浙江省义乌市2012年中考数学试题及答案
2012年浙江省义乌市中考数学试卷(解析版)

2012年浙江省义乌市中考数学试卷一•选择题(共10小题)1. (2012义乌市)-2的相反数是()A . 2B . - 2C .丄D .2 2考点:相反数。
解答:解:由相反数的定义可知,- 2的相反数是-(-2)=2 .故选A .2. (2012义乌市)下列四个立体图形中,主视图为圆的是(考点:简单几何体的三视图。
解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.3. (2012义乌市)下列计算正确的是()A 3 2 6 m 2 4 2 宀/3、26 ^“、26A . a a =a B. a +a =2a C. (a )=a D . (3a)=a考点:幕的乘方与积的乘方;合并同类项;同底数幕的乘法。
解答:解:A、a3a2=a3+2=a5,故此选项错误;B、a2和a4不是同类项,不能合并,故此选项错误;C、(a3)2=a6,故此选项正确;D、(3a)2=9a2,故此选项错误;故选:C.4. (2012义乌市)一个正方形的面积是15,估计它的边长大小在()A . 2与3之间B . 3与4之间C . 4与5之间D . 5与6之间考点:估算无理数的大小;算术平方根。
解答:解::•一个正方形的面积是15,•••该正方形的边长为~,•/ 9v 15V 16,• 3 V 亶一X 4 .故选C .5. (2012义乌市)在x= - 4, - 1 , 0, 3中,满足不等式组(A . - 4 和0B . - 4 和-1C . 0 和3D . - 1 和0 考点:解一元一次不等式组;不等式的解集。
解答:解,[2 (x+1) >- 2②由②得,x >- 2,故此不等式组的解集为:- 2v x v 2, x= - 4,- 1, 0, 3中只有-1、0满足题意. 故选D ..■- ,的X值是(6. (2012义乌市)如果三角形的两边长分别为3和5,第三边长是偶数, 则第三边长可以是( )A . 2B . 3C . 4D . 8考点:三角形三边关系。
浙江省义乌市2012年初中数学学业考试调研卷 浙教版

义乌调研测试卷试卷Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列各组数中,互为相反数的是( ▲ ) A .2和-2 B .-2和12C .-2和12-D .12和2 2.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 00万套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 00万用科学记数法表示应是( ▲ ) A.21036⨯ B.7106.3⨯ C.3106.3⨯ D. 81036.0⨯ 3.如图,把一块含有45°角的直角三角板的两个顶点放 ∠1=20o,那么∠2的度数是( ) A.30oB.25oC.20oD.15o4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ▲ )A .1个B . 2个C . 3个D . 4个5、在共有15人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道 自己是否进入八强,只需要了解自己的成绩以及全部成绩的( ▲ ) A .中位数 B .众数 C .平均值 D .方差 6.两圆的半径分别为3和7,圆心距为4,则两圆的位置关系是( ▲ ) A. 外切 B. 相交 C. 内含 D.内切7.已知C B A ,,是⊙O 上不同的三个点,︒=∠50AOB ,则圆周角=∠ACB ( ▲ )A .︒50B .︒25C .︒50或︒130D .︒25或︒1558.有以下四个命题中,正确的命题是( ▲ ).第3题图A.反比例函数xy 2-=,当x>-2时,y 随x 的增大而增大; B.抛物线222+-=x x y 与两坐标轴无交点; C.垂直于弦的直径平分这条弦,且平分弦所对的弧; D.有一个角相等的两个等腰三角形相似;9、已知A 、B 两地相距360km ,甲车以100km/h 的速度从A 地驶往B 地,乙车以80km/h 的速度从B 地驶往A 地,两车同时出发.设乙车行驶的时间为x (h ),两车之间的距离为y (km ),则y 与x 之间的函数关系的图象是( )10.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积记为S .在正方形ABCD 内任取一点N ,点N 到四个顶点A ,B ,C ,D 的距离均不小于1的概率记为P ,则S=( )A 、(4﹣π)PB 、4PC 、 4(1﹣P )D 、(π﹣1)P试 卷 Ⅱ“答题纸”的对应位置上.二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:x 2-4x = ▲ .12.如图,DE 是△ABC 的中位线,若DE 的长是2cm ,则BC 的长是 ▲ cm .E ABCD (第12题图)13.袋子中装有3个红球,5个黄球,1个白球,这些球的形状、大小、 质地等完全相同,随机地从袋子中摸出一个红球的概率是▲ _.14、7、如图所示,小红要制作一个母线长为8cm ,底面圆周长是12πcm 的圆锥形小漏斗,若不计损耗,则她所需纸板的面积是▲15、如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的直径AB 是 ▲ 毫米.16.已知:如图,过原点的抛物线的顶点为M (-2,4),与x 轴负半轴交于点A ,对称轴与x 轴轴交于点B,点P 是抛物线上一个动点,过点P 作MA PQ ⊥于点Q. (1)抛物线解析式为 ▲ .(2)若MAB MPQ ∆∆与相似,则满足条件的点P 的坐标为 ▲ .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(1)计算:︒-----30cos 2)4(3118、先化简,再求值:221323322+-++÷+++a a a a a a a ,其中,1=a . 19.如图,在 ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E 、F. (1)写出图中所有的全等三角形;(2)选择(1)中的任意一对全等三角形进行证明.20.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.ABCEFword(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板 的前方有6米长的空地,像这样改造是否可行?说明理由。
中考数学——2012浙江中考汇编

