD 面积最小时,在对角线BD 上是否存在这样的点P ,使得△PAE 的周长最小,若存在,请求出点P 的坐标及这时△PAE 的周长;若不存在,说明理由.xy D 图5 E B A CO 1xyE O 1 备用图 C A MyB Ox 图7C A My B O x 备用 CA MyBOx 备用5、如图6,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。
2017中考数学二次函数压轴题含答案解析

选择性环氧合酶-2抑制剂的疗效和不良反应云宇;段为钢;沈志强【期刊名称】《国际药学研究杂志》【年(卷),期】2005(032)003【摘要】环氧合酶-2(COX-2)是环氧合酶-1(COX-1)的同工酶,共同参与前列腺素的生物合成.针对COX非选择性抑制剂的缺点,COX-2选择性抑制剂的发现是非甾体类抗炎药(NSAID)研究史上的一个里程碑,为开发疗效高、不良反应少的NSAID 开拓了新的前景.在10多年的应用中,选择性COX-2抑制剂的疗效已被广大患者和医务工作者肯定,但越来越多的资料表明,选择性COX-2抑制剂并非是理想中高效低毒的NSAID,本文就其疗效和不良反应进行简要综述.【总页数】4页(P176-179)【作者】云宇;段为钢;沈志强【作者单位】云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031;云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031;云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031【正文语种】中文【中图分类】R971+.1【相关文献】1.选择性环氧合酶抑制剂联合用药控制老年前列腺增生下尿路症状的疗效 [J], 王翼;徐婷;张勤;牛海涛2.选择性环氧合酶-2抑制剂NS-398依赖和不依赖环氧合酶-2途径抑制胰腺癌细胞作用机制的研究 [J], 刘华;万荣;周莹群;徐选福;郭传勇;王兴鹏3.环氧合酶- 2选择性抑制剂联合放疗治疗晚期食管癌的近期疗效观察 [J], 胡清;吴清明;马玉芳;王道梅;熊奎4.神经病理性痛后全脑环氧合酶表达的变化及不同选择性环氧合酶抑制剂镇痛效应的比较(英文) [J], 路志红;熊晓云;林国成;孟静茹;梅其炳5.应用选择性环氧合酶-2抑制剂在全膝关节置换术后的疗效及安全性 [J], 丁裕润;王博;王伟力;沈奕;王圆因版权原因,仅展示原文概要,查看原文内容请购买。
2017年中考数学之二次函数(带详解答案)

2017年中考数学之二次函数(带详解答案)一.选择题1.(2017•广安)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1 B.2 C.3 D.42.(2017•金华)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是23.(2017•台湾)已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b(x+1)(x﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位 B.向右平移4单位C.向左平移8单位 D.向右平移8单位4.(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣85.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.46.(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位7.(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<08.(2017•随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小9.(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)10.(2017•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>011.(2017•贵港)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 12.(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个13.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个14.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3 15.(2017•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B 作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.216.(2017•遂宁)函数y=x2+bx+c与函数y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③b<0;④方程组的解为,;⑤当1<x<3时,x2+(b﹣1)x+c>0.其中正确的是()A.①②③B.②③④C.③④⑤D.②③⑤17.(2017•泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm218.(2017•宿迁)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.2cm D.3cm19.(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.120.(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=m C.最大值为0 D.与y轴不相交21.(2017•宜宾)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A (1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个22.(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)23.(2017•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤24.(2017•兰州)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.325.(2017•盘锦)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A.2个 B.3个 C.4个 D.5个26.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0 27.(2017•乐山)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或28.(2017•眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2﹣ax()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣29.(2017•哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)30.(2017•南宁)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.31.(2017•牡丹江)若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5 B.﹣1 C.4 D.1832.(2017•包头)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y233.(2017•淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 34.(2017•枣庄)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大35.(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个36.(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.437.