_空间向量在立体几何中的应用

合集下载

空间向量在立体几何中的应用sxz

空间向量在立体几何中的应用sxz
空间向量在立体几何中的应用
一.平行问题
Db
(一)证明两直线平行
A ,B a;C ,D b,A BC D a∥
C
A
b
a
B
方法思路:在两分 直别 线取 上不同的
得到两向量,转明 化两 为向 证量平行
知 A ( x 1 B ,y 1 )C , ( x 2 D ,y 2 )则 ,x 1 y 2 x 有 2 y 1 a ∥ b
方 底法 线思 性路 表: 示证 (明 即方 内直 在向 存线 平向 在的 面量 一可 向用 量平 与组 相面 方基 等 的 向)一 向 e 1 e 2
则可得面内一直外线的与线面平 ,从行而证线面. 平行
(三)面面平行
1.不重合的两 与平 的面法向量 n
分别m是 和n, mn∥
方法思路:平 求面 出的 其法 中向 一法 量向 ,量 再与 证
的不共线的量 两积 向 ( 0 为 量 即的 都数 垂直两 )面 ,平 则
二.垂直问题
(一)证明两直线垂直
b
不 分重 别a合 为 和b的 , a和 直 则a直 线 有 bb线 的 0 方 a向 b 向b 量 a a
方法思路:找两直线 方的 向向量 (分别
| m|
方法思路:求出任 平一 面法 的向m(量 方程
组可求 ),在面内任取Q一与点点P得一向量
转化为 P Q在法向量的投影,的 套长 公度 式。
D
(二)求两异面直线的距离d
b
知a,b是两异面直线A,,Ba,C, Db,