2012年浙江省中考数学试卷汇编目录2012•杭州中考 (1)2012•湖州中考 (5)2012•嘉兴•舟山中考 (10)2012•丽水中考 (16)2012•绍兴中考 (21)2012•温州中考 (26)2012•义乌•金华 (32)2012•衢州中考 (36)2012•宁波中考 (42)2012•杭州中考一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(2012•杭州)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.22.若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离3.(2012•杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.(2012•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°5.(2012•杭州)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣46.如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万7.(2012•杭州)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣58.(2012•杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°9.(2012•杭州)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.510.(2012•杭州)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④二、认真填一填(本题有6个小题,每小题4分,共24分)11.(2012•杭州)数据1,1,1,3,4的平均数是;众数是.12.(2012•杭州)化简得;当m=﹣1时,原式的值为.13.(某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于%.14.(2012•杭州)已知(a﹣)<0,若b=2﹣a,则b的取值范围是.15.(2012•杭州)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.16.(2012•杭州)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.三、全面答一答(本题有7个小题,共66分)17.(2012•杭州)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(2012•杭州)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.19.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.20.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.21.(2012•杭州)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.22.(2012•杭州)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.23.(2012•杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.2012•湖州中考一、选择题(本题共有10小题,每题3分,共30分)1.-2的绝对值等于()A.2 B.-2 C.12D.±22.计算2a-a,正确的结果是()A.-2a3B.1 C.2 D.a3.要使分式1x有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<04.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、5.如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.5 26.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是() A.36°B.72°C.108°D.180°7.下列四个水平放置的几何体中,三视图如图所示的是()A B C D8.△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为()A.60cm B.45cm C.30cm D.152cm9.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°10.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B C.3 D.4二、填空题(本题共有6小题,每题4分,共24分) 11.当x =1时,代数式x +2的值是_____________________.12.因式分解:x 2-36=_____________________.13.甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是22S 0.6S 0.8==乙甲,,则运动员__________________的成绩比较稳定.14.如下左图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A =46°,∠1=52°,则∠2=_____________度.15.一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象如上右图图所示,根据图象信息可求得关于x 的方程kx +b =0的解为__________________。
浙江11市2012年中考数学试题分类解析汇编压轴题(学生版)

