26.1二次函数的概念
二次函数的概念

26.1.1 二次函数的概念一、回顾旧知1.函数的定义:一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个______的值,y 都有__________的值与其对应,那么我们就说x 是_______,y 是x 的______。
2.观察下列函数:(1)y = 2x+1 (2)y = -x-4()x y 23= (4)y = 5x 2(5)y = -4x (6)y = ax+1其中正比例函数有____,其一般形式为_________,正比例函数是_______的特例.一次函数有_________,其一般形式为_____________.反比例函数有_________,其一般形式为______________。
二、探索新知1.函数y=x+1 ,自变量是___,自变量的次数是___,y 是x 的____函数。
2.函数s=-2t-4 ,自变量是___,自变量的次数是___,s 是t 的____函数. 你能写出下列函数的表达式吗?①圆的半径是r(cm)时,面积s(cm2)与半径之间的关系___________,自变量是___,它的最高次数是______。
②设正方体的棱长为x ,表面积为y ,则y 与x 之间的关系是________,自变量是___,它的最高次数是______。
③多边形的对角线数d 与边数n 的函数关系为d=___________, 自变量是______,它的最高次数为______.④某工厂一种产品现在的年产量是20件,计划今后两年增加产量。
如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系为___________________,自变量为_______,它的最高次数为_________。
归纳:①②③④中的函数的最高次数都是____次的。
二次函数的定义:一般地,形如y =ax 2+bx+c (a,b,c 是常数,a ≠0) 的函数,叫做二次函数。
上海教育版数学九年级上册26.1《二次函数的概念》教案

教学目标:1、理解二次函数的概念;掌握二次函数解析式的典型特征,能判断用解析式表示出来的两个变量之间的关系是不是二次函数。
2、对简单的实际问题,能根据具体情景中两个变量之间的依赖关系列出二次函数解析式,并确定函数的定义域。
3、经历从实际问题引进二次函数概念的过程,体会用函数去描述、研究变量之间的变化规律的意义。
4、培养学生的观察、分析、总结能力,让学生体会二次函数是研究和解决生产、生活实际问题的有用工具。
教学重点:引进二次函数的概念,并帮助学生理解概念,初步学会用二次函数描述实际问题中两个变量之间的依赖关系。
教学难点:让学生根据具体问题情景中两个变量之间的依赖关系列出二次函数解析式,并确定函数的定义域。
教学用具:多媒体工具。
教学过程:[复习] 函数的意义,一次函数、正比例函数、反比例函数的解析式和定义域。
[新知探索1 ] (学生探索回答)1、请用适当的函数解析式表示下列问题情境中的两个变量y 与x 之间的关系:(1)圆的面积y (cm2)与圆的半径x ( cm );(2)某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y万元;(3)一个边长为4厘米的正方形,若它的边长增加x厘米,则面积随之增加y平方厘米,求y 关于x的函数解析式。
2、仔细观察上述三个问题中的函数解析式具有哪些共同的特征?(1)y =πx2(2)y = 2(1+x)2=2x2+4x+2 (3)y= (x+4)242= x2+8x3、得出结论:经化简后都具有y=ax²+bx+c 的形式,a,b,c是常数, a≠0。
[讲授]我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,a为二次项系数,b为一次项系数,c为常数项。
注:在二次函数中,含x的代数式必须是整式,含x项的最高次数为2,可以没有一次项和常数项,但不能没有二次项。
[新知探索2 ] 问题:是否任何情况下二次函数中的自变量的取值范围都是任意实数呢?例如:圆的面积y ( cm2 )与圆的半径x(cm)的函数关系是y =πx2, 其中自变量x能取哪些值呢?(x>0)注意:在实际应用问题中, 必须注意函数的定义域,自变量x的取值符合实际意义. [趣味练习] (演练竞技场)6个动物的图片,每个图片后面都有一个题目,学生可以选择动物的图片来回答后面的题目,同学可以一起帮助解决问题。
26.1二次函数(7)有关符号的判断

精讲点拨:
抛物线y=ax2+bx+c的符号问题: (1)a的符号:由抛物线的开口方向确定 开口向上 开口向下 a>0 a<0
由抛物线与y轴的交点位置确定 (2)C的符号: 交点在x轴上方 c>0
交点在x轴下方
经过坐标原点
c<0
c=0
先定a的符号,由对称轴的位置确定 (3)b的符号:
对称轴在y轴左侧 对称轴在y轴右侧
开口向上
对称轴是:直线x 1
练习:
1.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( )A . A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
2.若所求的二次函数的图象与抛物线y=2x2 -4x-1 有相同的顶点,并且在对称轴左侧,y随x的增大而 增大,在对称轴右侧,y随x的增大而减小,则所求 的二次函数的解析式为( A ) A.y=-x2+2x-4 B.y=ax2-2ax+a-3(a>0) C.y=-x2-4x-5 D.y=ax2-2ax+a-3(a<0)