B
aA
C
找一向量与两异面都 直垂 线直的向m量,
则两异面直线的距 d=离ACm
(二)证明线面垂直 l

第6节 空间向量在立体几何中的应用--2025年高考数学复习讲义及练习解析

第6节  空间向量在立体几何中的应用--2025年高考数学复习讲义及练习解析

第六节空间向量在立体几何中的应用1.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l01平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.(3)空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔02n1=λn2(λ∈R)l1⊥l2n1⊥n2⇔03n1·n2=0直线l的方向向量为n,平面α的法向量为m,l⊄αl∥αn⊥m⇔04n·m=0 l⊥αn∥m⇔05n=λm(λ∈R)平面α,β的法向量分别为n,m α∥βn∥m⇔06n=λm(λ∈R)α⊥βn⊥m⇔07n·m=02.设a,b分别是两异面直线l1,l2的方向向量,则3.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=10|cos 〈a ,n 〉|=11|a ·n ||a ||n |.4.(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=12〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=13|cos 〈n 1,n 2〉|,二面角的平面角的大小是向量n 1与n 2的夹角(或其补角).5.用向量法求空间距离(1)点到直线的距离已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点.则点P 到直线l 的距离为14__AP →2-(AP →·u )2.(2)点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.则点P 到平面α的距离为15|AP →·n ||n |.(3)线面距和面面距可以转化为点面距求解.1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两个半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.1.概念辨析(正确的打“√”,错误的打“×”)(1)两个平面的法向量所成的角就是这两个平面所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.()(4)直线l的一个方向向量为a=(-1,2,1),平面α的一个法向量为n=(-1,-1,1),l⊄α,则l∥α.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第一册1.4.1练习T1改编)已知直线l的一个方向向量为a=(-3,2,5),平面α的一个法向量为b=(1,x,-1),若l∥α,则x=()A.4B.3C.2D.1答案A解析因为l∥α,所以a⊥b,即a·b=0,即-3+2x-5=0,解得x=4.故选A.(2)已知两条异面直线的方向向量分别是m=(-2,1,2),n=(3,-2,1),则这两条异面直线所成的角θ满足()A.sinθ=-147B.sinθ=147C.cosθ=147D.cosθ=-147答案C解析因为θ,π2,所以cosθ=|cos〈m,n〉|=|m·n||m||n|=63×14=147,sinθ=1-cos2θ=357.故选C.(3)若平面α的法向量为a=(3,-1,2),平面β的法向量为n=(-6,2,-4),则() A.α∥βB.α⊥βC.α与β相交但不垂直D.无法确定答案A解析由题意,得n=-2a,则n∥a,α∥β.故选A.(4)已知A(1,2,0),B(3,1,2),C(2,0,4),则点C到直线AB的距离为() A.2B.5C.23D.25答案B解析因为AB →=(2,-1,2),AC →=(1,-2,4),所以AC →在AB →方向上的投影数量为AB →·AC →|AB →|=2+2+84+1+4 4.设点C 到直线AB 的距离为d ,则d =|AC →|2-42=1+4+16-16= 5.故选B.考点探究——提素养考点一利用空间向量证明平行、垂直例1如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP=2,AB =1,E 为棱PC 的中点.证明:(1)BE ⊥DC ;(2)BE ∥平面PAD ;(3)平面PCD ⊥平面PAD .证明依题意,以A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)因为BE →=(0,1,1),DC →=(2,0,0),BE →·DC →=0,所以BE ⊥DC .(2)因为AB →=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB ,又BE ⊄平面PAD ,所以BE ∥平面PAD .(3)由(2)知平面PAD 的一个法向量为AB →=(1,0,0),PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),·PD →=0,·DC →=0,y -2z =0,x =0,取y =1,得n =(0,1,1).因为n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →.所以平面PCD ⊥平面PAD .【通性通法】利用空间向量证明平行、垂直的一般步骤【巩固迁移】1.(2023·山东青岛二中模拟)在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是正方形A 1B 1C 1D 1和正方形B 1C 1CB 的中心.求证:(1)AC 1⊥平面A 1BD ;(2)EF ∥平面A 1BD ;(3)平面B 1EF ∥平面A 1BD .证明(1)设正方体的棱长为2,建立如图所示的空间直角坐标系,则C 1(2,2,2),A 1(0,0,2),B (2,0,0),D (0,2,0),AC 1→=(2,2,2),A 1B →=(2,0,-2),A 1D →=(0,2,-2),因为AC 1→·A 1B →=0,AC 1→·A 1D →=0,所以AC 1⊥A 1B ,AC 1⊥A 1D ,由于A 1B ∩A 1D =A 1,所以AC 1⊥平面A 1BD .(2)由(1)知,AC 1→=(2,2,2)是平面A 1BD 的一个法向量.E (1,1,2),F (2,1,1),EF →=(1,0,-1),AC 1→·EF →=0,EF ⊄平面A 1BD ,所以EF ∥平面A 1BD .(3)由(1),得B 1(2,0,2),B 1F →=(0,1,-1),设平面B 1EF 的法向量为n =(x ,y ,z ),·EF →=x -z =0,·B 1F →=y -z =0,取x =1,得n =(1,1,1).AC 1→=2n ,显然,平面B 1EF 与平面A 1BD 不重合,所以平面B 1EF ∥平面A 1BD .考点二利用空间向量求空间角(多考向探究)考向1求异面直线所成的角例2(2024·河南洛阳模拟预测)如图四棱锥P -ABCD 中,底面ABCD 为正方形,且各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A .36B .63C .13D .12答案A解析连接AC 与BD 交于点O ,连接PO ,由题意,得AC ⊥BD ,且PO ⊥平面ABCD ,以O为原点,建立如图所示的空间直角坐标系,设四棱锥P -ABCD 各棱长均为2,则AO =BO =CO =DO =2,PO =2,可得A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),则,22,则AE →-2,22,PC →=(-2,0,-2),设异面直线AE 与PC所成的角为θ,则cos θ=|cos 〈AE →,PC →〉|=|AE →·PC →||AE →||PC →|=|(-2)×(-2)+22×(-2)|2+12+12×2+0+2=36.故选A.【通性通法】向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【巩固迁移】2.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =1,P 是DF 的中点,则异面直线BE 与CP 所成角的余弦值为________.答案4515解析因为平面ABEF ⊥平面ABCD ,交线为AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面ABEF .又AF ⊂平面ABEF ,所以AD ⊥AF,因为∠BAF =90°,所以AF ⊥AB ,又AD ⊥AB ,所以以A 为原点,AB →,AD →,AF →的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系Axyz ,则B (1,0,0)0,,1C (1,2,0),所以BE →-12,0,CP →1,-1所以cos 〈BE →,CP →〉=BE →·CP →|BE →||CP →|=4515,即异面直线BE 与CP 所成角的余弦值为4515.考向2求直线与平面所成的角例3在如图所示的几何体ABCED 中,EC ⊥平面ABC ,DB ⊥平面ABC ,CE =CA =CB =2DB ,∠ACB =90°,M 为AD 的中点.(1)证明:EM ⊥AB ;(2)求直线BM 与平面ADE 所成角的正弦值.解(1)证明:由EC ⊥平面ABC ,AC ,BC ⊂平面ABC ,得EC ⊥AC ,EC ⊥BC ,又∠ACB =90°,则AC ⊥BC ,故以C 为原点建立如图所示的空间直角坐标系,设DB =1,则CE =CA =CB =2.∴A (2,0,0),B (0,2,0),E (0,0,2),D (0,2,1),,1∴EM →,1,AB →=(-2,2,0),则EM →·AB →=-2+2+0=0,∴EM →⊥AB →,即EM ⊥AB .(2)由(1),知BM →,-1AE →=(-2,0,2),DE →=(0,-2,1),设平面ADE 的法向量为n =(x ,y ,z ),·AE →=-2x +2z =0,·DE →=-2y +z =0,取x =2,得y =1,z =2,∴n =(2,1,2),设直线BM 与平面ADE 所成的角为θ,则sin θ=|cos 〈BM →,n 〉|=|BM →·n ||BM →||n |=49.因此直线BM 与平面ADE 所成角的正弦值为49.【通性通法】向量法求线面角的两种方法(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的角(夹角为钝角时取其补角),取其余角就是斜线与平面所成的角.【巩固迁移】3.(2023·全国甲卷)在三棱柱ABC -A 1B 1C 1中,AA 1=2,A 1C ⊥底面ABC ,∠ACB =90°,A 1到平面BCC 1B 1的距离为1.(1)求证:AC =A 1C ;(2)若直线AA 1与BB 1的距离为2,求AB 1与平面BCC 1B 1所成角的正弦值.解(1)证明:如图,∵A 1C ⊥底面ABC ,BC ⊂平面ABC ,∴A 1C ⊥BC ,又BC ⊥AC ,A 1C ∩AC =C ,A 1C ,AC ⊂平面ACC 1A 1,∴BC ⊥平面ACC 1A 1,又BC ⊂平面BCC 1B 1,∴平面ACC 1A 1⊥平面BCC 1B 1.过A 1作A 1O ⊥CC 1于点O ,又平面ACC 1A 1∩平面BCC 1B 1=CC 1,A 1O ⊂平面ACC 1A 1,∴A 1O ⊥平面BCC 1B 1.∵A 1到平面BCC 1B 1的距离为1,∴A 1O =1.在Rt △A 1CC 1中,A 1C ⊥A 1C 1,CC 1=AA 1=2,A 1O =1,∴O 为CC 1的中点,∴CO =C 1O =1,又A 1O ⊥CC 1,∴AC =A 1C =A 1C 1=2,∴AC =A 1C .(2)连接A 1B ,AC 1,∵AC =A 1C ,BC ⊥A 1C ,BC ⊥AC ,∴Rt △ACB ≌Rt △A 1CB ,∴BA =BA 1.过B 作BD ⊥AA 1于点D ,则D 为AA 1的中点,又AA 1=2,∴A 1D =AD =1,∵直线AA 1与BB 1的距离为2,∴BD =2,∴A 1B =AB =5,在Rt △ABC 中,BC =AB 2-AC 2= 3.解法一:以C 为原点,CA ,CB ,CA 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系Cxyz ,如图所示,则C (0,0,0),A (2,0,0),B (0,3,0),B 1(-2,3,2),C 1(-2,0,2),∴CB →=(0,3,0),CC 1→=(-2,0,2),AB 1→=(-22,3,2),设平面BCC 1B 1的法向量为n =(x ,y ,z ),·CB →=0,·CC 1→=0,0,+2z =0,取x =1,则y =0,z =1,∴平面BCC 1B 1的一个法向量为n =(1,0,1).设AB 1与平面BCC 1B 1所成的角为θ,则sin θ=|cos 〈n ,AB 1→〉|=|n ·AB 1→||n ||AB 1→|=1313.∴AB1与平面BCC1B1所成角的正弦值为13 13 .解法二:延长AC,使AC=CM,连接C1M,由CM∥A1C1,CM=A1C1,知四边形A1CMC1为平行四边形,∴C1M∥A1C,∴C1M⊥平面ABC,又AM⊂平面ABC,∴C1M⊥AM,在Rt△AC1M中,AM=2AC=22,C1M=A1C=2,∴AC1=(22)2+(2)2=10.在Rt△AB1C1中,AC1=10,B1C1=BC=3,∴AB1=(10)2+(3)2=13.又A到平面BCC1B1的距离为1,∴AB1与平面BCC1B1所成角的正弦值为113=1313.考向3求二面角例4(2024·九省联考)如图,平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,AA1=2,∠C1CB=∠C1CD,∠C1CO=45°.(1)证明:C1O⊥平面ABCD;(2)求二面角B-AA1-D的正弦值.解(1)证明:连接BC1,DC1.因为底面ABCD是边长为2的正方形,所以BC=DC,又因为∠C 1CB =∠C 1CD ,CC 1=CC 1,所以△C 1CB ≌△C 1CD ,所以BC 1=DC 1,又点O 为线段BD 的中点,所以C 1O ⊥BD .在△C 1CO 中,CC 1=2,OC =12AC =2,∠C 1CO =45°,所以cos ∠C 1CO =22=C 1C 2+OC 2-C 1O 22×C 1C ×OC,解得C 1O =2,则C 1C 2=OC 2+C 1O 2,所以C 1O ⊥OC .又OC ∩BD =O ,OC ⊂平面ABCD ,BD ⊂平面ABCD ,所以C 1O ⊥平面ABCD .(2)由题知正方形ABCD 中AC ⊥BD ,又C 1O ⊥平面ABCD ,所以建立如图所示的空间直角坐标系,则B (0,2,0),D (0,-2,0),A (2,0,0),C (-2,0,0),C 1(0,0,2),则AA 1→=CC 1→=(2,0,2),AB →=(-2,2,0),AD →=(-2,-2,0),设平面BAA 1的法向量为m =(x 1,y 1,z 1),1·m =0,·m =0,+2z 1=0,1+2y 1=0,令x 1=1,则m =(1,1,-1),设平面DAA 1的法向量为n =(x 2,y 2,z 2),1·n =0,·n =0,+2z 2=0,2-2y 2=0,令x 2=1,则n =(1,-1,-1),则cos 〈m ,n 〉=m ·n |m ||n |=13×3=13,设二面角B -AA 1-D 的大小为θ,则sin θ=223,所以二面角B -AA 1-D 的正弦值为223.【通性通法】向量法求二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意有时需要结合实际图形判断所求角是锐二面角还是钝二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【巩固迁移】4.(2023·新课标Ⅰ卷)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4.点A 2,B 2,C 2,D 2分别在棱AA 1,BB 1,CC 1,DD 1上,AA 2=1,BB 2=DD 2=2,CC 2=3.(1)证明:B 2C 2∥A 2D 2;(2)点P 在棱BB 1上,当二面角P -A 2C 2-D 2为150°时,求B 2P .解(1)证明:以C 为原点,CD ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则C (0,0,0),C 2(0,0,3),B 2(0,2,2),D 2(2,0,2),A 2(2,2,1),∴B 2C 2→=(0,-2,1),A 2D 2→=(0,-2,1),∴B 2C 2→∥A 2D 2→,又B 2C 2,A 2D 2不在同一条直线上,∴B 2C 2∥A 2D 2.