(2017•徐州)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<138.(2017•襄阳)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3 C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣3 39.(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0 40.(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0 41.(2017•泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个 B.2个 C.3个 D.4个42.(2017•荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根43.(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示.则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④44.(2017•常德)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣545.(2017•宁波)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限46.(2017•辽阳)如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1 D.1﹣或1+47.(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.48.(2017•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.649.(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C (2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣250.(2017•天津)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B 平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1 51.(2017•阜新)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c的图象可能是()A.B.C.D.52.(2017•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④53.(2017•黄石)如图,是二次函数y=ax2+bx+c的图象,对下列结论:①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.054.(2017•六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0 55.(2017•阿坝州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个56.(2017•宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣1 57.(2017•烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④58.(2017•鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个59.(2017•南充)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b60.(2017•兰州)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣6 61.(2017•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题1.(2017•百色)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.2.(2017•镇江)若二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,则实数n=.3.(2017•鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.4.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)5.(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是.6.(2017•玉林)已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是.7.(2017•永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程为m;(2)小球第n次着地时,经过的总路程为m.8.(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.9.(2017•广元)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc <0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有.10.(2017•仙桃)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为秒.11.(2017•牡丹江)若将图中的抛物线y=x2﹣2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是.12.(2017•广州)当x=时,二次函数y=x2﹣2x+6有最小值.13.(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.14.(2017•莱芜)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有(请将结论正确的序号全部填上)15.(2017•大祥区三模)把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是.16.(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.17.(2017秋•杜尔伯特县校级期中)抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.18.(2017•阿坝州)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.19.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.20.(2017•锦州)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是.(只填序号即可).21.(2017•天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)22.(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.23.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.24.(2017•乐山)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.25.(2017•河北)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.26.(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.27.(2017•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.28.(2017•上海)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)29.