高一数学练习(16)——函数的单调性、最值(2)
高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.(1)若在上单调递减,求的取值范围.(2)若使函数和都在上单调递增,求的取值范围.【答案】(1);(2).【解析】(1)根据题意知,函数的定义域满足:在上恒成立,且函数在上单调递减,分别运用变量分离法和二次函数的单调性求出参数所满足的取值范围,取交集即可得出答案;(2)分别根据一次函数的图像和反比例函数图像知,当时,函数为单调递增的;当时,在上单调递增.试题解析:(1)由题意在上单调递减且在上恒成立.若在上单调递减,则,即;由在上恒成立得,当时显然成立;时可得:在上恒成立.因为,所以,故的取值范围是.(2)由函数在单调递增得: ,所以.又因为在上单调递增,所以.综上所述:的取值范围是.【考点】二次函数的单调性;一次函数的单调性;反比例函数的单调性.2.已知是定义在上的偶函数,且在上是增函数,设,,,则的大小关系是().A.B.C.D.【答案】C【解析】因为是定义在上的偶函数,且在上是增函数,所以在上为减函数,且;且,;又因为在上为减函数,所以.【考点】函数的单调性与奇偶性.3.已知函数是定义在的奇函数,当时,,若对任意的,不等式恒成立,则实数的最大值为()A.B.C.D.【答案】A【解析】当时,,∵函数是奇函数∴当x>0时,,∴∴f(x)在R上是单调递减函数,且满足9f(x+t)=f(3x+3t),不等式f(x)≤9f(x+t)在[t,t+1]恒成立,x≥3x+3t在[t,t+1]恒成立,即:在[t,t+1]恒成立,∴,解得,故实数t的最大值是.故选:A.【考点】函数恒成立问题, 函数的单调性与奇偶性.4.若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.(1)求m和a的值;(2)若点A(x0,y)是y=f(x)图象的对称中心,且x∈,求点A的坐标.【答案】(1)m=-或m=,a=2(2)或.【解析】(1)先通过二倍角公式、两角和与差的正弦公式将函数f(x)化简为的形式,根据T=可求出a,函数f(x)的最大值等于m等于A+b 可求m的值.(2)若点A(x0,y)是y=f(x)图象的对称中心,且x∈,求出x=,利用0≤≤,求出点A的坐标..试题解析:解:.(1)f(x)=sin2ax-sinaxcosax=sin2ax=,由题意知,m为f(x)的最大值或最小值,所以m=-或m=;由题设知,函数f(x)的周期为,∴a=2,所以m=-或m=,a=2.(2)∵f(x)=,∴令=0,得4x+=kπ(k∈Z),∴x=(k∈Z),由0≤≤(k∈Z),得k=1或k=2,因此点A的坐标为或.【考点】1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.正弦函数的对称性.5.已知函数在区间上具有单调性,则实数的取值范围是 .【答案】【解析】要使在区间上具有单调性,只需对称轴不在该区间即可,所以或即得的范围.【考点】二次函数的单调性.6.已知函数定义在(―1,1)上,对于任意的,有,且当时,。
高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.下列函数中,既是奇函数又是增函数的为A.B.C.D.【答案】D【解析】为非奇非偶函数,为偶函数,是奇函数,但在定义域内不是增函数。
【考点】奇函数与增(减)函数的定义。
2.定义在上的偶函数满足:对任意的,有则()A.B.C.D.【答案】B【解析】由对任意的,有可知在为减函数,,又为偶函数,故,.故选B.【考点】函数的性质的应用.3.已知函数,则下列结论正确的是().A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递减区间是D.是奇函数,递增区间是【答案】C【解析】,其图像如图所示,由图像得是奇函数,递减区间是.【考点】分段函数的图像与性质.4.已知函数是定义在上的偶函数,且当时,.现已画出函数在轴左侧的图象,如图所示,并根据图象:(1)写出函数的增区间;(2)写出函数的解析式;(3)若函数,求函数的最小值.【答案】(1);(2);(3).【解析】解题思路:(1)利用偶函数的图像关于轴对称,得到在轴右侧的图像,再利用图像写出单调递增区间;(2)设,则,求,再利用偶函数求的解析式;(3)讨论对称轴与区间的关系,求出最小值.规律总结:1.奇函数的图像关系原点对称,偶函数的图像关系轴对称;2.二次函数的图像开口向上时,离对称轴越近的点对应的函数值越小,离对称轴越远的点对应的函数值越大.试题解析:(1)在区间,上单调递增.(2)设,则.函数是定义在上的偶函数,且当时,(3),对称轴方程为:,当时,为最小;当时,为最小当时,为最小.综上,有:的最小值为.【考点】1.函数的图像;2.