课堂作业
1.已知二次函数y=ax2+bx+c, 写出a、b、c、△的符号。 2.二次函数y=ax2+bx+c的图
c 像如图所示,求点M(b, ) a 所在得象限
3、已知抛物线y=-2x2+3x-1,画出 抛物线的草图。
4、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是 ( D )
练一练:
1、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中不正确的是 ( D ) y A、abc>0 B、b2-4ac>0
26.1二次函数教案[修改版]
![26.1二次函数教案[修改版]](https://img.taocdn.com/s3/m/d505746a51e79b8969022662.png)
第一篇:26.1二次函数教案26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[创新思维](1)正方形边长为a(cm),它的面积s(cm)是多少?s = a(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.y = (4+x)(3+x)−4×3 = x+7x222请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.二次函数的概念:形如ax+bx+c = 0(a≠0,a、b、c为常数)的函数叫二次函数.2[实践与探索]例题:补充例题:1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数.解若函数解得因此,当,且,且时,函数..是二次函数,须满足的条件是:是二次函数,则是二次函数.的函数只有在的条件下才是二次函数.回顾与反思形如探索若函数值?是以x为自变量的一次函数,则m取哪些2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;222(2)由题意,得(3)由题意,得其中y是x的一次函数;,其中y是x的二次函数;(x≥0且是正整数),(4)由题意,得数.,其中S是x的二次函3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.2解(1)(2)当x = 3cm时,;(cm).2[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)为二次函数?2.当k为何值时,函数3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数2.已知二次函数是二次函数,求m的值.,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x 为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.(D.6.下列函数关系中,可以看作二次函数A.在一定的距离内汽车的行驶速度与行驶时间的关系)模型的是()B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)圆的周长与圆的半径之间的关系典型例题1.下列各式中,y是x的二次函数的是( ) A.x+y−1 = 0 B.y = (x+1)(x−1)−xC.y = 1+22D.2(x−1)+3y−2 = 0 答案:D2 4说明:选项A、C都不难看出关系式中不含x的平方项,因此,都不满足二次函数的定义,选项B,y = (x+1)(x−1)−x可化简为y = −1,也不满足二次函数的定义,只有选项D是正确的,答案为D.2.下列函数中,不是二次函数的是( )2A.y = 1−x B.y = 2(x−1)+4 C.y =2222(x−1)(x+4) D.y = (x−2)−x22答案:D说明:选项D,y = (x−2)−x可化为y = −4x+4,不是二次函数,而选项A、B、C中的函数都是二次函数,答案为D.3.函数y = (m−3)是二次函数,则m的值为:(答案:−3)说明:因为y = (m−3)且m≠3,即m = −3.4.已知函数y = ( 4a +3)是二次函数,所以m2−7 = 2,且m−3≠0,因此有m = ±3,+x−1是一个二次函数,求满足条件的a的值.解:∵y = ( 4a +3)+x−1是一个二次函数,∴,解得a = 1.习题精选21.在半径为4 cm的圆中,挖去一个半径为x(cm)的小圆,剩下的圆环面积为y(cm),则y与x之间的函数关系式为( ) A.y = πx−4 B.y = π(2−x)C.y = −(x+4) D.y = −πx+16π答案:D说明:半径为4cm的圆,面积为16π(cm),挖去的小圆面积为πx(cm),所以剩下的圆环222面积为(16π-πx)(cm),即有y =-πx+16π,答案为D.2.若圆锥的体积为Vcm,高为6cm,底面半径为rcm.写出V与r之间的函数关系式,并判断它是否是二次函数?此题考查圆锥的体积公式及二次函数的概念.32222222解:由题意得:V=n+2πr×6,即V=2πr,此函数是二次函数.223.若函数y=2x+1是二次函数,求n的值.此题考查二次函数概念中关于自变量的二次式.解:由题意得:n+2=2 ∴n=04.若函数y=(a−1)x+x+1是二次函数,求a、b的取值范围.b+12 5此题综合考查二次函数的概念,分三种情况讨论:(1)(a−1)x是二次项(2)(a−1)x是一次项(3)(a−1)x是常数项.