(2)设P (0,2,λ)(0≤λ≤4),则A 2C 2→=(-2,-2,2),PC 2→=(0,-2,3-λ),D 2C 2→=(-2,0,1),设平面PA 2C 2的法向量为n =(x 1,y 1,z 1),·A 2C 2→=-2x 1-2y 1+2z 1=0,·PC 2→=-2y 1+(3-λ)z 1=0,取z 1=2,得y 1=3-λ,x 1=λ-1,∴n =(λ-1,3-λ,2).设平面A 2C 2D 2的法向量为m =(x 2,y 2,z 2),·A 2C 2→=-2x 2-2y 2+2z 2=0,·D 2C 2→=-2x 2+z 2=0,取x 2=1,得y 2=1,z 2=2,∴m =(1,1,2).又二面角P -A 2C 2-D 2为150°,∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=6(λ-1)2+(3-λ)2+22×6=|cos150°|=32,化简可得,λ2-4λ+3=0,解得λ=1或λ=3,∴P (0,2,1)或P (0,2,3),∴B 2P =1.考点三利用空间向量求空间距离例5如图,长方体ABCD -A 1B 1C 1D 1的棱DA ,DC 和DD 1的长分别为1,2,1.求:(1)顶点B 到平面DA 1C 1的距离;(2)直线B 1C 到平面DA 1C 1的距离.解(1)以D 为原点,DA →,DC →,DD 1→的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系,则D (0,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1).设平面DA 1C 1的法向量为n =(x ,y ,z ),因为DA 1→=(1,0,1),DC 1→=(0,2,1),·DA 1→=0,·DC 1→=0,+z =0,y +z =0,取y =1,得x =2,z =-2,则n =(2,1,-2).而向量C 1B →=(1,0,-1),所以顶点B 到平面DA 1C 1的距离d =|n ·C 1B →||n |=|2+0+2|4+1+4=43.(2)直线B 1C 到平面DA 1C 1的距离等于点B 1到平面DA 1C 1的距离.因为C 1B 1→=(1,0,0),所以点B 1到平面DA 1C 1的距离d 1=|n ·C 1B 1→||n |=|2+0+0|4+1+4=23.故直线B 1C 到平面DA 1C 1的距离为23.【通性通法】1.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l上的投影向量QP →的长度.PQ =|AP →·n |n ||=|AP →·n |n ||=|AP →·n ||n |.2.点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d =|PA →|2-(PA →·n )2.(2)若能求出点在直线上的投影坐标,可以直接利用两点间距离公式求距离.(3)线面距和面面距直线到平面的距离和平面到平面的距离可以转化为点到平面的距离进行求解.【巩固迁移】5.正方体ABCD -A 1B 1C 1D 1的棱长为1,则平面AB 1D 1与平面BDC 1的距离为()A .2B .3C .23D .33答案D 解析由正方体的性质,得AB 1∥DC 1,D 1B 1∥DB ,AB 1∩D 1B 1=B 1,DC 1∩DB =D ,且AB 1⊂平面AB 1D 1,D 1B 1⊂平面AB 1D 1,DC 1⊂平面BDC 1,DB ⊂平面BDC 1,所以平面AB 1D 1∥平面BDC 1,则两平面间的距离可转化为点B 到平面AB 1D 1的距离.以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,由正方体的棱长为1,得A (1,0,0),B (1,1,0),A 1(1,0,1),C (0,1,0),B 1(1,1,1),D 1(0,0,1),所以CA 1→=(1,-1,1),BA →=(0,-1,0),AB 1→=(0,1,1),B 1D 1→=(-1,-1,0).连接A 1C ,由CA 1→·AB 1→=(1,-1,1)·(0,1,1)=1×0+(-1)×1+1×1=0,CA 1→·B 1D 1→=(1,-1,1)·(-1,-1,0)=1×(-1)+(-1)×(-1)+1×0=0,所以CA 1→⊥AB 1→,即CA 1⊥AB 1,CA 1→⊥B 1D 1→,即CA 1⊥B 1D 1,又AB 1∩B 1D 1=B 1,可知CA 1⊥平面AB 1D 1,得平面AB 1D 1的一个法向量为n =CA 1→=(1,-1,1),则两平面间的距离d =|BA →·n ||n |=|0×1+(-1)×(-1)+0×1|12+(-1)2+12=13=33.故选D.6.(2024·云南大理期中)如图,在长方体ABCD -A 1B 1C 1D 1中,A 1A =2AB =2BC =2,E 为线段DD 1的中点,F 为线段BB 1的中点.(1)求直线FC 1到直线AE 的距离;(2)求点A 1到平面AB 1E 的距离.解(1)根据题意,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示,则A (1,0,0),A 1(1,0,2),E (0,0,1),C 1(0,1,2),B 1(1,1,2),F (1,1,1),B 1E →=(-1,-1,-1),A 1B 1→=(0,1,0),FC 1→=(-1,0,1),AE →=(-1,0,1),故FC 1→∥AE →,又EF→=(1,1,0),设直线FC 1到直线AE 的距离为d 1,则d 1即为点F 到直线AE 的距离,因此d 1=62,则直线FC 1到直线AE 的距离为62.(2)设平面AB 1E 的法向量为n =(x ,y ,z ),·AE →=-x +z =0,·B 1E →=-x -y -z =0,取x =1,则y =-2,z =1,所以n =(1,-2,1).设点A 1到平面AB 1E 的距离为d 2,可得d 2=|A 1B 1→·n ||n |=|(0,1,0)·(1,-2,1)|1+4+1=63,则点A 1到平面AB 1E 的距离为63.课时作业一、单项选择题1.如图,在正方体ABCD -A 1B 1C 1D 1中,PQ 与直线A 1D 和AC 都垂直,则直线PQ 与BD 1的关系是()A .异面直线B .平行直线C .垂直不相交D .垂直且相交答案B 解析设正方体的棱长为1,以D 为原点建立空间直角坐标系,如图所示,则A 1(1,0,1),A (1,0,0),C (0,1,0),D 1(0,0,1),B (1,1,0),DA 1→=(1,0,1),AC →=(-1,1,0),BD 1→=(-1,-1,1),∵BD 1→·DA 1→=0,BD 1→·AC →=0,∴BD 1⊥A 1D ,BD 1⊥AC ,∴BD 1与直线A 1D和AC 都垂直,又PQ 与直线A 1D 和AC 都垂直,∴PQ ∥BD 1.故选B.2.若直线l 的一个方向向量为m ,平面α的一个法向量为n ,则可能使l ∥α的是()A .m =(1,0,0),n =(-2,0,0)B .m =(1,3,5),n =(1,0,1),C .m =(0,2,1),n =(-1,0,-1)D .m =(1,-1,3),n =(0,3,1)答案D 解析要使l ∥α成立,需使m ·n =0,将选项一一代入验证,只有D 满足m ·n =1×0-1×3+3×1=0.故选D.3.已知v 为直线l 的方向向量,n 1,n 2分别为平面α,β的法向量(α,β不重合),给出下列说法:①n 1∥n 2⇔α∥β;②n 1⊥n 2⇔α⊥β;③v ∥n 1⇔l ∥α;④v ⊥n 1⇔l ⊥α.其中说法正确的有()A .1个B .2个C .3个D .4个答案B 解析n 1∥n 2⇔α∥β,故①正确;n 1⊥n 2⇔α⊥β,故②正确;v ∥n 1⇔l ⊥α,故③错误;v ⊥n 1⇔l ∥α或l ⊂α,故④错误.故选B.4.(2023·山东临沂模拟)如图,正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 的中点,则下列说法正确的是()A .直线PB 与直线A 1D 垂直,直线PB ∥平面B 1D 1CB .直线PB 与直线D 1C 平行,直线PB ⊥平面A 1C 1DC .直线PB 与直线AC 异面,直线PB ⊥平面ADC 1B 1D .直线PB 与直线B 1D 1相交,直线PB ⊂平面ABC 1答案A 解析连接DB ,A 1B ,D 1B 1,D 1C ,B 1C .由正方体的性质可知BA 1=BD ,P 是A 1D 的中点,所以直线PB 与直线A 1D 垂直.由正方体的性质可知DB ∥D 1B 1,A 1B ∥D 1C ,所以平面BDA 1∥平面B 1D 1C ,又PB ⊂平面BDA 1,所以直线PB ∥平面B 1D 1C ,故A 正确;以D 为原点建立如图所示的空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),0PB →1,D 1C →=(0,1,-1),显然直线PB 与直线D 1C 不平行,故B 不正确;直线PB 与直线AC 异面,正确,因为DA →=(1,0,0),PB →·DA →=12≠0,所以直线PB 与平面ADC 1B 1不垂直,故C 不正确;直线PB 与直线B 1D 1异面,不相交,故D 不正确.故选A.5.(2023·四川眉山高三校考模拟预测)如图,在直三棱柱ABC -A 1B 1C 1中,BC ⊥平面ACC 1A 1,CA =CC 1=2CB ,则直线BC 1与AB 1所成角的余弦值为()A .225B .53C .55D .35答案C 解析在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ,AB ⊂平面ABC ,所以CC 1⊥AC ,CC 1⊥AB ,又BC ⊥平面ACC 1A 1,AC ⊂平面ACC 1A 1,所以BC ⊥AC ,所以CA ,CC 1,CB 互相垂直,以C 为原点,CA ,CC 1,CB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设CA =CC 1=2CB =2,则C (0,0,0),A (2,0,0),B 1(0,2,1),B (0,0,1),C 1(0,2,0),可得AB 1→=(-2,2,1),BC 1→=(0,2,-1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-13×5=55,所以直线BC 1与AB 1所成角的余弦值为55.故选C.6.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为()A .3B .22C .23D .55答案D 解析以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz,则G(1,λ,1),D1(0,0,1),,0,1所以D1E→,0,D1F→,1,GE→,-λ,设平面D1EF的法向量为n=(x,y,z),则·D1E→=x-12z=0,·D1F→=x+y-12z=0,令x=1,则y=0,z=2,所以平面D1EF的一个法向量为n=(1,0,2).点G到平面D1EF的距离为|GE→·n||n|=|-12×2|5=55.故选D.7.(2024·湖北武汉模拟)已知圆锥的顶点为S,O为底面中心,A,B,C为底面圆周上不重合的三点,AB为底面的直径,SA=AB,M为SA的中点.设直线MC与平面SAB所成的角为α,则sinα的最大值为()A.3-1B.2-1C.3+1D.2+1答案A解析以AB的中点O为原点,建立如图所示的空间直角坐标系,不妨设SA=AB=4,则M(0,-1,3),设C(x,y,0),且x2+y2=4,由对称性不妨设0<x<2,则MC→=(x,y+1,-3),易知平面SAB的一个法向量为m=(1,0,0),据此有sinα=MC→·m|MC→||m|=xx2+(y+1)2+3=12×-(y+4)-12y+4+8≤4-23=3-1,当且仅当y=23-4时等号成立.综上可得,sinα的最大值为3-1.8.(2024·山西长治期末)如图,将菱形纸片ABCD沿对角线AC折成直二面角,E,F分别为AD,BC 的中点,O 是AC 的中点,∠ABC =2π3,则折后平面OEF 与平面ABC 夹角的余弦值为()A .217B .1111C .31313D .31111答案A解析连接OB ,OD .因为菱形纸片ABCD 沿对角线AC 折成直二面角,所以平面ADC ⊥平面ABC ,因为四边形ABCD 是菱形,O 是AC 的中点,所以OD ⊥AC ,OB ⊥AC ,而平面ADC ∩平面ABC =AC ,OD ⊂平面ADC ,所以OD ⊥平面ABC ,而OB ⊂平面ABC ,所以OD ⊥OB .以O 为原点,OB ,OC ,OD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AB =2,则D (0,0,1),,-32,,32,OE →,-32,OF →=,32,设平面OEF 的法向量为n =(x ,y ,z ),·OE →=0,·OF →=0,-32y +12z =0,+32y =0,取y =1,则x =-3,z =3,则n =(-3,1,3),易得平面ABC 的一个法向量为OD →=(0,0,1),所以平面OEF 与平面ABC 夹角的余弦值为|n ·OD →||n ||OD →|=217.故选A.二、多项选择题9.(2023·贵州名校联考)下列命题正确的是()A .已知a =(-1,1,2),b =(0,2,3),直线l 1的方向向量为k a +b ,直线l 2的方向向量为2a -b 且l 1⊥l 2,则k =-34B .若直线l 的方向向量为e =(1,0,3),平面α的法向量为n =(-2,0,-6),则直线l ∥αC .已知直线l 过P 0(x 0,y 0,z 0),且以u =(a ,b ,c )(abc ≠0)为方向向量,P (x ,y ,z )是直线l 上的任意一点,则有x -x 0a =y -y 0b =z -z 0cD .已知平面α的法向量为n =(1,1,1),A (-1,1,1)为平面α上一点,P (x ,y ,z )为平面α上任意一点,则有x +y +z +1=0答案AC解析对于A ,a =(-1,1,2),b =(0,2,3),k a +b =(-k ,k +2,2k +3),2a -b =(-2,0,1),因为l 1⊥l 2,所以(k a +b )·(2a -b )=4k +3=0,所以k =-34,故A 正确;对于B ,直线l 的方向向量为e =(1,0,3),平面α的法向量为n =(-2,0,-6),则有n =-2e ,所以n ∥e ,所以l ⊥α,故B 错误;对于C ,直线l 过P 0(x 0,y 0,z 0),且以u =(a ,b ,c )(abc ≠0)为方向向量,P (x ,y ,z )是直线l 上的任意一点,则有P 0P →=(x -x 0,y -y 0,z -z 0),P 0P →∥u ,即P 0P →=λu ,-x 0=λa ,-y 0=λb ,-z 0=λc ,则x -x 0a =y -y 0b =z -z 0c,故C 正确;对于D ,平面α的法向量为n=(1,1,1),A (-1,1,1)为平面α上一点,P (x ,y ,z )为平面α上任意一点,则有AP →=(x +1,y -1,z -1),则n ·AP →=x +y +z -1=0,故D 错误.故选AC.10.(2024·四川成都调研)在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =π3,AB=2AD =2PD ,PD ⊥底面ABCD ,则()A .PA ⊥BDB .PB 与平面ABCD 所成的角为π6C .异面直线AB 与PC 所成角的余弦值为255D .平面PAB 与平面PBC 夹角的余弦值为77答案ABC解析对于A ,因为∠DAB =π3,AB =2AD ,由余弦定理可得BD =AD 2+4AD 2-2AD ×2AD ×12=3AD ,从而BD 2+AD 2=AB 2,即BD ⊥AD ,由PD ⊥底面ABCD ,BD ⊂底面ABCD ,可得BD ⊥PD ,又AD ∩PD =D ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD ,又PA ⊂平面PAD ,所以PA ⊥BD ,故A 正确;对于B ,因为PD ⊥底面ABCD ,所以∠PBD 就是PB 与平面ABCD 所成的角,又tan ∠PBD =PD BD =33,所以∠PBD =π6,故B 正确;对于C ,显然∠PCD (或其补角)为异面直线AB 与PC 所成的角,易得cos ∠PCD =CD PC =255,故C 正确;对于D ,建立如图所示的空间直角坐标系,设AD =1,则D (0,0,0),A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1),AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0),设平面PAB的法向量为n =(x 1,y 1,z 1),·AB →=0,·PB →=0,1+3y 1=0,1-z 1=0,取y 1=1,则x 1=z 1=3,即n=(3,1,3),设平面PBC 的法向量为m =(x 2,y 2,z 2),·PB →=0,·BC →=0,2-z 2=0,2=0,取y 2=1,则x 2=0,z 2=3,即m =(0,1,3),则cos 〈m ,n 〉=m ·n |m ||n |=277,即平面PAB 与平面PBC 夹角的余弦值为277,故D 不正确.