函数的单调性;3.函数的解析式;4.函数的最值.5.函数,使是增函数的的区间是________.【答案】【解析】令在R上是减函数,又因为函数在(-,1]是减函数,由复合函数的单调性可知的增区间为: (-,1]【考点】复合函数的单调性.6.已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.【答案】 .【解析】根据条件中是奇函数的这一条件可以求得使的的范围,再根据与的表达式,可以得到与的交集即是使恒成立的所有的全体,通过参变分离可以将问题转化为求使恒成立的的取值范围,通过求函数最大值,进而可以求出的范围.依题意,,又在上是增函数,∴在上也是增函数, 1分∴由得或 2分∴或 3分4分由得 5分即 6分∴ 7分设, 9分∵, 10分∴, 11分且 12分∴的最大值为 13分∴ 14分另解:本题也可用下面解法:1. 用单调性定义证明单调性∵对任意,,,∴,即在上为减函数,同理在上为增函数,得 5分∴.2. 二次函数最值讨论解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,4分由得恒成立,5分设, 6分∵,的对称轴为 7分1°当,即时,在为减函数,∴ 9分2°当,即时,∴ 11分3°当,即时,在为增函数,∴无解 13分综上, 14分3. 二次方程根的分布解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,,由得恒成立,,设,∵,的对称轴为,, 7分1°当,即时,恒成立。
高一 函数的单调性和最值 练习 含答案

训练目标 (1)函数单调性的概念;(2)函数的最值及其几何意义. 训练题型 (1)判断函数的单调性;(2)利用函数单调性比较大小、解不等式;(3)利用函数单调性求最值.解题策略(1)判断函数单调性常用方法:定义法、图象法、导数法、复合函数法;(2)分段函数单调性要注意分界点处函数值的大小;(3)可利用图象直观研究函数单调性. 1.函数f (x )=x 2-2mx -3在区间[1,2]上单调,则m 的取值范围是__________________.2.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________.3.函数f (x )=11-x (1-x )的最大值是________. 4.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5, x ≤1,2a x, x >1是(-∞,+∞)上的减函数,那么a 的取值范围是________.5.函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是________.6.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.7.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.8.(2015·上海黄浦区期中调研测试)若函数f (x )=2x 2+ax +1-3a 是定义域为R 的偶函数,则函数f (x )的单调递减区间是________.9.设函数f (x )=x 2+(a -2)x -1在区间(-∞,2]上是减函数,则实数a 的最大值为________.10.若定义在R 上的二次函数f (x )=ax 2-4ax +b 在区间[0,2]上是增函数,且f (m )≥f (0),则实数m 的取值范围是________.11.(2015·洛阳二模)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x ) (0<a <1)的单调减区间是________.12.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.13.(2015·福州一模)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为________.14.定义f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意的m ,n ∈N *,都有f (m +1,1)=2f (m,1),f (m ,n +1)=f (m ,n )+2.给出以下三个结论:(1) f (1,5)=9;(2) f (5,1)=16;(3) f (5,6)=26.其中正确结论的个数为________.答案解析1.(-∞,1]∪[2,+∞)2.[1,32) 3.434.(0,2]5.[2,4]6.23解析 令f (x )=0,得x =1;令f (x )=1,得x =13或3.