解:分三种情况:b+1b+1b+1(1)∴b = 1,a≠1(2)∴b = 0,a≠1(3)a−1 = 0 ∴a = 1∴a = 1;b = 0且a≠1且b = 15.一个长方形的周长为50cm,一边长为x(cm),求这个长方形的面积y(cm)与一边长x(cm)之间的函数关系式,并写出自变量x的取值范围答案:y=−x+25x,0说明:由已知不难得出,该长方形的另一边长为50÷2−x,即25−x,长方形的两边长则分别为x、25−x,而这两边长都应该大于0,即x>0且25−x>0,同时,该长方形的面积为22x(25−x)=−x+25x,即有y=−x+25x,06.小明存入银行人民币200元,年利率为x,两年到期,本息和为y元(以单利计算).(1)求y与x之间的函数关系式.(2)若年利率为2.25%,求本息和.(3)若利息税率为20%,求到期时,小明实际所得利息.答案:(1)y=200+400 (2)209 (3)7.2元说明:(1)两年到期的利息应该是2×200x,即400x,所以本息和y=200+400x(2)当x=2.25%时,y=200+400×2.25%=209(3)实际所得利息为2×200×2.25%×(1−20%)=7.2.22 6第二篇:《26.1二次函数》教学反思《26.1二次函数》教学反思龙潭镇第一初级中学黄海东这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。
沪教版九年级上册数学 26.1二次函数的概念(解析版)

26.1二次函数的概念一、单选题1.(2020·上海市静安区实验中学初三课时练习)下列函数中是二次函数的是( )A .12y x =+B .21y x x=- C .22(1)y x x =-- D .23(1)y x =-【答案】D 【解析】解:A 、是一次函数,故A 不符合题意; B 、函数关系式不是整式,故B 不符合题意; C 、是一次函数,故C 不符合题意; D 、是二次函数,故D 符合题意; 故选:D .2.(2020·上海市静安区实验中学初三课时练习)函数2y ax bx c =++ (a ,b ,c 为常数)是二次函数的条件是( ). A .0a ≠或0c ≠ B .0a ≠ C .0b ≠且0c ≠ D .0a b c ++≠【答案】B 【解析】由二次函数定义可知,自变量x 和应变量y 满足2y ax bx c =++ (a ,b ,c 为常数,且0a ≠)的函数叫做二次函数; 故选:B . 【点睛】本题考察了二次函数的知识,求解的关键是准确掌握二次函数的定义,从而得到答案. 3.(2020·上海市静安区实验中学初三课时练习)若y=(2-m)22m x -是二次函数,则m 等于( ) A .±2 B .2C .-2D .不能确定【答案】C 【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可. 解答:解:根据二次函数的定义,得:m 2-2=2 解得m=2或m=-2 又∵2-m≠0 ∵m≠2∵当m=-2时,这个函数是二次函数. 故选C .4.(2020·上海市静安区实验中学初三课时练习)在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A .216y x ππ=-+ B .24y x π=- C .2(2)y x π=-D .2(4)y x =-+【答案】A 【解析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积. 解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π, ∵圆环面积216y x ππ=-. 故选:A .5.(2020·乐陵市实验中学月考)二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9C .2,6,9D .2,-6,-9【答案】D 【解析】根据二次函数的标准形式即可得到答案.二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为2,-6,-9. 故选:D . 【点睛】本题考查了二次函数的一般形式,属于基础题,熟知二次函数的一般形式是解题的关键.6.(2020·全国初三课时练习)已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( ) A .y =2x 2+4x ﹣1 B .y =x 2+4x ﹣2 C .y =﹣2x 2+4x +1 D .y =2x 2+4x +1【答案】A 【解析】将2组x 、y 值代入函数,得到关于a 、c 的二元一次方程,求解可得函数表达式.解:根据题意得48145a c a c -+=-⎧⎨++=⎩,解得21a c =⎧⎨=-⎩,所以抛物线解析式为y =2x 2+4x ﹣1. 故选A .7.(2020·全国初三课时练习)下列函数关系中,是二次函数的是( ) A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系 B .当距离一定时,火车行驶的时间t 与速度v 之间的关系 C .等边三角形的周长C 与边长a 之间的关系 D .半圆面积S 与半径R 之间的关系 【答案】D 【解析】根据二次函数的定义,分别列出关系式,进行选择即可. A 选项为y kx b =+,是一次函数,错误; B 选项为st v=不是二次函数,错误; C 选项为3C a =,是正比例函数,错误; D 选项为212S R π=,是二次函数,正确. 故选:D .8.