故选ABC.三、填空题11.已知点A (1,0,2),B (-1,1,2),C (1,1,-2),则点A 到直线BC 的距离是________.答案1055解析BA →=(2,-1,0),BC →=(2,0,-4),BA →·BC →=4,|BA →|=5,|BC →|=25,cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=45×25=25,又0°≤〈BA →,BC →〉≤180°,所以sin 〈BA →,BC →〉==215,所以点A 到直线BC 的距离为d =|BA →|sin 〈BA →,BC →〉=5×215=1055.12.(2024·湖南新化县第一中学期末)如图,PA ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,PA =AB =2,若OG ∥平面EFC ,则AG =________.答案23解析如图所示,以A 为原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系,由题意可得C (2,2,0),O (1,1,0),F (1,0,1),E (0,1,1),所以FC →=(1,2,-1),FE →=(-1,1,0),设平面EFC 的法向量为n =(x ,y ,z ),·FC →=0,·FE →=0,+2y -z =0,x +y =0,取x =1,则y =1,z =3,所以n =(1,1,3).设G (0,0,a ),0≤a ≤2,则OG →=(-1,-1,a ),因为OG ∥平面EFC ,则n ·OG →=0,所以-1-1+3a =0,解得a =23所以,0即AG =23.13.(2024·山东泰安期末)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC 为钝角时,λ的取值范围是________.答案解析以D 为原点,DA →,DC →,DD 1→的方向为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),则D 1B →=(1,1,-1),所以D 1P →=λD 1B →=(λ,λ,-λ),所以PA →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1),显然∠APC 不是平角,所以∠APC 为钝角等价于PA →·PC →<0,即-λ(1-λ)-λ(1-λ)+(λ-1)2<0,即(λ-1)(3λ-1)<0,解得13<λ<1,因此λ14.(2023·湖北武汉华中师大附中二模)如图,在三棱柱ABC -A 1B 1C 1中,底面是边长为2的等边三角形,CC 1=2,D ,E 分别是线段AC ,CC 1的中点,C 1在平面ABC 内的射影为D .若点F 为线段B 1C 1上的动点(不包括端点),则锐二面角F -BD -E 的余弦值的取值范围为________.答案解析连接C 1D ,因为C 1在平面ABC 内的射影为D ,所以C 1D 垂直于平面ABC 内DB ,AD 这两条线段,又因为底面是边长为2的等边三角形,D 是线段AC 的中点,所以DB ⊥AD ,因此建立如图所示的空间直角坐标系,则D (0,0,0),B (3,0,0),C (0,-1,0),C 1(0,0,3),B 1(3,1,3),,-12,C 1B 1→=(3,1,0),DE →,-12,DB →=(3,0,0),设F (x ,y ,z ),C 1F →=λC 1B 1→(0<λ<1),则(x ,y ,z -3)=(3λ,λ,0),故F (3λ,λ,3),所以DF →=(3λ,λ,3),设平面BDE 的法向量为m =(a ,b ,c ),·DE →=0,·DB →=0,即+32c =0,0,取b =3,得a =0,c =3,所以m =(0,3,3).设平面BDF 的法向量为n =(d ,e ,f ),·DF →=0,·DB →=0,+λe +3f =0,=0,取e =3,得d =0,f =-λ,所以n=(0,3,-λ),所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|33-3λ|32+(3)2×(3)2+(-λ)2=|3-λ|23+λ2=12(3-λ)23+λ2,令3-λ=t (t ∈(2,3)),所以|cos 〈m ,n 〉|=12t 212-6t +t 2=设s则|cos〈m,n〉|=12112s2-6s+1,二次函数y =12s2-6s+1=+14的图象开口向上,对称轴为直线s=14,所以当s,该二次函数单调递增,又-6×13+1=13,-6×12+1=1,所以12s2-6s+1所以112s2-6s+1∈(1,3),即|cos〈m,n〉|即锐二面角F-BD-E的余弦四、解答题15.(2023·新课标Ⅱ卷)如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC =60°,E为BC的中点.(1)证明:BC⊥DA;(2)点F满足EF→=DA→,求二面角D-AB-F的正弦值.解(1)证明:连接AE,DE,因为E为BC的中点,DB=DC,所以DE⊥BC,①因为DA=DB=DC,∠ADB=∠ADC=60°,所以△ACD与△ABD均为等边三角形,所以AC=AB,所以AE⊥BC,②由①②,且AE∩DE=E,AE,DE⊂平面ADE,所以BC⊥平面ADE,而DA⊂平面ADE,所以BC⊥DA.(2)不妨设DA=DB=DC=2,因为BD⊥CD,所以BC=22,DE=2,因为△ACD 与△ABD 均为等边三角形,所以AC =AB =2,所以AE ⊥BC ,AE =2,所以AE 2+DE 2=4=DA 2,所以AE ⊥DE ,又DE ∩BC =E ,DE ,BC ⊂平面BCD ,所以AE ⊥平面BCD .以E 为原点,ED ,EB ,EA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,0,0),D (2,0,0),A (0,0,2),B (0,2,0),设平面DAB 与平面ABF 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),二面角D -AB -F 的平面角为θ,而AB →=(0,2,-2),因为EF →=DA →=(-2,0,2),所以F (-2,0,2),即有AF →=(-2,0,0),1·DA →=0,1·AB →=0,1+2z 1=0,-2z 1=0,取x 1=1,所以n 1=(1,1,1).2·AB →=0,2·AF →=0,-2z 2=0,2=0,取y 2=1,所以n 2=(0,1,1),所以|cos θ|=|n 1·n 2||n 1||n 2|=23×2=63,所以sin θ=1-69=33,所以二面角D -AB -F 的正弦值为33.16.(2024·浙江台州模拟)如图,平行六面体ABCD -A 1B 1C 1D 1的体积为6,截面ACC 1A 1的面积为6.(1)求点B 到平面ACC 1A 1的距离;(2)若AB =AD =2,∠BAD =60°,AA 1=6,求直线BD 1与平面CC 1D 1D 所成角的正弦值.解(1)在平行六面体ABCD -A 1B 1C 1D 1中,ABC -A 1B 1C 1是三棱柱,V B -ACC 1A 1=23V ABC -A 1B 1C 1=13V ABCD -A 1B 1C 1D 1=2,设点B 到平面ACC 1A 1的距离为d ,则V B -ACC 1A 1=13S 四边形ACC 1A 1·d =13×6d =2,所以d =1,即点B 到平面ACC 1A 1的距离为1.(2)在▱ABCD 中,AB =AD =2,∠BAD =60°,所以四边形ABCD 是菱形,连接BD 交AC 于点O ,则BO =1,由(1)知点B 到平面ACC 1A 1的距离为1,所以BO ⊥平面ACC 1A 1.设点A 1在直线AC 上的射影为点H ,则S ▱ACC 1A 1=AC ·A 1H =23A 1H =6,则A 1H =3,且BO ⊥A 1H ,AH =AA 21-A 1H 2=(6)2-(3)2=3,所以点O 与点H 重合,即A 1O ⊥AO .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则B (0,1,0),A (3,0,0),D (0,-1,0),A 1(0,0,3),根据AA 1→=DD 1→=(-3,0,3),AB →=DC →=(-3,1,0),则D 1(-3,-1,3),BD 1→=(-3,-2,3),设平面CC 1D 1D 的法向量为n =(x ,y ,z ),1→·n =-3x +3z =0,·n =-3x +y =0,取x =1,则n =(1,3,1),设直线BD 1与平面CC 1D 1D 所成的角为α,则sin α=|cos 〈BD 1→,n 〉|=|BD 1→·n ||BD 1→||n |=|-3-23+3|10×5=65,所以直线BD 1与平面CC 1D 1D 所成角的正弦值为6517.(2024·海南华侨中学模拟)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AB ⊥AD ,AB =AD =1,AA 1>AB ,E ,F 分别是侧棱BB 1,DD 1上的动点,且平面AEF 与平面ABC 所成角的大小为30°,则线段BE 的长度的最大值为()A .13B .33C .12D .22答案B解析依题意,AB ,AD ,AA 1两两互相垂直,以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.设BE =m ,DF =n (m ≥0,n ≥0,且m ,n 不同时为0),则A (0,0,0),E (1,0,m ),F (0,1,n ),所以AE →=(1,0,m ),AF →=(0,1,n ).设平面AEF 的法向量为u =(x ,y ,z ),·AE →=(x ,y ,z )·(1,0,m )=x +mz =0,·AF →=(x ,y ,z )·(0,1,n )=y +nz =0,取z =1,得x =-m ,y =-n ,则u =(-m ,-n ,1),显然v =(0,0,1)为平面ABC 的一个法向量.因为平面AEF 与平面ABC 所成角的大小为30°,所以cos30°=|cos 〈u ,v 〉|=|u ·v ||u ||v |=|(-m ,-n ,1)·(0,0,1)|m 2+n 2+1=1m 2+n 2+1,即32=1m 2+n 2+1,得m 2+n 2=13,所以m=13-n2,所以当n=0时,m取得最大值,为33.故选B.18.(2024·云南昆明一中高三开学考试)如图,三棱柱ABC-A1B1C1中,平面ABC⊥平面AA1C1C,AB⊥AC,AA1=AB=AC=2,∠A1AC=60°,过A1A的平面交线段B1C1于点E(不与端点重合),交线段BC于点F.(1)证明:AA1∥EF;(2)若BF=2FC,求直线A1C1与平面AFC1所成角的正弦值.解(1)证明:在三棱柱ABC-A1B1C1中,AA1∥CC1,AA1⊄平面BCC1B1,CC1⊂平面BCC1B1,所以AA1∥平面BCC1B1,又过A1A的平面AA1EF∩平面BCC1B1=EF,所以AA1∥EF.(2)在平面AA1C1C内过A作AP⊥AC,因为平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,所以AP⊥平面ABC,又AB⊥AC,则可构建以A为原点,AB,AC,AP所在直线分别为x轴、y轴、z轴的空间直角坐标系,又AA1=AB=AC=2,∠A1AC=60°,且BF=2FC,所以A (0,0,0),A 1(0,1,3),C 1(0,3,3),,43,则A 1C 1→=(0,2,0),AC 1→=(0,3,3),AF →,43,设m =(x ,y ,z )为平面AFC 1的法向量,·AC 1→=3y +3z =0,·AF →=23x +43y =0,取y =1,则x =-2,z =-3,则m =(-2,1,-3),所以cos 〈m ,A 1C 1→〉=22×22=24,所以直线A 1C 1与平面AFC 1所成角的正弦值为24.19.(2023·河北石家庄二模)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是矩形,P 为棱A 1B 1上一点,且PA =PB ,F 为CD 的中点.(1)证明:AB ⊥PF ;(2)若AB =AD =PD =2.当直线PB 与平面PCD 所成的角为45°,且二面角P -CD -A 的平面角为锐角时,求三棱锥B -APD 的体积.解(1)证明:取AB 的中点E ,连接PE ,EF ,∵PA =PB ,∴PE ⊥AB ,∵四边形ABCD 为矩形,∴BC ⊥AB ,∵E ,F 分别为AB ,CD 的中点,∴EF ∥BC ,∴EF ⊥AB ,又PE ∩EF =E ,∴AB ⊥平面PEF ,∵PF ⊂平面PEF ,∴AB ⊥PF .(2)如图,以F 为原点,FC →,EF →的方向分别为x ,y 轴正方向,过F 与平面ABCD 垂直的直线向上的方向为z 轴正方向,建立如图所示的空间直角坐标系,则A (-1,-2,0),B (1,-2,0),C (1,0,0),D (-1,0,0),设P (0,a ,h ),h 为P 到平面ABCD 的距离,则PB →=(1,-2-a ,-h ),PD →=(-1,-a ,-h ),CD →=(-2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),·PD →=0,·CD →=0,x -ay -hz =0,2x =0,取y =-h ,则z =a ,∴n =(0,-h ,a ),又PD =2,∴a 2+h 2=3,(*)设直线PB 与平面PCD 所成的角为θ,sin θ=|PB →·n ||PB →||n |=|2h |1+(2+a )2+h 2×3=22,解得a =0或a =-32,当a =0时,平面PCD 的法向量为n =(0,-h ,0),则平面PCD 与平面ABCD 垂直,此时二面角P -CD -A 的平面角为直角,∴a =0舍去,∴a =-32,代入(*)可得h =32,∴V B -APD =V P -ABD =13×12×2×2×32=33.20.(2023·全国乙卷)如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =2,BC =22,PB =PC =6,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =5DO ,点F 在AC 上,BF ⊥AO .(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D -AO -C 的正弦值.解(1)证明:设AF =tAC ,则BF →=BA →+AF →=(1-t )BA →+tBC →,AO →=-BA →+12BC →,因为BF ⊥AO ,则BF →·AO →=[(1-t )BA →+tBC →BA →+12BC (t -1)BA →2+12tBC →2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,因为D ,E ,O ,F 分别为BP ,AP ,BC ,AC 的中点,于是EF ∥PC ,DO ∥PC ,即EF ∥DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO .(2)证明:因为D ,O 分别为BP ,BC 的中点,所以DO =12PC =62,则AD =5DO =302,因为AO =AB 2+BO 2=6,所以DO 2+AO 2=AD 2=152,则DO ⊥AO ,由(1)可知EF ∥DO ,所以EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)如图,以B 为原点,BA ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系,则B (0,0,0),A (2,0,0),O (0,2,0),AO →=(-2,2,0).因为PB =PC ,BC =22,所以设P (x ,2,z ),z >0,则BE →=BA →+AE →=BA →+12AP →=(2,0,0)+12(x -2,2,z ),22,由(2)知AO ⊥BE ,所以AO →·BE →=(-2,2,,22,0,所以x =-1.又PB =6,BP →=(x ,2,z ),所以x 2+2+z 2=6,所以z =3,则P (-1,2,3).由D 为BP 的中点,得-12,22,则AD →-52,22,设平面DAO 的法向量为n 1=(a ,b ,c ),1·AD →=0,1·AO →=0,-52a +22b +32c =0,2a +2b =0,取a =1,则n 1=(1,2,3).易知平面CAO 的一个法向量为n 2=(0,0,1),设二面角D -AO -C 的大小为θ,则|cos θ|=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=36=22,所以sin θ=1-12=22,故二面角D -AO -C 的正弦值为22.。