因为f (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故b -a 的最小值为1-13=23. 7.(-1,+∞)解析 由题意知,存在正数x ,使a >x -12x , 所以a >(x -12x )min ,而函数f (x )=x -12x 在(0,+∞)上是增函数, 所以f (x )>f (0)=-1,所以a >-1.8.(-∞,0]解析 由已知得a =0,从而f (x )=2x 2+1,由复合函数的单调性可知函数f (x )的单调递减区间是(-∞,0].9.-210.0≤m ≤4 11.[a ,1]12.⎣⎡⎦⎤12,213.4解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在[12,+∞)上单调递增,故f (x )在(-∞,12]上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4.14.3解析 由f (m +1,1)f (m ,1)=2,得f (m,1)=f (1,1)2m -1=2m -1, 由f (m ,n +1)-f (m ,n )=2,得f (m ,n )=f (m,1)+2(n -1),∴f (m ,n )=2m -1+2(n -1). ∴f (1,5)=21-1+2×(5-1)=9,f (5,1)=25-1+2×(1-1)=16,f (5,6)=25-1+2×(6-1)=26.故正确结论的个数为3.。
(word完整版)高中数学函数的单调性和最值习题和详解

高中数学高考总复习函数的单调性与最值习题及详解一、选择题1 •已知f(x)=—X—X3, x€ [a, b],且f(a)f(b)<0,则f(x) = 0 在[a, b]内()A•至少有一实数根B.至多有一实数根C •没有实数根D.有唯一实数根[答案]D[解析]•••函数f(x)在[a, b]上是单调减函数,又f(a), f(b)异号•••• f(x)在[a, b]内有且仅有一个零点,故选 D.2 • (2010北京文)给定函数①y= x1,②y= log2(x+ 1),③y=x —11,④y= 2x+1,其中在区间(0,1)上单调递减的函数的序号是()A .①②B.②③C .③④D.①④[答案]B1 1 1[解析]易知y = X2在(0,1)递增,故排除A、D选项;又y= logq(x+ 1)的图象是由y= logqx的图象向左平移一个1单位得到的,其单调性与y= log^x相同为递减的,所以②符合题意,故选 B.1 1 13 • (2010 济南市模拟)设y1 = 0.43, y2= 0.53,y3= 0.54,则( )A • y3<y2<y1 B. y1<y2<y3C. y2<y3<y1D. y1<y3<y2[答案]B1 1[解析]•/ y= 0.5x为减函数,• 0.53<0.54,1•/ y= x3在第一象限内是增函数,1 1二0.43<0.53,二y1<y2<y3,故选 B.a _ 2 x ___ 1 x W14. (2010 •州市)已知函数,若f(x)在(—a, + a上单调递增,贝U实数a的取值范围为()log a x x>1A • (1,2) B. (2,3)C. (2,3]D. (2,+a)[答案]C[解析]••• f(x)在R上单调增,a>1a —2>0 , a —2 X1 —1 w log1••• 2<a W3,故选 C. 5.(文)(2010山东济宁)若函数f (x )= x 2+ 2x + alnx 在(0,1)上单调递减,则实数 a 的取值范围是()A . a > 0B . a <0 D . a <— 4[答案]Da 2x 2 + 2x + a[解析]•••函数 f(x)= x 2 + 2x + alnx 在(0,1)上单调递减,•••当 x € (0,1)时,f'x) = 2x + 2+- = ------- g(x)x — =2x 2 + 2x + a <0在 x € (0,1)时恒成立,• g(0) <p g(1) <p 即 a <— 4.n n(理)已知函数y = tan^x 在—2, 2内是减函数,贝卩3的取值范围是()A . 0< 1B . — 1 <o <0C . 3 》1D . 3<— 1[答案]Bn n[解析]•/ tansx 在—2,2上是减函数, • 3<0.当—n <x<2时,有n _冗3< c < 3X —7t3<0 6. (2010 天津文)设 a = log 54, b = (log 53)2, c = log 45,则( )A . a v c v bD . b v a v c[答案]D[解析] T 1>log 54>log 53>0,「. Iog 53>(log 53)2>0,而 Iog 45>1,「. c>a>b. 7 .