(2017•巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.30.(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.31.(2017•兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为.32.(2017•德阳)若抛物线y=﹣ax2+x﹣与x轴交于A n、B n两点(a为常数,a≠0,n为自然数,n≥1),用S n表示A n、B n两点间的距离,则S1+S2+…+S2017=.33.(2017•沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是元/件,才能在半月内获得最大利润.34.(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.35.(2017•衡阳)已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)三、解答题1.(2017•菏泽)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D 作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.2.(2017•日照)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x 轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C 交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.3.(2017•金华)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.4.(2017•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.5.(2017•荆门)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t 为整数,单位:天)的部分对应值如表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.6.(2017•南通)某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.…﹣﹣0﹣﹣﹣(1)请补全函数图象;(2)方程x3﹣2x=﹣2实数根的个数为;(3)观察图象,写出该函数的两条性质.7.(2017•辽阳)如图1,抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣2)两点,点C在y轴上,△ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE ⊥AC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF沿GF所在直线翻折,得矩形D'E'GF,当点D的对称点D'落在抛物线上时,求此时点D'的坐标;(3)如图2,在x轴上有一点M(2,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围.8.(2017•广安)如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.9.(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)10.(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?11.(2017•泰安)如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.12.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l 将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.13.(2017•荆州)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.14.(2017•朝阳)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].15.(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A (1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y 轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.16.(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.17.(2017•随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B 的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.18.(2017•巴中)如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.。
中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年09月30日二次函数综合题一.解答题(共8小题)1.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.2.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.3.如图;抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请回答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.(3)在抛物线的对称轴上是否存在点M,使得△MBC的面积是4?若存在请求出点M的坐标;若不存在请说明不存在的理由.4.如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿直线CD运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿直线AB运动,连接PQ、CB、PB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)5.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.6.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c 经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以2个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.7.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.8.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2017年09月30日二次函数综合题参考答案与试题解析一.解答题(共8小题)1.(2017•蜀山区校级模拟)如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.【分析】(1)根据抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,可以求得点B、C两点的坐标,由图象可知抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,从而可以求得点A的坐标;(2)根据抛物线过点A、B、C三点,从而可以求得抛物线的解析式.【解答】解:(1)∵抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,∴将x=0代入y=﹣x+6得,y=6;将y=0代入y=﹣x+6,得x=6.∴点B的坐标是(6,0),点C的坐标是(0,6).∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).即抛物线与x轴的两个交点A,B的坐标分别是(2,0),(6,0).