空间向量在立体几何中的应用-立体几何

空间向量在立体几何中的应用-立体几何
(4)若平面α的一个 法向量 为m,P是α外一
点,A是α内任一点,则点P到α的距离d= | PA·m | .
|m|
考点一 用向量证明平行、垂直问题
如图,在四棱锥P—ABCD 中,PA⊥平面ABCD,底面 ABCD为矩形,且PA=AD, E,F分别为线段AB,PD的中 点.求证:
(1) AF∥平面PEC;
相等或互补 .
5.空间的距离
(1)一个点到它在一个平面内 正射影 的距离,叫做 点到这个平面的距离.
(2)已知直线l平行平面α,则l上任一点到α的距离 都 相等 ,且叫做l到α的距离.
返回目录
(3)和两个平行平面同时 垂直 的直线,叫做两 个平面的公垂线.公垂线夹在平行平面间的部分,叫做两 个平面的 公垂线段 .两平行平面的任两条公垂线段的长 都相等,公垂线段的 长度 叫做两平行平面的距离, 也是一个平面内任一点到另一个平面的距离.
EC=(
a
22 ,1,0),∴AF=
1
2 EP+
1 EC,
2
2
2
又AF⊂ 平面PEC,∴AF∥平面PEC.
(2)PD=(0,1,-1),CD=(-a,0,0), 11
∴AF·PD=(0, 2, 2)·(0,1,-1)=0, AF·CD=(0, 1 , 1 )·(-a,0,0)=0,
22 ∴AF⊥PD,AF⊥CD,又PD∩CD=D,
∴m⊥n.
∴平面ADE⊥平面A1D1F.
返回目录
考点二 用向量求线线角与线面角 如图所示,已知点P在正方体ABCDA′B′C′D′的对角线BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA ′ D′D所成角的大小
【分析】建立空间直角坐标系,利用空间向量方法求解. 返回目录