浙江11市2012年中考数学试题分类解析汇编押轴题一、选择题1.(2012浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】A.①②B.②③C.②③④D.①③④2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【】A .5B .453C.3 D.43. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【】A.B.C.D.4. (2012浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.20165. (2012浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【】A.90B.100C.110D.1216. (2012浙江衢州3分)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是【】A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y17. (2012浙江绍兴4分)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为【】A.512532⨯B.69352⨯C.614532⨯D.711352⨯8. (2012浙江台州4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】A. 1 B.3C. 2 D.3+19. (2012浙江温州4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A 出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是【】A.一直增大B.一直减小C.先减小后增大D.先增大后减小10. (2012浙江义乌3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是【】A.①②B.①④C.②③D.③④二、填空题1. (2012浙江杭州4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为▲ .2. (2012浙江湖州4分)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若m47n25,则△ABC的边长是▲3. (2012浙江、舟山嘉兴5分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB 的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:①AG FGAB FB;②点F是GE的中点;③AF=23AB;④S△ABC=5S△BDF,其中正确的结论序号是▲ .4. (2012浙江丽水、金华4分)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.(1)当点E是AB的中点时,线段DF的长度是▲ ;(2)若射线EF经过点C,则AE的长是▲ .5. (2012浙江宁波3分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC 于E,F,连接EF,则线段EF长度的最小值为▲ .6. (2012浙江衢州4分)如图,已知函数y=2x和函数ky=x的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P 为顶点的四边形是平行四边形,则满足条件的P点坐标是▲ .7. (2012浙江绍兴5分)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为▲ (用含n的代数式表示)9. (2012浙江温州5分)如图,已知动点A在函数4y=x(x>o)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=4:9时,图中的阴影部分的面积等于▲ _.10. (2012浙江义乌4分)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是▲ ;(2)当AB为梯形的腰时,点P的横坐标是▲三、解答题1. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.2.(2012浙江杭州12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT 于点C,OB⊥AT于点B,已知∠EAT=30°,AE=33,MN=222.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上( FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.3. (2012浙江湖州10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?4. (2012浙江湖州12分)如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- 3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B 作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)5. (2012浙江嘉兴、舟山12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC=;直线BC 与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.6. (2012浙江嘉兴、舟山14分)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=2时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.。
浙江义乌中考数学试卷真题

浙江义乌中考数学试卷真题一、选择题1. 某城市的人口在2010年至2016年间的年均增长率为2.5%。
如果2010年的人口为50万人,那么2016年的人口约为多少万人?A. 56.25B. 58.75C. 60.75D. 62.52. 若正方体ABCDA1B1C1D1的边长为6cm,E为A1D1的中点,F 为C1D1的中点,连结EF并延长交BC的延长线于点G,则三角形GFA1的面积为多少平方厘米?A. 6B. 9C. 12D. 183. 已知二次函数y=ax²+bx+c的图象经过点(-2,10),且a+b+c=3,则该二次函数的解析式是:A. y = 3x² + 2x + 5B. y = 3x² - 2x + 5C. y = -3x² + 2x + 5D. y = -3x² - 2x + 54. 已知函数f(x) = 2x + k,在直角坐标系中,直线y = f(x)与x轴、y 轴分别交于点A和B。