若f(x)= x 3— 6ax 的单调递减区间是(一2,2),则a 的取值范围是( )A . (—s, 0]B . [ — 2,2]C . {2}D . [2,+ s)[答案]C[解析]f 'x) = 3x 2— 6a ,,…一1 <3<0.B . b v c v a 2 兀 n若a<0则f'x) >0 • f(x)单调增,排除A ;若a>0,则由f'x)= 0 得x= ± 2a,当x< —.2a 和x> ,2a 时,f'x)>0, f(x)单调增,当一.2a<x<,2a 时,f(x)单调减,••• f(x)的单调减区间为(—.2a, 2a),从而J2a = 2,a= 2.[点评]f(x)的单调递减区间是(一2,2)和f(x)在(—2, 2)上单调递减是不同的,应加以区分.1 18. (文)定义在R上的偶函数f(x)在[0,+ ^上是增函数,若f(?)= 0,则适合不等式f(log^7x)>0的x的取值范围是()1A . (3, + s) B. (0,刁1C . (0, + ) D. (0, 3) U (3 ,+s)[答案]D1 1[解析]•••定义在R上的偶函数f(x)在[0,+s上是增函数,且f( ) = 0,则由f(log丄x)>0,得|log丄x|>,即log!3 27 27 3 271 1 x>孑或log—x< —百.选D.327 3(理)(2010南充市)已知函数f(x)图象的两条对称轴x= 0和x= 1,且在x€ [—1,0]上f(x)单调递增,设a= f(3), b =f( 2), c= f(2),贝U a、b、c的大小关系是()A. a>b>cB. a>c>bC. b>c>aD. c>b>a[答案]D[解析]••• f(x)在[—1,0]上单调增,f(x)的图象关于直线x= 0对称,• f(x)在[0,1]上单调减;又f(x)的图象关于直线x= 1对称,• f(x)在[1,2]上单调增,在[2,3]上单调减.由对称性f(3) = f( —1)= f(1)<f( _2)<f(2),即a<b<c.x2+ 4x, x>09. (2009天津高考)已知函数f(x) = 2n若f(2 —a2)> f(a),则实数a的取值范围是()4x—x , x v 0.A . (— s,—1) U (2,+ s)B . ( —1,2)C . ( —2,1)D . (— s,—2) U (1 ,+ s)[答案]C[解析]■/ 时,f(x) = x2+ 4x= (x+ 2)2—4 单调递增,且f(x)当x<0 时,f(x)= 4x—x2=—(x —2)2+ 4 单调递增,且f(x)<0 ,• f(x)在R 上单调递增,由f(2 —a2)>f(a)得2—a2>a,•—2<a<1.10 . (2010泉州模拟)定义在R上的函数f(x)满足f(x + y) = f(x) + f(y),当x<0时,f(x)>0,则函数f(x)在[a, b]上有( )A .最小值f(a)B .最大值f(b)C .最小值f(b)D .最大值a +b f 2[答案]C[解析]令x = y= 0 得,f(0)= 0,令y=—x得,f(0) = f(x)+ f(—x),二f(—x)=—f(x)-对任意x i , X2 € R 且x i <X2,,f(x i) —f(X2)= f(x i) + f( —x2)=f(x i —X2)>0 ,.•• f(X l)>f(X2),••• f(x)在R上是减函数,••• f(x)在[a,b]上最小值为f(b).二、填空题b i11. (2010 重庆中学)已知函数f(x)= ax+ x—4(a, b 为常数),f(lg2) = 0,则f(lg^)= _____________[答案]—8[解析]令(Kx)= ax+ b,贝V H x)为奇函数,f(x) = $(x) —4,入•- f(lg2) = H lg2) —4 = 0 ,• H lg2)= 4,“ 1•-饥刁=f(—lg2) = H( —lg2) —4=—y ig2) —4=—8.12 .偶函数f(x)在(—s,0]上单调递减,且f(x)在[—2,k]上的最大值点与最小值点横坐标之差为3,则k= __________[答案]3[解析]•••偶函数f(x)在(—R, 0]上单调递减,• f(x)在[0,+ ^上单调递增.因此,若k WQ贝U k—(—2) = k + 2<3,若k>0,v f(x)在[—2,0]上单调减在[0,—k]上单调增,.••最小值为f(0), 又在[—2, k]上最大值点与最小值点横坐标之差为3,• k—0= 3,即k= 3.13 .函数f(x)= aX 1在(—m, —3)上是减函数,则a的取值范围是________________x+ 3[答案]1 ——OO ——_,314 . (2010 •苏无锡市调研)设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+^上是增函数,若f:=0 , f(log a t)>0,贝y t的取值范围是 _______ .