(2020·全国初三课时练习)下列函数:∵23y =-; ∵22y x =; ∵(35)y x x =-; ∵(12)(12)y x x =+-,是二次函数的有: A .1个 B .2个C .3个D .4个【答案】C 【解析】根据二次函数的定义,对每个函数进行判断,即可得到答案.解:∵23y =-是二次函数,正确;∵22y x =不是二次函数,错误; ∵(35)y x x =-整理得253y x x =-+,是二次函数,正确;∵(12)(12)y x x =+-整理得214y x =-,是二次函数,正确; ∵一共有3个二次函数; 故选择:C.9.(2020·全国初三课时练习)若二次函数y=(m∵1)x 2-mx∵m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或1 【答案】C 【解析】由图像经过原点可知m 2-2m -3=0∵同时注意m∵1≠0.解∵由图像过原点可得,m 2-2m -3=0∵解得m=-1或3∵再由二次函数定义可知m∵1≠0∵即m≠-1∵故m=3. 【点睛】本题考查了二次函数的定义,很容易遗漏m∵1≠0.10.(2019·北京市第五十四中学初二期中)如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .【答案】D 【解析】Rt∵AOB 中,AB∵OB ,且AB=OB=3,所以很容易求得∵AOB=∵A=45°;再由平行线的性质得出∵OCD=∵A ,即∵AOD=∵OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.解:∵Rt∵AOB 中,AB∵OB ,且AB=OB=3, ∵∵AOB=∵A=45°, ∵CD∵OB , ∵CD∵AB , ∵∵OCD=∵A , ∵∵AOD=∵OCD=45°, ∵OD=CD=t , ∵S ∵OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .二、填空题11.(2020·上海市静安区实验中学初三课时练习)已知2()352f x x x =-+那么()2f =____________.【答案】4【解析】根据题意,令x =2,代入二次函数求值. 解:(2)345224f =⨯-⨯+=.故答案是:4.12.(2020·上海市静安区实验中学初三课时练习)已知二次函数2y ax =,如果当x=-1时y=2,那么当x=2时,y=_____. 【答案】8 【解析】先根据x =-1时y =2求出a 的值,得到原函数,再令x =2,求出y .解:当x =-1 ,y =2时,()221a =⋅-,2a =,∵22y x =,当x =2时,()2228y =⨯=. 故答案是:8.13.(2020·上海市静安区实验中学初三课时练习)半径为5的圆,如果半径增加x 时,面积增加y ,那么y 与x 的函数关系式是_____________________. 【答案】210y x x ππ=+ 【解析】根据题意,圆增加的面积等于现在的面积减原来的面积,分别用x 表示现在的面积和原来的面积,再相减列出函数关系式. 解:()()22225510252510y x x x x x ππππππ=+-=++-=+ .故答案是:210y x x ππ=+.14.(2020·上海市静安区实验中学初三课时练习)已知函数y=(k+2)24k k x +-是关于x 的二次函数,则k=________. 【答案】2或-3 【解析】根据二次函数的定义列出方程与不等式解答即可. ∵函数y=(k+2)24kk x +-是关于x 的二次函数,∵k 2+k ﹣4=2,解得k=2或﹣3, 且k+2≠0,k≠﹣2. 故答案为: 2或﹣3.15.(2020·上海初三月考)如果函数232(3)72k k y k x x -+=-++是关于x 的二次函数,则k =__________.【答案】0 【解析】根据二次函数的定义得到30k -≠且2322k k -+=,然后解不等式和方程即可得到k 的值.∵函数232(3)72kk y k x x -+=-++是关于x 的二次函数,∵30k -≠且2322k k -+=, 解方程得:0k =或3k =(舍去), ∵0k =. 故答案为:0.16.(2020·上海黄浦·初三一模)如果抛物线221y x x m =++-经过原点,那么m 的值等于________∵【答案】1【解析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可. 解:根据题意,知点(0,0)在抛物线221y x x m -=++上, ∵0=m -1, 解得,m =1; 故答案是:1.17.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________. 【答案】210S x x =-+ 【解析】广告牌的一边长是x 米,根据周长再用x 表示出另一边,矩形广告牌的面积等于长⨯宽. 解:另一边长为()10x -米,()21010S x x x x =-=-+.故答案是:210S x x =-+.18.(2019·四川绵阳·初三月考)函数y =(m 2﹣3m +2)x 2+mx +1﹣m ,则当m =_____时,它为正比例函数;当m =_____时,它为一次函数;当m _____时,它为二次函数. 