空间向量在立体几何中的应用

空间向量在立体几何中的应用

第七节空间向量在立体几何中的应用[备考方向要明了]考什么怎么考1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面关系的一些定理(包括三垂线定理).4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.了解向量方法在研究立体几何问题中的应用. 1.高考中很少考查直线的方向向量,而平面法向量则多渗透在解答题中考查.2.利用向量法证明有关线、面位置关系,在高考有所体现,如2012年陕西T18,可用向量法证明.3.高考对空间向量及应用的考查,多以解答题形式考查,并且作为解答题的第二种方法考查,如2012年北京T16,天津T17等.[归纳·知识整合]1.两个重要向量(1)直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.[探究] 1.在求平面的法向量时,所列的方程组中有三个变量,但只有两个方程,如何求法向量?提示:给其中一个变量恰当赋值,求出该方程组的一组非零解,即可作为法向量的坐标.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向l1∥l2n1∥n2⇔n1=λn2向量分别为n1,n2.l1⊥l2n1⊥n2⇔n1·n2=0 直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔m·n=0l⊥αn∥m⇔n=λm 平面α、β的法向量分别为n,m.α∥βn∥m⇔n=λmα⊥βn⊥m⇔n·m=03.两条异面直线所成角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b| (其中φ为异面直线a,b所成的角).4.直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.5.求二面角的大小(1)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈ABu u u r,CDu u u r〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ=〈n1,n2〉(或π-〈n1,n2〉).[探究] 2.两向量的夹角的范围是什么?两异面直线所成角呢?直线与平面所成角呢?二面角呢?提示:两向量的夹角范围是[0,π];两异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2;直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2;二面角的范围是[0,π],注意以上各角取值范围的区别.6.点到平面的距离的向量求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离d =|AB u u u r·n ||n |.[自测·牛刀小试]1.(教材习题改编)两条不重合的直线l 1和l 2的方向向量分别为v 1=(1,-1,2),v 2=(0,2,1),则l 1与l 2的位置关系是( )A .平行B .相交C .垂直D .不确定解析:选C ∵v 1·v 2=1×0+(-1)×2+2×1=0, ∴v 1⊥v 2,从而l 1⊥l 2.2.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交解析:选B ∵a =(1,0,2),n =(-2,0,-4) ∴n =-2a ,即a ∥n . ∴l ⊥α.3.若平面α、β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α、β相交但不垂直D .以上均不正确解析:选C ∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0,∴n 1与n 2不垂直,∴α与β相交但不垂直.4.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.解析:cos 〈m ,n 〉=m ·n |m ||n |=11×2=22,即〈m ,n 〉=45°,其补角为135°. ∴两平面所成的二面角为45°或135°. 答案:45°或135°5.若平面α的一个法向量为n =(2,1,2),直线l 的一个方向向量为a =(-1,1,1),则l 与α所成的角的正弦值为________.解析:设直线l 与平面α所成的角为θ,则 sin θ=|cos 〈n ,a 〉|=|n ·a ||n |·|a |=|-1×2+1×1+1×2|-12+12+12·22+12+22=39.答案:39用向量法证明平行、垂直[例1] 在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E 、F 、E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .[自主解析] 以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝ ⎛⎭⎪⎫1,12,2. (1)设平面C 1E 1F 的法向量n =(x ,y ,z ).∵11C E u u u u r =⎝⎛⎭⎪⎫1,-12,0,1FC u u uu r =(-1,0,1),∴⎩⎪⎨⎪⎧ n ·11C E u u u u r=0,n ·1FC u u u u r =0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.取n =(1,2,1).∵CE u u u r =(1,-1,1),n ·CE u u u r=1-2+1=0, ∴CE u u u r⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ),由EF u u u r=(0,1,0),FC u u u r =(-1,0,-1),∴⎩⎨⎧m ·EF u u u r=0,m ·FC u u u r=0,即⎩⎪⎨⎪⎧b =0,-a -c =0. 取m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0,∴平面C 1E 1F ⊥平面CEF .保持例题条件不变,求证:CF ⊥平面C 1EF .证明:由例题可知,E (1,0,1),F (1,1,1),C (0,1,0),C 1(0,1,2),∴CF u u u r =(1,0,1),1C F u u u u r =(1,0,-1),EF u u u r =(0,1,0).∴CF u u u r ·1C F u u u ur =1×1+0×0+1×(-1)=0, CF u u u r ·EF u u u r=1×0+0×1+1×0=0.∴CF u u u r ⊥1C F u u u u r ,CF u u u r ⊥EF u u u r.∴CF ⊥C 1F ,CF ⊥EF . ∵C 1F ∩EF =F , ∴CF ⊥平面C 1EF . ———————————————————1.向量法证明空间平行或垂直的关键点利用向量法证明空间中的平行或垂直的问题时,建系是关键的一步,通常借助于几何图形中的垂直关系选择坐标原点和坐标轴,并让尽可能多的顶点在坐标轴上.2.向量法证明线面平行的注意点用向量法证线面平行可以证明直线的一个方向向量与平面内的某一向量是共线平行向量,也可以证明直线的方向向量与平面的某个法向量垂直,在具体问题中可选择较简单的解法.1.(2013·安徽师大附中模拟)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .解:设AD =DE =2AB =2a ,建立如图所示的坐标系A -xyz , 则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ). ∵F 为CD 的中点, ∴F ⎝ ⎛⎭⎪⎫32a ,32a ,0.(1)证明:AF u u u r =⎝ ⎛⎭⎪⎫32a ,32a ,0,BE u u u r=(a ,3a ,a ),BC u u u r =(2a,0,-a ),∵AF u u u r =12(BE u u u r +BC u u ur ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)证明:∵AF u u u r =⎝ ⎛⎭⎪⎫32a ,32a ,0,CD u u u r =(-a ,3a,0),ED u u u r=(0,0,-2a ),∴AF u u u r ·CD u u u r =0,AF u u u r ·ED u u u r=0,∴AF u u u r ⊥CD u u u r ,AF u u u r ⊥ED u u u r.又CD ∩DE =D , ∴AF u u u r⊥平面CDE , 即AF ⊥平面CDE . 又AF ∥平面BCE , ∴平面BCD ⊥平面CDE .利用空间向量求空间角[例2] 如图,在长方体ABCD -A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =FB =1.(1)求二面角C -DE -C 1的正切值; (2)求直线EC 1与FD 1所成角的余弦值.[自主解析] (1)以A 为原点,AB u u u r ,AD u u u r ,1AA u u u r分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则D (0,3,0)、D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是DE u u u r=(3,-3,0),EC 1=(1,3,2),FD 1=(-4,2,2).设n =(x ,y,2)为平面C 1DE 的法向量,则有⎭⎪⎬⎪⎫n ⊥DE u u u r n ⊥1EC u u u u r ⇒⎭⎪⎬⎪⎫3x -3y =0x +3y +2×2=0⇒x =y =-1, ∴n =(-1,-1,2),∵向量1AA u u u r=(0,0,2)与平面CDE 垂直,∴n 与AA 1所成的角θ为二面角C -DE -C 1的平面角或其补角.∵cos θ=n ·1AA u u u r |n ||1AA u u u r |=-1×0-1×0+2×21+1+4×0+0+4=63,由图知二面角C -DE -C 1的平面角为锐角,∴tan θ=22. (2)设EC 1与FD 1所成的角为β,则cos β=⎪⎪⎪⎪⎪⎪⎪⎪1EC u u u u r ·1FD u u u u r |1EC u u uu r ||1FD u u u u r | =⎪⎪⎪⎪⎪⎪1×-4+3×2+2×212+32+22×-42+22+22=2114. ———————————————————求平面的法向量的步骤(1)设出法向量的坐标,一般设为n =(x ,y ,z );(2)建立方程组,即利用平面的法向量与平面内的两条相交直线的方向向量垂直,建立关于x ,y ,z 的方程组.(3)消元,通过加减消元,用一个未知数表示另两个未知数. (4)赋值确定平面的一个法向量.2.(2012·新课标全国卷)如图所示,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1­BD ­C 1的大小.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .BC ⊂平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA u u u r 的方向为x 轴的正方向,|CA u u u r|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则1A D u u u u r =(0,0,-1),BD u u u r=(1,-1,1),1DC u u u u r =(-1,0,1).设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则⎩⎪⎨⎪⎧n ·BD u u u r =0,n ·1A D u u u u r =0,即⎩⎪⎨⎪⎧x -y +z =0,z =0,可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD u u u r=0,m ·1DC u u u u r =0,可取m =(1,2,1). 从而cos n ,m=n·m |n|·|m|=32.故二面角A 1-BD -C 1的大小为30°.利用向量法求空间距离[例3] 在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离.[自主解答] 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO ⊂平面ABC ,∴SO ⊥BO . 如图所示,建立空间直角坐标系Oxyz , 则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM u u u u r =(3,3,0),MN u u u u r=(-1,0,2), MB u u u r=(-1,3,0).设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎨⎧CM u u u u r·n =3x +3y =0,MN u u u u r·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1). ∴点B 到平面CMN 的距离d =|n ·MB u u u r||n |=423.——————————————————— 求平面α外一点P 到平面α的距离的步骤(1)求平面α的法向量n ;(2)在平面α内取一点A ,确定向量PA u u u r的坐标;(3)代入公式d =|n ·PA u u u r ||n |求解.3.已知正方形ABCD 的边长为4,E ,F 分别为AB ,AD 的中点,GC ⊥平面ABCD ,且GC =2.求点B 到平面EFG 的距离.解:如图所示,以C 为原点,CB 、CD 、CG 所在直线分别为x 、y 、z 轴建立空间直角坐标系O -xyz .由题意知B (4,0,0),E (4,2,0),F (2,4,0),G (0,0,2),BE u u u r =(0,2,0),GE u u u r =(4,2,-2),EF u u u r=(-2,2,0).设平面GEF 的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·GE u u u r=0,n ·EF u u u r =0,即⎩⎪⎨⎪⎧2x +y -z =0,-x +y =0,令x =1,则y =1,z =3, ∴n =(1,1,3). 点B 到平面GEF 的距离为d =|||BE u u u r |·cos〈BE u u u r,n 〉=|BE u u u r·n ||n |=⎪⎪⎪⎪⎪⎪0,2,0·1,1,311=21111.2种方法——用向量证平行与垂直的方法(1)用向量证平行的方法①线线平行:证明两直线的方向向量共线.②线面平行:a.证明该直线的方向向量与平面的某一法向量垂直; b .证明直线的方向向量与平面内某直线的方向向量平行.③面面平行:a.证明两平面的法向量为共线向量;b.转化为线面平行、线线平行问题.(2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.3种角——利用向量法求三种角的问题在立体几何中,涉及的角有异面直线所成的角、直线与平面所成的角、二面角等.关于角的计算,均可归结为两个向量的夹角.(1)求两异面直线a、b的夹角θ,须求出它们的方向向量a,b的夹角,则cos θ=|cos 〈a,b〉|.(2)求直线l与平面α所成的角θ可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.(3)求二面角α­l­β的大小θ,可先求出两个平面的法向量n1,n2所成的角,则θ=〈n1,n2〉或π-〈n1,n2〉.1个易错点——利用平面法向量求二面角的易错点利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.答题模板——空间向量在立体几何中的应用[典例] (2012·安徽高考·满分12分)平面图形ABB1A1C1C如图①所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=2,A1B1=A1C1=5,现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图②所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A ­BC ­A 1的余弦值.[快速规范审题]1.审条件,挖解题信息观察条件:四边形BB 1C 1C 是矩形,面ABC ⊥面BB 1C 1C ,面A 1B 1C 1⊥面BB 1C 1C ――――――――――――――→取BC ,B 1C 1的中点D ,D 1连接DD 1DD 1,B 1D 1,A 1D 1两两垂直. 2.审结论,明确解题方向 观察结论:(1)证明:AA 1⊥BC ,(2)求AA 1的长,(3)求二面角A -BC -A 1的余弦值――――――――――――→需建立空间直角坐标系正确写出相关点的坐标转化为向量运算解决. 3.建联系,找解题突破口D 1D ,D 1B 1,D 1A 1两两垂直,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1=5―――――――――――――→以D 1D ,D 1B 1,D 1A 1所在直线分别为z 轴,x 轴,y 轴建立空间直角坐标系―――――→及相关向量 (1)证明1A A u u u r ·BC u u u r =0,(2)计算AA 1=|1AA u u u r|,(3)求平面法向量的夹角―→得相应结论.[准确规范答题](1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD . 由BB 1C 1C 为矩形知,DD 1⊥B 1C 1. 因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1.⇨(1分) 又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.⇨(2分)故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz .⇨(3分) 由题设, 可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C , 于是AD ∥A 1D 1.⇨(4分)所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4),故1AA u u u r =(0,3,-4),BC u u u r =(-2,0,0),1AA u u u r ·BC u u u r=0,⇨(5分)因此1AA u u u r ⊥BC u u u r,即AA 1⊥BC .⇨(6分)坐标系建立不当,不能准确地推证AD ∥A 1D 1,导致点A 的坐标求错.(2)因为1AA u u u r=(0,3,-4),所以|1AA u u u r|=5,即AA 1=5.⇨(8分)(3)设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),又因为1AC u u u r =(-1,-2,4),1A B u u u r =(1,-2,4),⇨(9分)所以⎩⎪⎨⎪⎧1AC u u u r·n 1=0, 1A B u u u r·n 1=0,⇨(10分)即⎩⎪⎨⎪⎧x 1+2y 1-4z 1=0,x 1-2y 1+4z 1=0⇒⎩⎪⎨⎪⎧x 1=0,y 1=2z 1.令z 1=1,则n 1=(0,2,1).又因为平面ABC ⊥z 轴,所以取平面ABC 的法向量为n 2=(0,0,1), 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=15=55,⇨(11分)所以二面角A -BC -A 1的余弦值为-55.⇨(12分) [答题模板速成]利用空间向量解决立体几何问题的一般步骤:⇒⇒⇒⇒⇒量运算向量的夹角问题去论证,求解的范围) 所求角的范围而写错结论一、选择题(本大题共6小题,每小题5分,共30分)1.如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD 折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)设E为BC的中点,求AEu u u r与DBu u u r夹角的余弦值.解:(1)证明:∵折起前AD是BC边上的高,∴当△ABD折起后,AD⊥DC,AD⊥DB,又DB∩DC=D,∴AD⊥平面BDC,∵AD⊂平面ABD,∴平面ABD⊥平面BDC.(2)由∠BDC=90°及(1)知DA,DB,DC两两垂直,不妨设|DB|=1,以D为坐标原点,以DBu u u r,DCu u u r,DAu u u r的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,3),E⎝⎛⎭⎪⎫12,32,0,∴AEu u u r=⎝⎛⎭⎪⎫12,32,-3,DBu u u r=(1,0,0),∴AEu u u r与DBu u u r夹角的余弦值为cos〈AEu u u r,DBu u u r〉=AEu u u r·DBu u u r| AEu u u r|·|DBu u u r|=121×224=2222.2.(2013·孝感模拟)如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.(1)求证:PA ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:(1)证明:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)∵PA u u u r =(0,2,-2),EF u u u r=(1,0,0), ∴PA u u u r ·EF u u u r=0,∴PA ⊥EF .(2)易知DF u u u r=(0,0,1),FG u u u r =(-2,1,-1).设平面DFG 的法向量为m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF u u u r=0,m ·FG u u u r=0,即⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0.令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 同理可得n =(0,1,1)是平面EFG 的一个法向量,∴cos 〈m ,n 〉=m ·n |m |·|n |=25×2=105,由图可知二面角D -FG -E 为钝角, ∴二面角D -FG -E 的余弦值为-105. 3.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上且DE ⊥AE .(1)证明:平面ADE ⊥平面ACC 1A 1;(2)求直线AD 和平面ABC 1所成角的正弦值.解:(1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1,又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1. (2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D ⎝⎛⎭⎪⎫32,-12,2.易知AB u u u r=(3,1,0),1AC u u u u r =(0,2,2),AD u u u r =⎝ ⎛⎭⎪⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AB u u u r =3x +y =0,n ·1AC u u u ur =2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6). 所以,cos 〈n ,AD u u u r 〉=n ·AD u u u r|n |·|AD u u u r |=2310×3=105.由此即知,直线AD 和平面ABC 1所成角的正弦值为105. 4.(2012·江西高考)如图所示,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1. 因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE u u u r =151AA u u u r 得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE u u u r =⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AB u u u r=0,n ·1ACu u u r =0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0.令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE u u u r,n 〉=OE u u u r ·n | OE u u u r |·|n |=3010,即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010. 5.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上,下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点, 求证:FB 1⊥平面BCC 1B 1;(3)在(2)的条件下,求二面角F -CC 1-B 的余弦值.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB u u u r =(-a ,a ,a ),1DD u u u u r=(0,0,a ),∴|cos 〈1AB u u u r ,1DD u u u u r〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AB u u u r ·1DD u u u u r | 1AB u u u r|·|1DD u u u u r =33, 所以异面直线AB 1与DD 1所成角的余弦值为33. (2)∵1BB u u u r =(-a ,-a ,a ),BC u u u r=(-2a,0,0),1FB u u u r =(0,a ,a ), ∴⎩⎪⎨⎪⎧1FB u u u r ·1BB u u u r =0, 1FB u u u r ·BC u u u r =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B .(3)由(2)知,1FB u u u r为平面BCC 1B 1的一个法向量.设n =(x 1,y 1,z 1)为平面FCC 1的法向量,∵1CC u u u u r =(0,-a ,a ),FC u u u r=(-a,2a,0), ∴⎩⎪⎨⎪⎧n ·1CC u u u u r =0,n ·FC u u u r=0,得⎩⎪⎨⎪⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则x 1=2,z 1=1,∴n =(2,1,1),∴cos 〈1FB u u u r ,n 〉=1FB u u u r·n | 1FB u u u r |·|n|=33, 即二面角F -CC 1-B 的余弦值为33.6.(2013·聊城模拟)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若PA =PD ,求证:平面PQB ⊥平面PAD ;(2)设点M 在线段PC 上,PM MC =12,求证:PA ∥平面MQB ;(3)在(2)的条件下,若平面PAD ⊥平面ABCD ,且PA =PD =AD =2,求二面角M -BQ -C 的大小.解:(1)连接BD ,四边形ABCD 菱形, ∵∠BAD =60°, ∴△ABD 为正三角形, 又Q 为AD 中点, ∴AD ⊥BQ .∵PA =PD ,Q 为AD 的中点,AD ⊥PQ ,又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,AD ⊂平面PAD . ∴平面PQB ⊥平面PAD .(2)连接AC 交BQ 于点N ,如图(1): 由AQ ∥BC 可得, △ANQ ∽△CNB ,∴AQ BC =AN NC =12. 又PM MC =12, ∴PM MC =AN NC =12. ∴PA ∥MN .∵MN ⊂平面MQB ,PA ⊄平面MQB , 图(1) ∴PA ∥平面MQB .(3)由PA =PD =AD =2,Q 为AD 的中点,则PQ ⊥AD . 又平面PAD ⊥平面ABCD , ∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x ,y ,z 轴,建立如图(2)所示的坐标系,则各点坐标为A (1,0,0),B (0,3,0),Q (0,0,0),P (0,0,3).设平面MQB 的法向量n =(x ,y,1),可得 图(2)⎩⎪⎨⎪⎧n ·QB u u u r =0,n ·MN u u u u r =0.∵PA ∥MN ,∴⎩⎪⎨⎪⎧n ·QB u u u r =0,n ·PA u u u r =0.解得n =(3,0,1).取平面ABCD 的法向量m =(0,0,1).cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.7.(2012·福建高考)如图所示,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.解:(1)证明:以A 为原点,AB u u u r ,AD u u u r ,1AA u u u r的方向分别为x轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a ,0,1),故1AD u u u u r =(0,1,1),1B E u u u r =⎝ ⎛⎭⎪⎫-a 2,1,-1,1AB u u u r =(a,0,1),AE u u u r =⎝ ⎛⎭⎪⎫a 2,1,0.∵1AD u u u u r ·1B E u u u r =-a2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP u u u r=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥1AB u u u r ,n ⊥AE u u u r ,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,则y =-a2,z =-a ,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP u u u r ,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1,∴1AD u u u u r 是平面A 1B 1E 的一个法向量,此时1AD u u u u r=(0,1,1). 设1AD u u u u r与n 所成的角为θ,则cos θ=n ·1AD u u u u r|n ||1AD u u u u r |=-a 2-a 2· 1+a 24+a2 .∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos 30°,即3a22·1+5a 24=32, 解得a =2,即AB 的长为2.1.直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.解:(1)设CA u u u r =a ,CB u u u r =b ,CC 'u u u u r=c ,根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0,∴CE u u u r =b +12c ,A D 'u u u u r =-c +12b -12a .∴CE u u u r ·A D 'u u u u r =-12c 2+12b 2=0.∴CE u u u r ⊥A D 'u u u u r,即CE ⊥A ′D .(2)AC 'u u u u r =-a +c ,CE u u u r =b +12c ,∴|AC 'u u u u r |=2|a |,|CE u u u r |=52|a |.AC 'u u u u r ·CE u u u r =(-a +c )·(b +12c )=12c 2=12|a |2,∴cos 〈AC 'u u u u r ,CE u u u r〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010. 2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)设PD =AD ,求二面角A -PB -C 的余弦值. 解:(1)证明:因为∠DAB =60°,AB =2AD , 由余弦定理得BD =3AD . 从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD . 所以BD ⊥平面PAD .故PA ⊥BD .(2)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1).AB u u u r =(-1,3,0),PB u u u r=(0,3,-1),BC u u u r =(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·AB u u u r=0,n ·PB u u u r=0,即⎩⎨⎧-x +3y =0,3y -z =0,因此可取n =(3,1,3).设平面PBC 的法向量为m =(x 1,y 1,z 1),则⎩⎨⎧m ·PB u u u r=0,m ·BC u u u r=0,∴⎩⎨⎧3y 1-z 1=0,-x 1=0,可取m =(0,-1,-3),cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.3.(2013·武汉模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC=90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高;(2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C u u u u r =(-1,1,0),11AC u u u u r =(0,1,0),1A B u u u r =(1,0,-h ).(1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos 60°=|11B C u u u u r ·1A B u u u r ||11B C u u u u r |·|1A B u u u r |, 即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝ ⎛⎭⎪⎫1,0,h 2,于是1DC u u u u r =⎝ ⎛⎭⎪⎫-1,1,h 2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B u u u r ,n ⊥11AC u u u u r 可得⎩⎪⎨⎪⎧ n ·1A B u u u r =0,n ·11AC u u u u r =0,即⎩⎪⎨⎪⎧ x -hz =0,y =0,可取n =(h,0,1),故sin θ=|cos 〈1DC u u u u r ,n 〉|,而|cos 〈1DC u u u u r ,n 〉|=|1DC u u u u r ·n ||1DC u u u u r |·|n |=|-h +h 2|14h 2+2·h 2+1=h h 4+9h 2+8. 令f (h )=h h 4+9h 2+8=1h 2+8h 2+9,因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立. 所以f (h )≤19+28=18+1=22-17, 故当h =48时,sin θ的最大值为22-17. 4.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC =60°,平面AA 1C 1C ⊥面ABCD ,∠A 1AC =60°.(1)证明:BD ⊥AA 1;(2)求二面角D -A 1A -C 的平面角的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1G ?若存在,求出P 的位置,若不存在,说明理由.解:连接BD 交AC 于O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2A 1A ·AO cos 60°=3.∴AO 2+A 1O 2=A 1A 2,∴AO ⊥A 1O ,由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .∴以OB ,OC ,OA 所在直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3).(1)由BD u u u r =(-23,0,0),1AA u u u r =(0,1,3),则1AA u u u r ·BD u u u r =0×(-23)+1×0+3×0=0,∴BD ⊥AA 1,(2)由OB ⊥面AA 1C 1C ,∴平面AA 1C 1C 的法向量n 1=(1,0,0),设n 2⊥面AA 1D ,则⎩⎪⎨⎪⎧ n 2⊥1AA u u u r ,n 2⊥AD u u u r ,设n 2=(x ,y ,z ), 得到⎩⎨⎧ y +3z =0,-3x +y =0,取n 2=(1,3,-1),∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=55. ∴二面角D -A 1A -C 的平面角的余弦值是55. (3)假设在直线CC 1上存在点P ,使BP ∥面DA 1C 1,设CP u u u r =λ1CC u u u u r ,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).得P (0,1+λ,3λ),BP u u u r =(-3,1+λ,3λ).设n 3⊥面DA 1C 1,则⎩⎪⎨⎪⎧ n 3⊥11AC u u u u r ,n 3⊥1DA u u u u r ,设n 3=(x 3,y 3,z 3),得到⎩⎨⎧ 2y 3=0,3x 3+3z 3=0,∴不妨取n 3=(1,0,-1).又∵BP u u u r ∥面DA 1C 1,∴n 3·BP u u u r =0, ∴-3-3λ=0, ∴λ=-1. ∴点P 在C 1C 的延长线上且使C 1C =CP .。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