[答(1,扫u (0,诵)案]1[解析]f(log a t)>0,即 f(log a t)>f 2, 1••• f(x)在(0,+ ^上 为增函数,二 log a t>2, 0<a<1 ,.°. 0<t<“Ja.1 i又 f(x)为奇函数,••• f — - =- f- = 0,r 1…f(log a t)>0 又可化为 f(log a t)>f — 2 , •••奇函数f(x)在(0 ,+8上是增函数,1• f(x)在(—8, 0)上为增函数,• 0>log a t> — 2,综上知,0<t< a 或1<t< a , 三、解答题15. (2010 北京市东城区)已知函数 f(x) = log a (x + 1) — log a (1 — x), a>0 且 a * 1. (1) 求f(x)的定义域;⑵判断f(x)的奇偶性并予以证明;⑶当a>1时,求使f(x)>0的x 的取值集合.[解析](1)要使 f(x) = log a (x + 1) — log a (1 — x)有意义,则 x + 1>0,解得—1<x<1.1 — x>0故所求定义域为{x — 1<x<1}.⑵由(1)知f(x)的定义域为{X — 1<x<1},且 f( — x) = log a ( — x +1)— log a (1 + x) = — [log a (x + 1) — log a (1 — x)] = — f(x),故 f(x)为奇函数. ⑶因为当a>1时,f(x)在定义域{x|— 1<x<1}内是增函数, x + 1所以 f(x)>0?产->1.1 — x 解得0<x<1.所以使f(x)>0的x 的取值集合是{x|0<x<1}.1 — mx 口 亠 p16. (2010北京东城区)已知函数f(x)= log a 是奇函数(a>0,a * 1) x — 1(1) 求m 的值;(2) 求函数f(x)的单调区间;(3) 若当x € (1,a — 2)时,f(x)的值域为(1,+8),求实数a 的值. “八卄亠1 — mx . 1+ mx 小•/ 0<a<1 ,1<t<1a ,[解析](1)依题意,f(—x)=—f(x),l卩f(x) + f(—x)= 0,即log a x—1 + log a—x—1 = 0,1 —mx 1 + mx•••—1,二(1 —m2)x2= 0 恒成立,x—1 —X—1 '•1 — m2= 0,「. m=—1或m= 1(不合题意,舍去)1 + x当m=—1时,由一>0得,x € (—汽一1) U (1,+s),此即函数f(x)的定义域,x —1又有f( —x) = —f(x),• m=—1是符合题意的解.1 + x⑵•/ f(x) = log a x z7,x—1 1 +X ,•- f x) = logx+ 1 x—1 &_ x—1 x—1 —x+1 2log a ex+1 x —1 2log a e—1—x2①若a>1,则log a e>0当x€ (1 ,+s 时,1 —x2<0 f'x)<0, f(x)在(1, +s上单调递减,即(1,+ s是f(x)的单调递减区间;由奇函数的性质知,(一s,—1)是f(x)的单调递减区间.②若0<a<1,则log a e<0当x€ (1 ,+s 时,1 —x2<0, • f'x(0,• (1 ,+s是f(X)的单调递增区间;由奇函数的性质知,(一s,—1)是f(x)的单调递增区间.1 + x 2(3)令t —------ —1 + -- ,贝U t为x的减函数x—1 x—1•- x€ (1, a —2),2 2• t€ 1+ ■,+ s且a>3,要使f(x)的值域为(1,+ s)需log a 1+ —1,解得a—2+ 3.a—3 a —31 —a _17 . (2010 山东文)已知函数f(x)—lnx—ax+ ——1(a€ R).入(1)当a ——1时,求曲线y—f(x)在点(2, f(2))处的切线方程;⑵当a g时,讨论f(x)的单调性.2[解析](1)a ——1 时,f(x) —lnx+ x+- —1, x€ (0,+s).xx2+ x—2f—2—, x € (0,+ s)y x因此f' (—1,即曲线y—f(x)在点(2 , f(2))处的切线斜率为1.又f(2) —ln2 + 2,所以y—f(x)在(2, f(2))处的切线方程为y—(In2 + 2) —x—2,即x—y+ ln2 —0.WORD 格式.