【答案】1 1或2 m ≠1且m ≠2 【解析】(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,即可求得m 的值;(2)一次函数:y kx b =+2320m m ∴-+=且10m -≠,即可求得m 的值;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,即可求得m 的值;(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,解得m =1;(2)一次函数:y kx b =+2320m m ∴-+=,解得m =1或2,;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,解得m ≠1且m ≠2故当m =1时,它为正比例函数;当m =1或2时,它为一次函数;当m ≠1且m ≠2时,它为二次函数. 故答案为:1;1或2;m ≠1且m ≠219.(2020·江苏扬中·初三期末)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________ 【答案】6 【解析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.解:∵点(),1m 是二次函数221y x x =--图像上,∵2121m m =--则222m m -=.∵()223632326m m m m -=-=⨯= 故答案为:6.20.(2020·全国初三课时练习)∵∵∵∵O∵∵∵∵2∵C 1∵∵∵y=2x 2∵∵∵∵C 2∵∵∵y=∵2x 2∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵_______∵【答案】2π【解析】试题分析:根据题意可知两个函数的图像关于x 轴对称,通过对称性可知阴影部分为一个半圆,求半圆的面积为π×22÷2=2π. 故答案为2π.三、解答题21.(2020·上海市静安区实验中学初三课时练习)已知:二次函数22(1)1y m x x m =-++-的图像经过原点,求m 的值,并写出函数解析式. 【答案】函数解析式为22y x x =-+ 【解析】根据二次函数图象过原点,把()0,0这个点代入函数解析式,求出m 的值,再写出函数解析式.解:令x =0,y =0,得201m =-,21m =,1m =±,∵是二次函数,∵二次项系数不能为零,即10m -≠,1m ≠,∵1m =-, 将1m =-代入原函数,得()()22211112y x x x x =--++--=-+,综上:1m =-,函数解析式为22y x x =-+.22.(2020·全国初三单元测试)一个二次函数y=(k ﹣1)x 234k k -++2x ﹣1.(1)求k 值.(2)求当x=0.5时y 的值? 【答案】(1)k=2;(2)y=14【解析】(1)根据二次函数的定义:一般地,形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数可得k 2-3k+4=2,且k -1≠0,再解即可;(2)根据(1)中k 的值,可得函数解析式,再利用代入法把x=0.5代入可得y 的值. 解:(1)由题意得:k 2﹣3k+4=2,且k ﹣1≠0, 解得:k=2;(2)把k=2代入y=(k ﹣1)234-+kk x +2x ﹣1得:y=x 2+2x ﹣1,当x=0.5时,y=14. 23.(2020·福建省连江第三中学初三月考)已知函数y=(m 2﹣m )x 2+(m ﹣1)x+m+1. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,则m 的值应怎样? 【答案】(1)、m=0;(2)、m≠0且m≠1. 【解析】根据一次函数与二次函数的定义求解. 解:(1)根据一次函数的定义,得:m 2﹣m=0 解得m=0或m=1 又∵m ﹣1≠0即m≠1;∵当m=0时,这个函数是一次函数; (2)根据二次函数的定义,得:m 2﹣m≠0 解得m 1≠0,m 2≠1∵当m 1≠0,m 2≠1时,这个函数是二次函数.24.(2020·安徽滁州·初三其他)定义:如果一个点的纵坐标是横坐标的二倍,则称该点为“倍点”(1)若点(,6)P m 是双曲线ky x=上的倍点,则k = ; (2)求出直线31y x =-上的倍点的坐标;(3)若抛物线241y x bx =++上有且只有一个倍点,求b 的值.【答案】(1)18;(2)(1,2);(3)b 的值是6或2-. 【解析】(1)根据“倍点”定义求出点P 的坐标为(3,6),即可求出k ;(2)设倍点的坐标为(,2)n n ,将点坐标代入解析式得到231n n =-,求出n 即可得到答案;(3))设抛物线241y x bx =++的倍点坐标为(,2)a a ,将点坐标代入241y x bx =++得到2412a ba a ++=,根据抛物线241y x bx =++上有且只有一个倍点,得到方程24(2)10a b a +-+=有两个相等是实数根,利用∆=0得到2(2)4410b --⨯⨯=,即可求出b.解:(1)∵点(,6)P m 是双曲线ky x=上的倍点, ∵2m=6,得m=3, ∵P (3,6), ∵3618=⨯=k , 故答案为:18;(2)设倍点的坐标为(,2)n n , 则231n n =-, 解得1n =,所以倍点的坐标为(1,2);(3)设抛物线241y x bx =++的倍点坐标为(,2)a a ,2412a ba a ∴++=,即24(2)10a b a +-+=, 该抛物线上有且只有一个倍点,∴方程24(2)10a b a +-+=有两个相等是实数根,则2(2)4410b --⨯⨯=, 解得6b =或2b =-, 所以b 的值是6或2-.25.(2020·湖北黄石八中)根据下面的运算程序,若输入1x =时,请计算输出的结果y 的值.【答案】2. 【解析】1的范围,然后根据分段函数解析式,代入相应的解析式进行计算即可求解.