若A、B两点之间的距离为4,则k的值为:A. 6B. 4C. 2D. -25. 已知三角形ABC的三个内角α,β,γ满足tanα : tanβ : tanγ = 1 :2 : 3,则三角形ABC的角α为:A. 20°B. 30°C. 40°D. 50°6. 小明现有10万元,他准备将这笔钱存入银行,存款的年利率为1.5%,按此利率计息2年之后,小明将得到多少钱?A. 102500B. 105000C. 107500D. 110000二、填空题7. 若a、b为整数,且a² + b² = 100,则a的值是____,b的值是____。
8. 共有10名学生参加一个项目的评比。
每位评委可以给每个学生打0-100分,求最高分与最低分之差的可能的最小值,且6位评委给每个学生打的分数之和为386。
9. 计算:2⁰ + 2¹ + 2² + 2³ + 2⁴ + 2⁵ + 2⁶。
浙江省2012年初中毕业生学业考试(义乌市卷)评分标准

浙江省2012年初中毕业生学业考试(义乌市卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. (x +3)(x -3) 12. 50 13. 90 90 (每空2分) 14. 615. 22 16.(1)332(2分) (2) 0, 32(每个1分) 三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. 解:原式=2+1-1.……….………………4分=2 .………………6分18. 解:(1)添加的条件是:DE =DF (或CE ∥BF 或∠ECD =∠DBF 或∠DEC =∠DFB 等).……………………2分(2)证明:(以第一种为例,添加其它条件的证法酌情给分)∵BD =CD ,∠EDC =∠FDB ,DE =DF ……………………5分 ∴△BDF ≌△CDE .…6分19. 解:(1) 16 12.5% (每空1分)补全条形统计图如右图……………4分(2)职工人数约为:28000×166=10500人 ……………6分 20.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角∴∠ABC =∠D =60° …………2分(2)∵AB 是⊙O 的直径 ∴∠ACB =90° .……………3分∴∠BAC =30°∴∠BAE =∠BAC +∠EAC =30°+60°=90° …………………4分 即BA ⊥AE∴AE 是⊙O 的切线 ..…………5分(3) 如图,连结OC∵OB =OC ,∠ABC =60°∴△OBC 是等边三角形 ∴OB =BC =4 , ∠BOC =60° ∴∠AOC =120°…………………7分∴劣弧AC 的长为ππ381804120=⋅⋅ .…………………8分 21.解:(1)在Rt △BOA 中 ∵OA =4 21tan =∠BOA ∴AB =OA ×tan ∠BOA =2 ..……2分(2)∵点D 为OB 的中点,点B (4,2)∴点D (2,1)题号 1 2 3 4 5 6 7 8 9 10答案 A B C B D C C A B DOAB CDE其他 学生 职工 商人 职业2 46人数(万人)又∵点D 在 的图象上 ∴21k =∴k=2 ∴ ..…………4分又∵点E 在 图象上 ∴4n =2 ∴ n =21.……6分(3)设点F (a ,2)∴2a =2 ∴CF =a =1连结FG ,设OG =t ,则OG =FG =t CG =2-t在Rt △CGF 中,GF 2=CF 2+CG 2∴t 2=(2-t )2+12解得t =45 ∴OG =t =45.…8分22.解:(1)小明骑车速度:)/(205.010h km = 在甲地游玩的时间是0.5(h )……3分 (2)妈妈驾车速度:20×3=60(km /h )设直线BC 解析式为y =20x +b 1,把点B (1,10)代入得b 1=-10 ∴y =20x -10 ……4分设直线DE 解析式为y =60x +b 2,把点D (34,0) 代入得b 2=-80 ∴y =60x -80………………5分 ∴⎩⎨⎧-=-=8060,1020x y x y 解得⎩⎨⎧==2575.1y x ∴交点F (1.75,25).7分答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km .(3)方法一:设从家到乙地的路程为m (km )则点E (x 1,m ),点C (x 2,m )分别代入y =60x -80,y =20x -10得:60801+=m x , 20102+=m x∵61601012==-x x ∴6160802010=+-+m m ∴m =30 .…10分 方法二:设从妈妈追上小明的地点到乙地的路程为n (km ), 由题意得:60106020=-n n ∴n =5 ∴从家到乙地的路程为5+25=30(km ) .…………………10分 (其他解法酌情给分)23.解: (1)由旋转的性质可得∠A 1C 1B =∠ACB =45°,BC =BC 1∴∠CC 1B =∠C 1CB =45° ..……2分∴∠CC 1A 1=∠CC 1B +∠A 1C 1B =45°+45°=90° .……3分(2)∵△ABC ≌△A 1BC 1 ∴BA =BA 1,BC =BC 1,∠ABC =∠A 1BC 1∴11BC BA BC BA =∠ABC +∠ABC 1=∠A 1BC 1+∠ABC 1 ∴∠ABA 1=∠CBC 1 ∴△ABA 1∽△CBC 1 .………5分x (h )y (km )O 0.51 10 34B DE FA C x y 2=xky =x k y =OA B C F D G Hy xE∴2516542211=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∆∆BC AB S S CBC ABA ∵41=∆ABA S ∴4251=∆CBC S …7分 (3)过点B 作BD ⊥AC ,D 为垂足∵△ABC 为锐角三角形 ∴点D 在线段AC 上在Rt △BCD 中,BD =BC ×sin45°=225……8分① 当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小, 最小值为225-2 …………9分 ② 当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为2+5=7 .………………10分24.解:(1)把点A (3,6)代入y =kx 得6=3k ∴k =2 ∴y =2x .2分OA =536322=+ ..