可编辑__ 1 — a ⑵因为 f(x)= lnx — ax + — - 1, 入1 a — 1 ax2 — x +1 — a所以 f ,x) = — a + -- =— — 2x € (0,+g). x x x令 g(x) = ax 2— x + 1 — a ,① 当 a = 0 时,g(x) = 1— x , x € (0, + g), 当 x € (0,1)时,g(x)>0 , f'x (O , f(x)单调递减; 当 x € (1 ,+g 时,g(x)<0,此时 f 'x)>0, f(x)单调递增; 1② 当 a 工0时 f'x)= a(x — 1)[x — ( — 1)],a(i )当a = 2■时,g(x)亘成立,f'x) WQ f(x)在(0,+ g 上单调递减;1 1(ii )当 0<a<2时,彳—1>1>0, x € (0,1)时,g(x)>0,此时 f'x)<0, f(x)单调递减;1x € (1 , -— 1)时,g(x)<0,此时 f 'x)>0, f(x)单调递增; a g(x)>0,此时 f 'x)<0, f(x)单调递减;③当 a<0 时,1— 1<0,ax € (0,1)时,g(x)>0,有 f'x (O , f(x)单调递减 x € (1,+g)时,g(x)<0,有 f 'x)>0, f(x)单调递增. 综上所述:当a W0时函数f(x)在(0,1)上单调递减,(1,+g 上单调递增; 1当a = $时,f(x)在(0 ,+g 上单调递减;11 1当Ovav :时,f(x)在(0,1)上单调递减,在(1, — 1)上单调递增,在(-—1 ,+g 上单调递减.2 a a 注:分类讨论时要做到不重不漏,层次清楚.1x € Q — 1 ,+ g)寸,。
高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.画出函数y=|x-1|的图象,并根据图象写出函数的单调区间,以及在各单调区间上,函数是增函数还是减函数。
【答案】见解析【解析】对于画含绝对值的函数的图像,先去绝对值号(注意一定要明确自变量的取值范围,选择与之对应的对应关系),写成分段函数,画出函数图像,函数图象从左到右上升的区间为增区间,下降的区间为减区间,结合图象可得答案.试题解析:由y=|x-1|=画出函数的图像,可得函数的单调区间是,1)减函数,)增函数。
【考点】查函数的单调性,数形结合是解决问题的关键2.函数的最小值为.【答案】5.【解析】首先将函数化简为,该式子可以看作是点到两个定点、的距离.即将求“函数的最小值”问题转化为“求的最小值” ,作出函数图像如下图所示,过点作其关于轴的对称点,连接,交轴于点.此时由三角形的两边之和大于第三边可得:此时取得最小值,即,即为所求.【考点】直线方程的应用.3.已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且,则下列结论正确的是()A.B.C.D.【答案】B【解析】∵奇函数在[-1,0]上是减函数,∴在[0,1]上是增函数,又∵是锐角三角形两内角,∴,又∵,∴,∴,B正确,A错误;.对于C,D:∵为锐角三角形两内角,∴,∴,即,∴,∴C正确,D错误.【考点】1、奇函数单调性的判断;2、三角函数值的大小比较.4.下列函数在其定义域上,既是奇函数又是减函数的是()A.B.C.D.【答案】C【解析】由奇函数和减函数的概念可知选C.【考点】1.函数的奇偶性;2.函数增减性.5.设定义域为的函数(Ⅰ)在平面直角坐标系内作出函数的图象,并指出的单调区间(不需证明);(Ⅱ)若方程有两个解,求出的取值范围(只需简单说明,不需严格证明). (Ⅲ)设定义为的函数为奇函数,且当时,求的解析式.【答案】(Ⅰ)作图岁详解.单增区间:,,单减区间,;(Ⅱ)或;(Ⅲ).【解析】(Ⅰ)利用一次函数、二次函数的图象及对称性可作出图象,然后根据图象可写单调区间;(Ⅱ)考虑直线与函数的图象只有两个交点时,写出满足的条件;(Ⅲ)当时,,由此可得到的解析式,然后利用函数奇偶性可求得的解析式,又由奇函数的特性易知,进而可求得的解析式.试题解析:(Ⅰ)如图.单增区间:,,单减区间,.(Ⅱ)在同一坐标系中同时作出图象,由图可知有两个解,须或,即或.(Ⅲ)当时,,因为为奇函数,所以,且,所以.【考点】1、分段函数的图象;2、函数单调性及奇偶性.6.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)【答案】(Ⅰ);(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【解析】(1)分析可知当时,车流速度为常数所以此时。
函数的单调性与最值练习附答案