解:当输入1x =,因为011≤<,所以满足第二个函数解析式.所以211)2y =+=26.(2020·北京人大附中初三月考)某种型号的电热水器工作过程如下:在接通电源以后,从初始温度20℃下加热水箱中的水,当水温达到设定温度60℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到保温温度30℃时,再次自动加热水箱中的水至60℃,加热停止;当水箱中的水温下降到30℃时,再次自动加热,……,按照以上方式不断循环.小宇根据学习函数的经验,对该型号电热水器水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间.下面是小宇的探究过程,请补充完整:(1)小宇记录了从初始温度20℃第一次加热至设定温度60℃,之后水温冷却至保温温度30℃的过程中,y 随x 的变化情况,如下表所示:∵请写出一个符合加热阶段y 与x 关系的函数解析式______________;∵根据该电热水器的工作特点,当第二次加热至设定温度60℃时,距离接通电源的时间x 为________min . (2)根据上述的表格,小宇画出了当020x ≤≤时的函数图象,请根据该电热水器的工作特点,帮他画出当2040x ≤≤时的函数图象.(3)已知适宜人体沐浴的水温约为35C 50C ︒︒-,小宇在上午8点整接通电源,水箱中水温为20℃,热水器开始按上述模式工作,若不考虑其他因素的影响,请问在上午9点30分时,热水器的水温______(填“是”或“否”)适合他沐浴,理由是_________________.【答案】(1)∵()()25200812*******4x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩;∵26;(2)见详解;(3)否;加热至9点30分的温度为33︒,不在人体适合的温度范围内. 【解析】(1)∵根据表格数据特点,应用待定系数法求解即可;∵根据表格数据先确定从30加热至60︒需要的时间,再将所得时间加上第一次加热至保温的时间即得;(2)根据加热温度变化规律可知从30加热至60︒需要6min ,即可确定点()2660,, (3)根据表格数据特点,第一次加热需要20分钟,之后每18分钟一次循环,即可确定早上9点30分对应第一次加热的时间段. 解:(1)∵当08x ≤≤时,设解析式为:()0y kx b k =+≠将()()0202,30,,代入()0y kx b k =+≠并联立得: 20230b k b =⎧⎨+=⎩,解得:205b k =⎧⎨=⎩∵当08x ≤≤时,520y x =+当820x <≤时,设解析式为:()20y ax bx c a =++≠将()()()10,5112,4514,40,, 代入()20y ax bx c a =++≠并联立得:100105114412451961440a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得:1823496a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∵当820x <≤时,21239684y x x =-+ ∵第一次加热阶段y 与x 关系的函数解析式为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ 故答案为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ ∵根据表格数据可知从30加热至60︒需要6min∵当第二次加热至设定温度60℃时,距离接通电源的时间x 为20+6=26min 故答案为:26. (2)如下图:(3)从早上8点至早上9点30分,总共用时90分钟,且第一次加热需要20分钟至保温温度30,第一次以后每18分钟循环一次.∵90=20+183+16⨯,即最后一次重新加热至9点30分对应第一次的第18分钟的温度:33︒. ∵在上午9点30分时,热水器的水温不适合他沐浴.故答案为:否,加热至9点30分的温度为33︒,不在人体适合的温度范围内.。
二次函数的概念课件(共27张PPT)沪科版数学九年级上学期

26.1 二 次 函 数 的 概 念
上海教育出版社 九年义务教育课本 九年级 第一学期(试用本)
一、情境引入
一、情境引入
消防水枪的喷射路线
一、情境引入
投出的篮球
跳水比赛
一、情境引入
喷水池喷射出的一条水线
一、情境引入
问题1 我们已经学习过哪些函数?
问题2 从哪些方面研究这些函数?
方厘米,那么 y 关于 x 的函数解析式是__________.
问题6 把一根40厘米的铁丝分为两段,再分别把每一段弯折成一个正方形.设
其中一段铁丝长为 x 厘米,两个正方形的面积和为
y 平方厘米,那么 y
= − + . 定义域是_________.
关于 x 的函数解析式是_____________
问题3 如何研究新的函数?
实际问题
概
念
图
像
性
质
实际应用
一、情境引入
抛物线
一、情境引入
问题4 如果正方形的边长是 x 厘米,那么它的面积 y 平方厘米是边长 x 厘米的
函数,y 关于 x 的函数解析式是__________.
问题5 一个边长为4厘米的正方形, 若它的边长增加 x 厘米,则面积随之增加
的函数叫做二次函数. 其定义域为一切实数.
二次函数解析式的特点:
1.关于自变量的整式
2.自变量的最高次数为二次
3.二次项系数不为零
二、新知讲授
问题7 已知函数 y=ax2+bx+c (其中a、b、c是常数),那么 y 是 x 的什么函数?
(1)当 a≠0 时, y 是 x 的二次函数.