(2)∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴4a+2b+c=0 36a+6b+c=0 c=6解得a=12,b=﹣4,c=6.∴抛物线的解析式为:y=12x2−4x+6.【点评】本题考查二次函数与x轴的交点,解题的关键是明确题意找出所求问题需要的条件.2.(2017•肥城市二模)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=1−132(m=1+132>0,舍),∴P(1−132,13−12).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴ADOD =DQ1DB,即56=135,∴DQ1=52,∴OQ1=72,即Q1(0,−72);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴OBOD =OQ2OB,即36=OQ23,∴OQ2=32,即Q2(0,32);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴OBQ3E =OQ3AE,即34−OQ3=OQ31,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,−72)或(0,32)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.3.(2017•河北模拟)如图;抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请回答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.(3)在抛物线的对称轴上是否存在点M,使得△MBC的面积是4?若存在请求出点M的坐标;若不存在请说明不存在的理由.【分析】(1)根据抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),可以求得抛物线的解析式;(2)将第(1)问求得的抛物线的解析式化为顶点式可以求得顶点D的坐标,对称轴与x轴交于点E的坐标,由B(﹣1,0),从而可以求得BE、DE的长,进而可以求得BD的长;(3)设出点M的坐标,根据第(1)问求得的函数解析式可以求得点C的坐标,从而可以得到BC的长度,设出点M的坐标,根据△MBC的面积是4,可以求得点M的坐标.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴c=3a+2×(−1)+c=0解得,a=﹣1,c=3,即抛物线的解析式为:y=﹣x2+2x+3;(2)∵物线的顶点为D,对称轴与x轴交于点E,y=﹣x2+2x+3=﹣(x﹣1)2+4,B(﹣1,0),∴点D的坐标是(1,4),点E的坐标是(1,0),∴DE=4,BE=2,∴BD=2+BE2=42+22=20=25,即BD的长是25;(3)在抛物线的对称轴上存在点M,使得△MBC的面积是4.设点M的坐标为(1,m),由﹣x2+2x+3=0得x=﹣1或x=3,即点B的坐标为(﹣1,0),点C的坐标为(3,0),∴BC=3﹣(﹣1)=4,∵△MBC的面积是4,∴S△BCM=BC×|m|2=4×|m|2=4,解得,m=±2,即点M的坐标为(1,2)或(1,﹣2).【点评】本题考查二次函数综合题、求函数的解析式、勾股定理、三角形的面积,解题的关键是明确题意,会求函数的解析式,能利用勾股定理可以求得直角三角形中某一边的长度,会求二次函数与x轴的交点,会利用三角形的面积探究抛物线上点的坐标.4.(2017•费县模拟)如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿直线CD运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿直线AB运动,连接PQ、CB、PB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)【分析】(1)把点D(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4解方程即可解答;(2)利用(1)中求得的抛物线,求得点A、B、C、D四点坐标,再利用矩形的判定与性质解得即可;(3)利用梯形的面积计算方法解决问题;(4)只考虑PQ=PB,其他不符合实际情况,即可找到问题的答案.【解答】解:(1)把点(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4得,a2﹣4a﹣4=8,解得:a1=6,a2=﹣2(不合题意,舍去),因此a的值为6;(2)由(1)可得抛物线的解析式为y=x2﹣6x+8,当y=0时,x2﹣6x+8=0,解得:x1=2,x2=4,∴A点坐标为(2,0),B点坐标为(4,0),当y=8时,x2﹣6x+8=8,解得:x 1=0,x 2=6,∴D 点的坐标为(0,8),C 点坐标为(6,8),DP=6﹣2t ,OQ=2+t ,当四边形OQPD 为矩形时,DP=OQ ,2+t=6﹣2t ,t=43,OQ=2+43=103, S=8×103=803, 即矩形OQPD 的面积为803;(3)四边形PQBC 的面积为12(BQ +PC )×8,当此四边形的面积为14时, 12(2﹣t +2t )×8=14, 解得t=32(秒), 当t=32时,四边形PQBC 的面积为14;(4)过点P 作PE ⊥AB 于E ,连接PB ,当QE=BE 时,△PBQ 是等腰三角形,∵CP=2t ,∴DP=6﹣2t ,∴BE=OB ﹣PD=4﹣(6﹣2t )=2t ﹣2,∵OQ=2+t ,∴QE=PD ﹣OQ=6﹣2t ﹣(2+t )=4﹣3t ,∴4﹣3t=2t ﹣2,解得:t=65, ∴当t=65时,△PBQ 是等腰三角形.【点评】此题考查待定系数法求函数解析式、矩形的判定与性质、矩形的面积、梯形的面积以及等腰三角形的判定等知识.5.(2016•玉林)如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A 在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)先求出直线BC解析式为y=﹣x+3,再求出抛物线顶点坐标,得出当x=1时,y=2;结合抛物线顶点坐即可得出结果;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),由勾股定理得出PB2=(m﹣3)2+(﹣m2+2m+3)2,PQ2=(m+3)2+(﹣m2+2m+3﹣n)2,BQ2=n2+36,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,由AAS证明△PQM≌△BPN,得出MQ=NP,PM=BN,则MQ=﹣m2+2m+3﹣n,PN=3﹣m,得出方程﹣m2+2m+3﹣n=3﹣m,解方程即可.【解答】解:(1)∵抛物线的对称轴x=1,B(3,0),∴A(﹣1,0)∵抛物线y=ax2+bx+c过点C(0,3)∴当x=0时,c=3.又∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0)∴a−b+3=09a+3b+3=0,∴a=−1 b=2∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵C(0,3),B(3,0),∴直线BC解析式为y=﹣x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4)∵对于直线BC:y=﹣x+1,当x=1时,y=2;将抛物线L向下平移h个单位长度,∴当h=2时,抛物线顶点落在BC上;当h=4时,抛物线顶点落在OB上,∴将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),则2≤h≤4;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,如图所示:∵B(3,0),∵△PBQ是以点P为直角顶点的等腰直角三角形,∴∠BPQ=90°,BP=PQ,则∠PMQ=∠BNP=90°,∠MPQ=∠NBP,在△PQM和△BPN中,{∠PMQ=∠BNP∠MPQ=∠NBPPQ=BP,∴△PQM ≌△BPN (AAS ),∴PM=BN ,∵PM=BN=﹣m 2+2m +3,根据B 点坐标可得PN=3﹣m ,且PM +PN=6,∴﹣m 2+2m +3+3﹣m=6,解得:m=1或m=0,∴P (1,4)或P (0,3).