………………3分 (2)QNQM 是一个定值 ,理由如下:过点Q 作QG ⊥y 轴于点G ,QH ⊥x 轴于点H . ①当QH 与QM 重合时,显然QG 与QN 重合, 此时2tan =∠===AOM OHQH QG QH QN QM ;②当QH 与QM 不重合时,∵QN ⊥QM ,QG ⊥QH不妨设点H ,G 分别在x 、y 轴的正半轴上 ∴∠MQH =∠GQN 又∵∠QHM =∠QGN =90°∴△QHM ∽△QGN …5分∴2tan =∠===AOM OHQH QG QH QN QM 当点P 、Q 在抛物线和直线上不同位置时,同理可得 ………7分(3)延长AB 交x 轴于点F ,过点F 作FC ⊥OA 于点C ,过点A 作AR ⊥x 轴于点R∵∠AOD =∠BAE ∴AF =OF ∴OC =AC =21OA =523∵∠ARO =∠FCO =90° ∠AOR =∠FOC ∴△AOR ∽△FOC ∴5353===OR AO OC OF∴OF =2155523=⨯ ∴点F (215,0)设点B (x ,3222742+-x ), 过点B 作BK ⊥AR 于点K ,则△AKB ∽△ARFB ACAC EPP D图1AxyPQ M NOG H 2=QNQMO xyA B E D FRC K∴AR AK FR BK = 即6)322274(635.732+--=--x x 解得x 1=6 ,x 2=3(舍去) ∴点B (6,2) ∴BK =6-3=3 AK =6-2=4 ∴AB =5 …8分 (求AB 也可采用下面的方法)设直线AF 为y =kx +b (k ≠0) 把点A (3,6),点F (215,0)代入得 k =34-,b =10 ∴1034+-=x y⎪⎪⎩⎪⎪⎨⎧+-=+-=322274,10342x y x y ∴⎩⎨⎧==6,311y x (舍去)⎩⎨⎧==2,622y x ∴B (6,2)∴AB =5 …8分(其它方法求出AB 的长酌情给分) 在△ABE 与△OED 中∵∠BAE =∠BED ∴∠ABE +∠AEB =∠DEO +∠AEB ∴∠ABE =∠DEO ∵∠BAE =∠EOD ∴△ABE ∽△OED .………………9分设OE =x ,则AE =53-x (530<<x ) 由△ABE ∽△OED 得OEODAB AE =∴xm x =-553 ∴x x x x m 55351)53(512+-=-= (530<<x )…10分∴顶点为(523,49)如图,当49=m 时,OE =x =523,此时E 点有1个;当490<<m 时,任取一个m 的值都对应着两个x 值,此时E 点有2个.∴当49=m 时,E 点只有1个 ……11分当490<<m 时,E 点有2个 ……12分523xm49O53。
2012金华中考数学试卷及解析

2012年浙江省金华市中考数学试卷一.选择题(共10小题)1.(2012金华市)﹣2的相反数是()A.2B.﹣2C.D.2.(2012金华市)下列四个立体图形中,主视图为圆的是()A.B.C.D.3.(2012金华市)下列计算正确的是()A.a3a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a64.(2012金华市)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.(2012金华市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A.﹣4和0B.﹣4和﹣1C.0和3D.﹣1和06.(2012金华市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2B.3C.4D.87.(2012金华市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.128.(2012金华市)下列计算错误的是()A.B.C.D.9.(2012金华市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.B.C.D.10.(2012金华市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④11.(2012金华市)分解因式:x2﹣9=.12.(2012金华市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.13.(2012金华市)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是分,众数是分.14.(2012金华市)正n边形的一个外角的度数为60°,则n的值为.15.(2012金华市)近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x 的值为.16.(2012金华市)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;(2)当AB为梯形的腰时,点P的横坐标是.17.(2012金华市)计算:|﹣2|+(﹣1)2012﹣(π﹣4)0.18.(2012金华市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).19.(2012金华市)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?20.(2012金华市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.21.(2012金华市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.22.(2012金华市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.23.(2012金华市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.24.(2012金华市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM 与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?2012年浙江省金华市中考数学试卷解析一.选择题(共10小题)1.(2012金华市)﹣2的相反数是()A.2B.﹣2C.D.考点:相反数。
2012年全国各地中考数学考点分类解析汇编(22)二次函数

2012年全国各地中考数学考点分类解析汇编(22)二 次 函 数一、选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a <0,∵对称轴x=﹣<0, ∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A .点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--考点:二次函数图象与几何变换。