人教26.1二次函数图象及其性质

二次函数○引:二次函数:一般地,形如y=ax ²+bx+c (a ,b ,c 为常数,a ≠0)的函数,叫二次函数,其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数,一次项系数和常数项.○一:y=ax ²的图像及其性质 用描点法画出y=x ²的图像,(描点法三步骤:列表,描点,连线.分别注意,自变量的取值范围,坐标的表示,按横坐标的顺序把各点用平滑的曲线连接起来).同样的,用描点法画出y=-x ²的图像. 观察图像可理解“抛物线”的概念,同时图像具有对称性,(由于点(m ,m ²)和它关于y 轴的对称点(-m ,m ²)都在抛物线y=x ²上,所以抛物线y=x ²关于y 轴对称)最高点或最低点,即抛物线和对称轴的交点叫做抛物线的顶点.抛物线y=x ²与抛物线y=-x ²关于x 轴对称.再在抛物线y=x ²所在坐标系中画出函数y=½x ²的图像与函数y=2x ²的图像,比较共同点和不同点发现,开口都向上,顶点都是原点,但x ²的系数越大,抛物线的开口反而越小. 在抛物线y=-x ²所在坐标系中画出函数y=-½x ²的图像与函数y=-2x ²的图像,比较共同点和不同点发现,开口都向下,顶点都是原点,但x ²的系数越大,抛物线的开口越大.总结:一般地,抛物线y=ax ²的对称轴是y 轴,顶点是原点.a 的值互为相反数时,两条抛物线关于x 轴对称.(因为抛物线y=ax ²上的点(x ,x ²)与抛物线y=-x ²上的点(-x ,x ²)是关于x 轴对称的)|a|的绝对值相同,y=ax ²的形状相同.○二:y=a (x-h )²+k 的图像及其性质(1)y=ax ²+k 的图像用描点法在同一坐标系中画出y=x ²+1和y=x ²-1的图像,写出抛物线的开口方向、顶点和对称轴,对比y=x ²的图像、解析式、函数对应数值表、位置、形状等找出他们之间的关系. 可以发现把y=x ²向上平移一个单位就的到抛物线y=x ²+1,向下平移一个单位得到抛物线y=x ²-1.抛物线的形状相同,对称轴相同(顶点横坐标相同),顶点不同表示成(0,k )与k 有关(抛物线y=x ²上的点是(x ,x ²),将各个点纵坐标的数值+1即(x ,x ²+1),形成相应的新抛物线y=x ²+1就是将抛物线y=x ²向上平移一个单位)把抛物线y=2x ²向上平移5个单位,得到y=2x ²+5的图像. 总结:抛物线y=ax ²+k 的图像可由y=ax ²的图像上下平移得到,(上+下-)(增减性讨论同上)a >0时:抛物线开口向上,顶点是抛物线的最低点,除顶点外图像都在x 轴上方. a <0时:抛物线开口向下,顶点是抛物线的最高点,除顶点外图像都在x 轴下方.x<0时,y 随x 的增大而减小 x>0时,y 随x 的增大而增大x<0时,y 随x 的增大而增大 x>0时,y 随x 的增大而减小|a|的绝对值越大,抛物线的开口越小.k>0时,向上平移k 个单位长度 k<0时,向下平移|k|个单位长度.a>0时,开口向上;有最低点(0,k),当x=0时y 最小值=k ,图像在x 轴上方,与x 轴无交点a<0时,开口向下;有最高点(0,k),当x=0时y 最大值=k ,图像与x 轴有两个交点 a>0时,开口向上;有最低点(0,k),当x=0时y 最小值=k ,图像与x 轴有两个交点a<0时,开口向下;有最高点(0,k),当x=0时y 最大值=k ,图像在x 轴上方,与x 轴无交点(2)y=a (x-h )²的图像用描点法在同一坐标系中画出y=½(x+1)²和y=½(x-1)²的图像,写出抛物线的开口方向、顶点和对称轴,对比y=½x ²的图像、解析式、函数对应数值表、位置、形状等找出他们之间的关系.可以发现把y=½x ²水平向左平移一个单位就的到抛物线y=½(x+1)²,水平向右平移一个单位得到抛物线y=½(x-1)².抛物线的形状相同,对称轴发生变化x=h ,与h 有关,顶点不同,但顶点纵坐标都为0,可表示为(h ,0),(对称轴是经过点(h ,0)且与x 轴垂直的直线,这条直线上的所有点横坐标都是h ,因此记作x=h )总结:抛物线y=a (x-h )²的图像可由y=ax ²的图像左右平移得到,(增减性讨论同上)h>0时,向右平移,h 个单位长度,h<0,向左平移|h|个单位长度(左+右-).a>0时,开口向上,图象除顶点外在x 轴上方,a<0时,开口向下,图象除顶点外在x 轴下方.对称轴是直线x=h,顶点(h ,0).注意:y=x ²-2与y=(x-2)²平移成y=x ²的区别.(3)y=a (x-h )²+k 的图像由以上经验,显然,y=a (x-h )²+k 可以由y=ax ²图像平移得到,平移方法“左加右减,上加下减”.先水平或先垂直均可.(矩形ABCD ,从A 到C 的路径,AB+BC 与AD+DC 相同) 总结:一般地,抛物线y=a (x-h )²+k 与y=ax ²形状相同,位置不同,把抛物线y=ax ²平移后可以得到抛物线y=a (x-h )²+k ,平移的方向、距离由h ,k 来决定.当a>0时, h >0 顶点在第一象限 开口向上, k >0,抛物线在x 轴上方 h <0 顶点在第二象限 函数图象有最高点, k <0,抛物线与x 轴有两个交点 h >0 顶点在第四象限 函数有最大值 h <0 顶点在第三象限 当a<0时, h >0 顶点在第一象限 开口向下, k >0,抛物线与x 轴有两个交点 h <0 顶点在第二象限 函数图象有最高点, k <0,抛物线在x 轴下方 h >0 顶点在第四象限 函数有最大值 h <0 顶点在第三象限 对称轴是直线x=h ,顶点坐标(h ,k )○三:y=ax ²+bx+c 的图像及其性质画法分三步:第一,用配方法将一般式转化成y=a (x-h )²+k 的形式:222222244)2(])2()2([)(ab ac ab x a ac ab ab x a b x a ac x ab x ac bx ax y -++=+-++=++=++=第二,确定抛物线开口方向、对称轴和顶点 a 决定开口方向和开口大小,对称轴x=ab 2-,顶点(ab 2-,ab ac 442-),第三,利用对称性描点画图.(正确找到对称轴)平移步骤:先把二次函数转化成y=a (x-h )²+k 的形式,确定其顶点(h ,k );并将抛物线进行平移。