②当P 点在x 轴下方时,过P 点作PM 垂直于l 于M 点,过B 点作BN 垂直于MP 的延长线于N 点,同理可得△PQM ≌△BPN ,∴PM=BN ,∴PM=6﹣(3﹣m )=3+m ,BN=m 2﹣2m ﹣3,则3+m=m 2﹣2m ﹣3,解得m=3+ 332或3− 332. ∴P (3+ 332,− 33−92)或(3− 332, 33−92). 综上可得,符合条件的点P 的坐标是(1,4),(0,3),(3+ 332,− 33−92)和(3− 332, 33−92).【点评】本题是二次函数综合题目,考查了用待定系数法求出抛物线的解析式、抛物线的顶点式、等腰直角三角形的性质、全等三角形的判定与性质、坐标与图形性质等知识;本题综合性强,有一定难度,特别是(3)中,需要通过作辅助线证明三角形全等才能得出结果.6.(2017•定安县一模)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以2个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.【分析】(1)先求得直线AB与x轴、y轴的交点坐标,然后将点A、点B的坐标代入抛物线的解析式得到关于b、c的方程组求得b、c的值从而可得到抛物线的解析式;(2)由点A、B的坐标可知OB=OA,从而可求得∠BAO=45°,然后分为∠PQA=90°和∠QPA=90°两种情况求解即可;(3)由题意可知:EP∥FQ,EF∥PQ,故此四边形EFQP为平行四边形,从而得到PE=FQ,然后设点P的坐标为(t,0)则可表示出点Q、E、F的坐标,从而可求得PE、FQ的长,最后根据PE=FQ列方程求解即可.【解答】解:(1)∵y=﹣x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3).∵将A (3,0),B (0,3)代入得: −9+3b +c =0c =3,解得 b =2c =3, ∴抛物线的解析式为y=﹣x 2+2x +3.(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时.设运动时间为t 秒,则QA= 2t ,PA=3﹣t .在Rt △PQA 中,QA PA = 22,即 2t 3−t = 22. 解得:t=1.如图②所示:∠QPA=90°时.设运动时间为t 秒,则QA= 2t ,PA=3﹣t .在Rt △PQA 中,PA AQ = 22,即 2t= 22. 解得:t=32. 综上所述,当t=1或t=32时,△PQA 是直角三角形. (3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t.点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),即F(3﹣t,4t﹣t2),则FQ=4t﹣t2﹣t=3t﹣t2.∵EP∥FQ,EF∥PQ,∴四边形EFQP为平行四边形.∴EP=FQ,即3﹣t=3t﹣t2.解得:t1=1,t2=3(舍去).将t=1代入得点F的坐标为(2,3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数图象上的点的坐标与函数解析式之间的关系、待定系数法二次函数的解析式、等腰三角形三角形的性质和判定、平行四边形的判定,用含t的式子表示EP和FQ 的长是解题的关键.7.(2016•威海)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【分析】(1)用待定系数法求出抛物线解析式即可.(2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算;【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣1 2,∴抛物线解析式为y=﹣12(x+2)(x﹣4)=﹣12x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan ∠ACO=tan ∠E′CF′,∴AO CO =E′F′CF′=12, 设线段E′F′=h ,则CF′=2h ,∴点E′(2h ,h +4)∵点E′在抛物线上,∴﹣12(2h )2+2h +4=h +4, ∴h=0(舍)h=12∴E′(1,92), ②点E 在直线CD 下方的抛物线上,记E ,连接CE ,过E 作EF ⊥CD ,垂足为F ,由(1)知,OC=4,∵∠ACO=∠ECF ,∴tan ∠ACO=tan ∠ECF ,∴AO CO =EF CF =12, 设线段EF=h ,则CF=2h ,∴点E (2h ,4﹣h )∵点E 在抛物线上,∴﹣12(2h )2+2h +4=4﹣h , ∴h=0(舍)h=32∴E (3,52), 点E 的坐标为(1,92),(3,52) (3)①CM 为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y 轴,交BC 于N′,过点P′作P′M′∥BC ,交y 轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y 轴,垂足为Q′,∵OC=OB ,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m ,﹣12m 2+m +4), 在Rt △P′M′Q′中,P′Q′=m ,P′M′= 2m ,∵B (4,0),C (0,4),∴直线BC 的解析式为y=﹣x +4,∵P′N′∥y 轴,∴N′(m ,﹣m +4),∴P′N′=﹣12m 2+m +4﹣(﹣m +4)=﹣12m 2+2m , ∴ 2m=﹣12m 2+2m , ∴m=0(舍)或m=4﹣2 2,菱形CM′P′N′的边长为 2(4﹣2 2)=4 2﹣4.②CM 为菱形的对角线,如图3,在第一象限内抛物线上取点P ,过点P 作PM ∥BC ,交y 轴于点M ,连接CP ,过点M 作MN ∥CP ,交BC 于N ,∴四边形CPMN 是平行四边形,连接PN 交CM 于点Q ,∵四边形CPMN 是菱形,∴PQ ⊥CM ,∠PCQ=∠NCQ ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ ,设点P (n ,﹣12n 2+n +4), ∴CQ=n ,OQ=n +4,∴n +4=﹣12n 2+n +4, ∴n=0(舍),∴此种情况不存在.∴菱形的边长为4 2﹣4.【点评】此题是二次函数综合题,主要考查了待定系数法求抛物线解析式,菱形的性质,平行四边形的性质,判定,锐角三角函数,解本题的关键是用等角的同名三角函数值相等建立方程求解.8.(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ 即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,【解答】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点A(5,0),C(8,4),∴25a+5b=0 64a+8b=4,∴a=16b=−56,∴抛物线解析式为y=16x2﹣56x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(2)如图1,当P ,Q 运动t 秒,即OP=2t ,CQ=10﹣t 时,由(1)得,AC=OA ,∠ACQ=∠AOP=90°,在Rt △AOP 和Rt △ACQ 中,AC =OA PA =QA, ∴Rt △AOP ≌Rt △ACQ ,∴OP=CQ ,∴2t=10﹣t ,∴t=103, ∴当运动时间为103时,PA=QA ; (3)存在,∵y=16x 2﹣56x , ∴抛物线的对称轴为x=52, ∵A (5,0),B (0,10),∴AB=5 5设点M (52,m ), ①若BM=BA 时,∴(52)2+(m ﹣10)2=125,∴m 1=20+5 192,m 2=20−5 192, ∴M 1(52,20+5 192),M 2(52,20−5 192), ②若AM=AB 时,∴(52)2+m 2=125, ∴m 3=5 192,m 4=﹣5 192, ∴M 3(52,5 192),M 4(52,﹣5 192), ③若MA=MB 时,∴(52﹣5)2+m 2=(52)2+(10﹣m )2, ∴m=5, ∴M (52,5),此时点M 恰好是线段AB 的中点,构不成三角形,舍去, ∴点M 的坐标为:M 1(52,20+5 192),M 2(52,20−5 192),M 3(52,5 192),M 4(52,﹣5 192), 【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,三角形的全等的性质和判定,等腰三角形的性质,解本题的关键是分情况讨论,也是本题的难点.。