空间向量在立体几何中的应用
空间向量在立体几何的应用
立体几何是解决空间问题的精英学科,结合了微积分、几何、代数三者之间的
有机联系,具有重要的实际意义。

它是数学的基础理论,也是应用于多向系统、工程计算、科学研究、航空航天、船舶制造等各种领域的一种重要工具。

空间向量是立体几何和向量代数交叉应用最多的分支。

空间向量具有方向和大小等三个特性,结合它们之间的线性变换,所形成的多
种变换方程和推理公式,使空间向量的应用更加简单。

另外,由于空间向量具有方向性、概括性,在机器人学和运筹学等方面具有独特的效用。

空间向量在立体几何中的应用尤以运动问题为典型,空间上的运动可以分解成
由一系列空间向量组成的连续移动序列,可以分别用空间向量进行计算。

此外,应用于立体几何中的空间向量还可以帮助我们理解几何中的前趋量及拉格朗日原理,以及如何根据旋转角度、平移距离等信息求解物体的运动轨迹的空间变换函数。

空间向量的应用不仅仅局限于立体几何,还在工程计算、航空航天研发等诸多
领域下都有着广泛的应用。

它可以用来计算和描述各种形状的多边形和曲面,以及向量结构、平面和三维体结构之间的关系,是现代科学技术发展的重要推手。

通过本文介绍,我们可以看到,空间向量在立体几何中的应用十分广泛,被广
泛用于计算、分析、操纵等几何学问题,对研究几何原理和设计工程图形有着不可磨灭的重要作用,使立体几何在实践中的运用变得更加简单,不但能满足实用需要,还拓展了几何研究的范畴,从而及臻科学繁荣。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