1.函数f (x )=x1-x在( )A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数解析:选C .函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x -1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.2.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .因为f (x )在R 上为减函数,且f ⎝⎛⎭⎫1|x |<f (1),所以1|x |>1,即0<|x |<1, 所以0<x <1或-1<x <0.3.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C .法一:由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k 的取值范围是(-∞,8]∪[40,+∞).故选C .法二:取k =0,则函数f (x )=8x 2-7在[1,5]上为单调递增函数,所以排除B 、D ;取k =40,则函数f (x )=8x 2-80x -7在[1,5]上为单调递减函数,所以排除A .故选C .4.(2018·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C .由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2,因为f (x )=x -2在[-2,1]上是增函数, 所以f (x )≤f (1)=-1,因为f (x )=x 3-2在(1,2]上是增函数, 所以f (x )≤f (2)=6, 所以f (x )max =f (2)=6.5.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B .因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2018·湖北八校联考(一))设函数f (x )=2xx -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M=________.解析:易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.答案:837.函数f (x )=|x -1|+x 2的值域为________.解析:因为f (x )=|x -1|+x 2=⎩⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1,所以f (x )=⎩⎨⎧⎝⎛⎭⎫x +122-54,x ≥1⎝⎛⎭⎫x -122+34,x <1, 作出函数图象如图,由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭⎫34,+∞。
高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题1.已知函数在[5,20]上是单调函数,则的取值范围是A.B.C.D.【答案】C【解析】若在[5,20]上递增,则,若在[5,20]上递减,则,解得的取值范围是。
【考点】二次函数单调性的判断。
2.若正实数,满足,则()A.有最大值4B.有最小值C.有最大值D.有最小值【答案】C【解析】由基本不等式得,得,因此.因此.【考点】基本不等式的应用.3.函数的递增区间是___________________ .【答案】[1,+∞)【解析】试题分析:,由一元二次函数的单调性可知,开口向上,递增区间在对称轴右侧,递增区间为[1,+∞).【考点】一元二次函数的单调性.4.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m的取值范围为 .【答案】【解析】由题意得,解得,所以实数m的取值范围为【考点】抽象函数单调性5.对于函数().(1)探索并证明函数的单调性;(2)是否存在实数使函数为奇函数?若有,求出实数的值,并证明你的结论;若没有,说明理由.【答案】(1)单调增;(2).【解析】(1)直接利用增函数的定义证明;(2)法一:直接用定义,可得,法二:先由求得,再证明恒成立.试题解析:(1)任取,且,则,,,得在R上是增函数;(6分)(2)由,得,,又所以当时,为奇函数.(12分)【考点】(1)函数的单调性的定义;(2)函数的奇偶性.6.已知函数对任意实数恒有且当时,有且.(1)判断的奇偶性;(2)求在区间上的最大值;(3)解关于的不等式.【答案】(1)奇函数;(2);(3)当时,当时,当时,当时,【解析】(1)赋值法:先令,再令(2)根据以及当时,有,利用函数单调性的定义判断得出为上的减函数;并由单调性求其最值;(3)由(1)和(2)的结论,先将不等式化为;再由函数的单调性转化为关于的不等式对的不同取值,分别讨论不等式的解.试题解析:解(1)取则取对任意恒成立∴为奇函数.(2)任取,则又为奇函数∴在(-∞,+∞)上是减函数.对任意,恒有而∴在[-3,3]上的最大值为6(3)∵为奇函数,∴整理原式得进一步可得而在(-∞,+∞)上是减函数,当时,当时,当时,当时,【考点】1、赋值法解决抽象函数的有关问题;2、函数单调性的定义;3、分类讨论的思想.7.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是_______.