华师大版数学九年级下册《26.1 二次函数》说课稿

华师大版数学九年级下册《26.1 二次函数》说课稿一. 教材分析华师大版数学九年级下册《26.1 二次函数》这一节的内容,主要介绍了二次函数的定义、性质和图像。
二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的知识对于理解高中阶段的函数学习和解决实际问题具有重要意义。
本节内容首先介绍了二次函数的定义,包括函数的表达式、自变量和函数值的限制条件等。
接着,通过实例讲解,让学生理解二次函数的图像特征,包括开口方向、顶点坐标、对称轴等。
然后,引导学生学习二次函数的性质,包括单调性、极值等。
最后,通过练习题,让学生巩固所学知识,并能应用于解决实际问题。
二. 学情分析九年级的学生已经学习了函数的基本知识,对于一次函数和二次函数的概念有一定的了解。
但是,对于二次函数的性质和图像的深入理解还需要加强。
此外,学生对于实际问题的解决能力也有待提高。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数的定义、性质和图像,能够解决简单的实际问题。
2.过程与方法目标:通过实例讲解和练习,培养学生的观察能力、分析能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.重点:二次函数的定义、性质和图像。
2.难点:二次函数的图像特征的理解和应用。
五. 说教学方法与手段1.教学方法:采用讲授法、案例教学法和练习法。
2.教学手段:利用多媒体课件进行教学,展示二次函数的图像和实例。
六. 说教学过程1.导入:通过一个实际问题,引出二次函数的概念,激发学生的兴趣。
2.讲解:讲解二次函数的定义、性质和图像,通过实例进行解释和展示。
3.练习:让学生进行练习,巩固所学知识,并能应用于解决实际问题。
4.总结:对本节内容进行总结,强调二次函数的重要性和应用价值。
七. 说板书设计板书设计包括二次函数的定义、性质和图像的主要内容,以及相关的重要概念和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念
形如y=ax2+bx+c(a≠0,a、b、c为常数)的函 数叫做二次函数. 它的取值范围是一切实数.但在实际问题中, 自变量的取值范围应是使实际问题有意义的值.
若b=0,则y=ax2+c; 若c=0,则y=ax2+bx;
(1)当
(2)当
r 是常量时,V是 h 的什么函数?
h 是常量时,V是 r 的什么函数?
例题
设圆柱的高h(cm)是常量,写出圆柱的体积 V(cm3)与底面周长c(cm)之间的函数关系式.
hc v 4
2
(c 0)
例题
用长为20米的篱笆,一面靠墙(墙长超过20米), 围成一个长方形花圃,如图所示.设AB的长为x米, 花圃的面积为y平方米,求y关于x的函数解析式及 函数定义域.
y 2 x 20 x
2
(0 x 10)
A D
B
C
例题
三角形的两条边长的和为9 cm,它们的夹角为, 设其中一条边长为x(cm),三角形的面积为y(cm2), 试写出y与x之间的函数解析式及定义域.
1 2 9 y x x 4 4
(0 x 9)
1)二次函数的一般式是____ax2.仍为二次函数.
练习:
1.下列函数中哪些是二次函数?哪些不是二次函数? 若是二次函数,指出a、b、c.
1y x
2
1
2y x
2
2x 1
x2 2x 1 3 y x
(4)3y=x(x-1); (6)y=x4+2x2+1;
(5)y=3x(2-x)+3x2;
2)若y (m 4) x2 3x 7是二次函数,那么m___________
3)若y (m 2) x
4)若y (m 4) x
2
m2-2
x 3是二次函数,那么m=_____
m2-5m+6
2 x 3m是二次函数,那么m=____
5)若y (m m 6) x
.
7 y
3x 2 x
8 y
x
2
2.已知函数
y (m 9) x (m 3) x 2
2 2
当m为何值时,这个函数是二次函数? 当m为何值时,这个函数是一次函数?
3.圆柱的体积V的计算公式是 V r 2 h 其中 是圆柱底面的半径, 是圆柱的高. h
r
作业布置: 习题26.1
§26.1二次函数的概念
复习
1.什么是函数?曾学过哪些函数?分别怎样表达? 2. 正方形的边长是x(cm),面积y(cm2)与边长x 之间的函数关系如何表示?
解:函数关系式是y=x2(x>0).
3.农机厂第一个月水泵的产量为50(台),第三个月的 产量y(台)与月平均增长率x之间的函数关系如何 表示?
m2-2m-6
3x是二次函数,那么m=__
6)若y ax 2 bx c是二次函数的条件是______
7)正方形的边长是5,若边长增加x,面积增加y, 求y与x之间的函数关系式。
8)正方形的周长是20,若其边长增加x后,面积为y, 求y与x之间的函数关系式。
课堂小结
这节课你学习了什么,有何收获?