练习:
正方体ABCD-A1B1C1D1中,P 为DD1的中
点,O1,O2,O3分别是平面A1B1C1D1、平面
BB1C1C、平面ABCD的中心
(2) 求异面直线PO3与O1O2Z成的角
D1 O1
C1
A1
B1
P
O2
D
C
A
O3
Y B
X
空间向量在
立几中应用
小结
本堂课的学习重点是用向量代数的方法解决 立体几何问题,但在学习中应把几何综合推 理与向量代数运算推理有机结合起来 向量代数推理是更加精练,严密的推理,每 一步都要根据运算法则进行 学习过程中应善于“前思后想”,提炼方法, 开拓思路
本题多次运用了封闭回路
空间向量在
立几中应用
利用向量求空间距离
空间距离是一种重要的几何量,利 用常规方法求距离,需要较强的转化能力, 而用向量法则相对简单
空间向量在
立几中应用
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
Z
D
C
B A
D1 A1
X
C1 Y
B1
空间向量在
评述:
立几中应用
空间向量在
立几中应用
空间向量在立体几何中的应用
空间向量在
立几中应用
利用向量判断位置关系
利用向量可证明四点共面、线线平 行、线面平行、线线垂直、线面垂直等问 题,其方法是通过向量的运算来判断,这 是数形结合的典型问题
空间向量在
立几中应用
空间向量在
立几中应用
空间向量在
立几中应用
利用向量求空间角
利用向量可以进行求线线角、线面 角、面面角,关键是进行向量的计算

空间向量在立体几何中的应用

空间向量在立体几何中的应用

中往往不是这样,那就需要作辅助线进而寻找三条互相垂
直的直线.
z
o
x
y
z
o x
y
z
o
x
y
z
P

F G M D
o
C E B
y
x
A


如图,有两个平面 α 与 β 所成的角跟 法向量 n1 与 n2 所成的角相等或互补, 所以 首先应判断二面角是锐角还是钝角.
cos cos n1 , n1
空 间 向 量 巧 应 用
利用空间向量求解空间夹角问题
空 间 向 量 巧 应 用
利用空间向量求解空间距离问题
空间建系有方法
利用空间向量能将立体几何问题转化为代数问题,对 空间感不好的同学们是一种很好地解题方法.此类问题的关 键就是建系.通常我们建立的是右手系,如果立体图形中有 现成的三条互相垂直的直线,就很容易建系,但实际问题
空间向量在立体几何中的应用
空 间 向 量 巧 应 用
利用空间向量证明空间中的位置关系(平行)
线线平行:
证明两条直线平行,只需证明两条直线的方向向量是共线向量.
线面平行:
①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线的方向向量是共线向量; ③利用共面向量定理,即证明直线的方向向量可用平面内两不共 线向量线性表示.
二面角平面角为钝角: 二面角平面角为锐角:
cos cos n1 , n1


以上介绍了空间向量处理立体几何问题的常见类题型及
常用方法,空间向量能能有效解决空间直线与直线、直线与 平面、平面与平面的位置关系和夹角问题.空间向量在一定 程度上把需要有良好空间想象能力的几何问题转化为“计算 题”.同学们还需做一定数量的题目,总结规律,提炼方法,

空间向量在立体几何中的应用

空间向量在立体几何中的应用

空间向量在立体几何中的应用
空间向量在立体几何中具有广泛的应用,这里列举了一些常见的应用:
1. 空间向量的加减法可以用于求解线段的向量表示,进而计算线段长度等相关信息。

2. 空间向量的点积可以用于计算两个向量之间的夹角,得到两个向量是否相互垂直或平行。

3. 空间向量的叉积可以用于计算多边形面积等相关信息,还可以判断三角形的方向(左手定则)。

4. 空间向量的投影可以用于求解点到平面或直线的垂足,计算平面或直线方程等。

5. 空间向量可以用于求解两条直线或两个平面的交点,并判断这两个对象之间的位置关系等。

总之,空间向量是立体几何中非常重要的工具,它们提供了一种直观、准确的表示方式,帮助我们更好地理解和计算立体几何中的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量在立体几何中的应用编稿:孙永钊 审稿:张林娟【考纲要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2. 掌握空间向量的线性运算及其坐标表示.3. 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4. 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.5. 能用向量方法证明有关直线和平面位置关系的一些定理.6. 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.【知识网络】【考点梳理】要点一、空间向量 1.空间向量的概念在空间,我们把具有大小和方向的量叫做向量。

要点诠释:⑴ 空间的一个平移就是一个向量。

⑵ 向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。

相等向量只考虑其定义要素:方向,大小。

⑶ 空间的两个向量可用同一平面内的两条有向线段来表示。

2.共线向量(1)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb 。

3.向量的数量积(1)定义:已知向量,a b ,则||||cos ,a b a b ⋅⋅<> 叫做,a b的数量积,记作a b ⋅ ,即 a b ⋅= ||||cos ,a b a b ⋅⋅<>。

(2)空间向量数量积的性质:① ||cos ,a e a a e ⋅=<>;② 0a b a b ⊥⇔⋅=;③ 2||a a a =⋅.(3)空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅; ②a b b a ⋅=⋅(交换律);③()a b c a b a c ⋅+=⋅+⋅(分配律)。

4.空间向量基本定理如果三个向量,,a b c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

5.空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;6.空间直角坐标系中的坐标在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.7.空间向量的直角坐标运算律:(1)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若123(,,)a a a a = ,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=;||a ==,||b ==夹角公式:cos ||||a b a b a b ⋅⋅==⋅.(3)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB =或,A B d =。

要点二、空间向量在立体几何中的应用1. 立体几何中有关垂直和平行的一些命题,可通过向量运算来证明.对于垂直问题,一般是利用0a b a b ⊥⇔⋅=进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式cos ||||a ba b θ⋅=⋅ 。

要点诠释:平面的法向量的求法:设n =(x,y,z),利用n 与平面内的两个不共线的向a ,b 垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面α的一个法向量(如图)。

线线角的求法:设直线AB 、CD 对应的方向向量分别为a 、b ,则直线AB 与CD 所成的角为||arccos ||||a b a b ⋅⋅。

(注意:线线角的范围[00,900])线面角的求法:设n 是平面α的法向量,AB →是直线l 的方向向量,则直线l 与平面α所成的角为||arcsin ||||AB n AB n ⋅⋅(如图)。

二面角的求法:设n 1,n 2分别是二面角l αβ--的两个面α,β的法向量,则121212,arccos ||||n n n n n n ⋅〈〉=⋅就是二面角的平面角或其补角的大小(如图)3.用向量法求距离的公式设n 是平面α的法向量,AB 是平面α的一条斜线,则点B 到平面α的距离为||||AB n n ⋅ (如图)。

要点诠释:⑴ 点A 到平面α的距离:||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。

⑵ 直线a 与平面α之间的距离:||AB n d n ⋅= ,其中,A a B α∈∈,n是平面α的法向量。

⑶ 两平行平面,αβ之间的距离:||AB n d n ⋅= ,其中,A B αβ∈∈, n是平面α的法向量。

【典型例题】类型一、空间向量的运算【例1】已知AB=(2,2,1),AC =(4,5,3),求平面ABC 的单位法向量。

【答案】单位法向量0||n n n ==±(31,-32,32).【解析】设面ABC 的法向量(,,)n x y z = ,则n ⊥且n⊥,即0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即2204530x y z x y z ++=⎧⎨++=⎩,解得2,,x z y z =⎧⎨=-⎩, 令1x =±,则(1,2,2)n =±-∴单位法向量0||n n n = =±(31,-32,32).【总结升华】一般情况下求法向量用待定系数法。

由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n的某个坐标设为1,再求另两个坐标。

平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量,所以本题的单位法向量应有两解。

举一反三:【变式】若a =(1,5,-1),b =(-2,3,5)(1)若()()//3ka b a b +-,求实数k 的值;(2)若()()3ka b a b +⊥-,求实数k 的值;(3)若a k +取得最小值,求实数k 的值。

【答案】(1)()()//3ka b a b +-()3ka b a b λ∴+=-设,即(2,53,5)(7,4,16)k k k λλλ-+-+=--由27534516k k k λλλ-=⎧⎪+=-⎨⎪-+=-⎩,解得13k =-;(2)()()3ka b a b +⊥- ,()()30ka b a b ∴+⋅-=(2,53,5)(7,4,16)0k k k ∴-+-+⋅--=,即31060k -=,解得1063k =; (3)ka b +== 当827k =-时,ka b + 取得最小值。

类型二:向量法证明平行或垂直【例2】如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点NB(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

【解析】作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D O M N,(1)(11),(0,2),(2)44222MN OP OD =--=-=--设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ⋅=⋅=即 202022y z x y z -=⎨⎪-+-=⎪⎩取z =解得n =(1,1)044MN n ⋅=--⋅=∵MN OCD ∴平面‖(2)设AB 与MD 所成的角为θ,(1,0,0),(1)22AB MD ==-- ∵1cos ,23AB MD AB MD πθθ⋅===⋅∴∴ ,AB 与MD 所成角的大小为3π (3)设点B 到平面OCD 的距离为d ,则d 为OB在向量n = 上的投影的绝对值,由 (1,0,2)OB =-, 得23OB n d n⋅== .所以点B 到平面OCD 的距离为23【总结升华】1. 用向量证明线面平行的方法有: (1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示. 2. 用向量法证垂直问题:(1)证明线线垂直,只需证明两直线的方向向量数量积为0;(2)证明线面垂直,只需证明直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直;(3)证明面面垂直,只需证明两平面的法向量的数量积为0,或利用面面垂直的判定定理转化为证明线面垂直.举一反三:【变式】ID 401056【高清视频空间向量在立体几何中的应用例题1】如图,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF.【解析】如图建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N(2,0,0),C(0,4,0),D(2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,DE 不在平面ABC 内,故DE∥平面ABC. (2)B 1F →=(-2,2,-4),EF →=(2,-2,-2), AF →=(2,2,0),B 1F →²EF →=(-2)³2+2³(-2)+(-4)³(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →²AF →=(-2)³2+2³2+(-4)³0=0.∴B 1F →⊥AF →,即B 1F ⊥AF ,又∵AF∩FE=F ,∴B 1F ⊥平面AEF.类型三:异面直线所成的角【例3】正方体ABCD-EFGH 的棱长为a ,点P 在AC 上,Q 在BG 上,且AP=BQ=a, 求直线PQ 与AD 所成的角【答案】90°【解析】建立空间直角坐标系如图,则(,0,0)A a ,(,,0)D a a)Q ,(,0)P a∴(,0,)22QP a a =-- ,(0,,0)AD a = ,∴0QP AD ⋅=∴QP 与AD 所成的角为90°。

相关文档
最新文档