【答案】【解析】因为在上是增函数,且,所以当时,,时,,又因为函数是定义在上的偶函数,所以的图像关于轴对称,所以当时,,时,,所以不等式即也就是或,解得或,故不等式的解集为.【考点】1.函数的奇偶性;2.函数的单调性.8.已知的单调增区间为 .【答案】【解析】对数函数为外函数求单调区间一定注意先求定义域,即,让后再利用同增异减的原则,因为外函数增只需找内函数的增即可.【考点】复合函数单调性.9.幂函数,其中,且在上是减函数,又,则=()A.0B.1C.2D.3【答案】B【解析】由题意知,解得,由知函数为偶函数,又因,所以,故选B.【考点】1.幂函数的解析式样 2.幂函数的单调性与奇偶性.10.下列函数中,既是奇函数又在定义域上是增函数的为A.B.C.D.【答案】D【解析】A: ,所以不是奇函数,故A不正确。
高中数学《函数单调性和最值》精选试题(详解)——精品文档

高中数学《函数单调性和最值》精选试题(详解)考点一、单调性1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
2.证明方法和步骤:(1).定义法(要求高一、高二会、高三不做要求) (2).导数法3.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。
4.单调性的应用(1).比较大小(2).解不等式;(3).求最值(值域)精选试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( )A .y =2x +1B .y =3x 2+1C .y =x2 D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞ 10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 . 18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学练习16——函数及其单调性(2) 2012/09/22
班级 姓名
1.设函数()f x 的定义域为I ,且存在1x I ∈,使1()f x M =,则下列关于最大值的说法正确
的是 ( )
A. 若对定义域I 内的某个00,()x f x M ≤成立,则M 是函数()y f x =的最大值.
B. 若对定义域I 内的有限个00,()x f x M ≤成立,则M 是函数()y f x =的最大值.
C. 若对定义域I 内的无数个00,()x f x M ≤成立,则M 是函数()y f x =的最大值.
D. 若对定义域I 内的任意00,()x f x M ≤成立,则M 是函数()y f x =的最大值.
2.设()2||1f x x =+,则下列关于函数()f x 的最小值的说法正确的是
( ) A. 最小值为3 B. 最小值为1 C. 最小值为0 D. 不存在最小值 3.函数1
()1(1)f x x x =
--的最大值是 ( ) A. 45 B. 54 C. 34 D.
43
4.函数()f x 式定义域上的单调递减函数.且过点(3,2)-和(1,2)-,则使|()|2f x <的自变量
x 的取值范围是
( ) A. (3,)-+∞ B. (3,1)- C. (,1]-∞ D. (,)-∞+∞ 5.已知函数()f x ax =和()b g x x =
在(0,)+∞上都是减函数,则函数2()h x ax bx c =++在(,0)-∞上
( ) A. 是增函数 B. 是减函数 C. 既不是增函数也不是减函数 D.单调性不能确定
6.已知函数26y x =+-则其值域为____________.
7.函数22()21f x x a x =+-(a 为常数)在区间[2,4]上的最小值为__________.
8.用m ax{,}a b 表示,a b 两个数中的最大值.设()max{4,10}(0)f x x x x =+-≥,则()f x 的最小值为__________.
9.函数y =_____________________.
10.()f x 是定义在(2,2)-上的减函数,且2(2)(12)0f m f m --->,则实数m 的取值范围
是______________________.
11.判断函数2()1
x f x x =-在区间(1,1)-上的单调性,并给出证明.
12.当(1,2)x ∈时,不等式240x m x -+<恒成立,求实数m 的取值范围.
13.求函数22116()4,[2,4]y x x x x x =+
-++∈的最大值.
14.用一批材料可以筑起长为200m 的围墙,如果用这批材料在靠墙的地方围成一块矩形场地,中间隔成三个面积相等的矩形(如图),则围成的矩形场地的最大面积是多少?。